

1

Introduction

We forget how incredible the computer is. The modern computer

executes billions of operations each second, every one of which must

work perfectly – accurately performing the right operation at each

and every cycle. How is this even possible? How can we, mere humans

with our cognitive limitations, manage to build devices that work at

this pace with this level of fidelity? Each of the billions of instructions

executed per second on a modern computer is another detail to be

managed. How can we gain control over this mass of detail?

In Jorge Luis Borges’s 1944 short story Funes the Memorious, the

protaganist, Ireneo Funes, experiences what it is like to perceive the

world at this level of streaming detail. After being thrown from a wild

horse and severely crippled, he develops a prodigious memory. He

recalls, perfectly and instantaneously, every moment of his life.

He knew by heart the forms of the southern clouds at dawn on the 30th

of April, 1882, and could compare them in his memory with the mottled

streaks on a book in Spanish binding he had only seen once.. . . Two or

three times he had reconstructed a whole day; he never hesitated, but

each reconstruction had required a whole day. (Borges, 1962)

Yet, each of his memories was individual, disconnected, divorced of

any higher structural patterns. Borges relates,

With no effort, he had learned English, French, Portuguese and Latin. I

suspect, however, that he was not very capable of thought. To think is to

forget differences, generalize, make abstractions. In the teeming world

of Funes, there were only details, almost immediate in their presence.

Without abstraction, there are only details. And it is through abstrac-

tion – forgetting differences, generalizing – that we can get control of

the sheer daunting complexity of controlling a computer.

What is abstraction? A B S T R AC T I O N is the process of viewing a set of

apparently dissimilar things as instantiating an underlying identity. Fu-

nes sees a field of flowers, hundreds of blooms. To him, they are each

20 P RO G R A M M I N G W E L L

individuals, but to the botanist, these apparently dissimilar individuals

are all instances of a type, the genus Tulipa, the tulips. By capturing

innumerable individual plants into a hierarchy of abstract families,

genera, and species, the bewildering complexity of plant life on the

planet becomes more manageable.

Programming computers is a battle against the sheer daunting

complexity of the task. The chief weapon in the battle is abstraction.

The first objective of this book is to introduce you to a broad variety

of abstraction mechanisms and their uses, providing you with an

appropriate armamentarium. The second objective is to open your

eyes to the beauty that computer programming can manifest when

those tools are elegantly applied.

You are already familiar with some of the primary abstraction mech-

anisms used in programming computers. (I assume throughout this

book that you’ve had some experience programming computers us-

ing an imperative programming language, of the sort, for instance,

acquired in Harvard’s CS50 or CS50x course.)

Figure 1.1: A model of a part of Charles
Babbage’s analytical engine, intended
for the calculation of tables of mathe-
matical functions such as the trigono-
metric functions like sine and cosine,
the Bernoulli numbers, or logarithms, as
in Figure 1.2 below.

Let’s take as an example the problem of generating a table of loga-

rithms. The choice is not random. The building of tables of mathemat-

ical functions like the logarithm was the motivating task for the earliest

computer designs, those of Charles Babbage in the 1820s and 1830s

(Figure 1.1). In the margin (Figure 1.2) is the beginning of such a table.

x log2x

1 0.0000
2 1.0000
3 1.5850
4 2.0000

· · ·

Figure 1.2: A small table of logarithms

A program to print out this kind of table might look like this:

printf "1 0.0000\n";

printf "2 1.0000\n";

printf "3 1.5850\n";

printf "4 2.0000\n" ;;

and when the program is executed, it prints the table:

printf "1 0.0000\n";

printf "2 1.0000\n";

printf "3 1.5850\n";

printf "4 2.0000\n" ;;

1 0.0000

2 1.0000

3 1.5850

4 2.0000

- : unit = ()

(For the moment, the details of the language in which this computa-

tion is written are immaterial. We’ll get to all that in a bit. The idea is

just to get the gist of the argument. In the meantime, you can just let

the code waft over you like a warm summer breeze.)

Now of course this code is hopelessly written. Why? Because it

treats each line of the table as an individual specimen, missing the

abstract view. The first step in viewing the lines abstractly is to note

I N T RO D U C T I O N 21

that they are actually instances of an underlying uniformity: Each

string is of the form of an integer (call it x) and the log (with base 2) of

x. They are instances of the underlying pattern

printf "%2d %2.4f\n" x (log2 x);

for each of several values of the variable x. (Again, the details of the

language being used are postponed, but you hopefully get the idea.)

This mechanism, the S TAT E VA R I A B L E, is thus a mechanism for ab-

straction – for making apparently dissimilar computations manifest an

underlying identity. To take full advantage of this type of variable, we’ll

need to specify the sequential values, 1 through 4 say, that the variable

takes on, using a L O O P.

for x = 1 to 4 do

printf "%2d %2.4f\n" x (log2 x)

done

Like Monsieur Jourdain, who discovered he’d been speaking prose

his whole life, you’ve been using abstraction mechanisms without

realizing it. Without them, programming is impossible.

This particular style of programming, imperative programming, is

undoubtedly most familiar to you. Its most basic abstraction mecha-

nisms are the state variable and the loop. It is the style seen in some of

the earliest, most influential programming languages, from F O RT R A N

to the A LG O L family of languages, to C, to Python, and beyond. And

it is the style of programming captured by the first universal model of

computation, the T U R I N G M AC H I N E of Alan Turing (Figure 1.3).

Figure 1.3: Alan Turing (1912–1954),
whose Turing machine provided the first
universal model of computation, based
on imperative programming notions
of state and state change. Turing is
rightfully credited with fundamental
contributions to essentially all areas of
computer science: the theory of com-
puting, hardware, software, artificial
intelligence, computational biology, and
much more. His premature death by
suicide at 41 after undergoing “therapy”
at the hands of the British government
following his conviction for the “crime”
of homosexuality is certainly one of the
great intellectual tragedies of the twen-
tieth century. (The British government
got around to apologizing for his treat-
ment some 50 years later.) The highest
award in computing, the Turing Award,
is appropriately named after him.

But there are many other abstraction mechanisms than state vari-

ables and loops, underpinning many other programming paradigms

than imperative programming, and allowing many other ways of de-

signing computations. It is the goal of this book to introduce several

such abstraction mechanisms, provide practice in their use and appli-

cation, and thereby open up a broad range of programming possibili-

ties not otherwise available.

An especially important abstraction mechanism is the F U N C T I O N,

a mapping from inputs to outputs. The idea of the function gives its

name to the paradigm of functional programming, and we will begin

with functions and functional programming ideas. But functional

programming is only one of several paradigms that we will discuss.

1.1 An extended example: greatest common divisor

By way of example of the distinction between imperative and func-

tional programming, consider the very practical question of tiling a

bathroom floor of size 28 by 20 units. We can tile such a floor with tiles

https://url.cs51.io/r8f

22 P RO G R A M M I N G W E L L

that are 2 by 2, since both 28 and 20 are evenly divisible by 2, but 3 by 3

tiles don’t work, since neither 28 nor 20 are divisible by 3. If we want to

use the fewest tiles, it would be useful to know the largest number that

divides both dimensions evenly, their G R E AT E S T C O M M O N D I V I S O R

(GCD).

Here is how we might program a calculation of GCD in an impera-

tive style:

let gcd_down a b =

let guess = ref (min a b) in

while (a mod !guess <> 0) || (b mod !guess <> 0) do

guess := !guess - 1

done;

!guess ;;

This procedure works by counting down from the smaller of the two

numbers, one by one, until a common divisor is found. Since the

search for the common divisor is from the largest to the smallest possi-

bility, the greatest common divisor is found.

In the functional style, this same “countdown” algorithm might be

coded like this:

let gcd_func a b =

let rec downfrom guess =

if (a mod guess <> 0) || (b mod guess <> 0) then

downfrom (guess - 1)

else guess in

downfrom (min a b) ;;

Here, in the context of calculating the GCD of a and b, a new function

downfrom is introduced to check a particular guess of the GCD of the

two numbers. The downfrom function takes an input guess and checks

whether it is the GCD of a and b. If so, the output value of the function

is the guess guess itself, but if not, a one-smaller guess is tried. Having

defined this counting-down function, the calculation of the GCD itself

proceeds just by guessing the minimum of the two numbers.

You may find unusual some of the properties of this latter imple-

mentation of what is essentially the identical algorithm – counting

down one by one from the minimum of the two numbers until a

common divisor is found. First, there are no overt loops, and no as-

signments to variables that change the state of the computation by

changing the value of a variable. It’s just functions and their applica-

tion. Second, the function downfrom defined in the code appeals to

downfrom itself as part of the calculation of its output. It is defined by

R E C U R S I O N, that is, in terms of itself. Such functions are recursive, and

when they invoke themselves for a computation are said to recur.1 You 1 Not recurse please. To recurse is to
curse again, not the kind of thing a
program – or a person – should be
doing.

may wonder whether this is quite kosher. Isn’t defining something in

terms of itself a bad idea? But in this case at least, the definition works

I N T RO D U C T I O N 23

fine, because the value of downfrom guess depends not on the value

of downfrom guess itself but of downfrom (guess - 1), a different

value. This may itself depend on downfrom (guess - 2), and so on,

but eventually one of the inputs to downfrom will be a common divisor,

and in that case, the output value of downfrom does not depend on

downfrom itself. The recursion “bottoms out” and the GCD is returned.

Figure 1.4: Proposition 1 of Book 7
of Euclid’s Elements, providing his
algorithm for calculating the greatest
common divisor of two numbers.

This style of programming – by defining and applying functions –

has a certain elegance, which can be seen already in the distinction

between the two versions of the GCD computation already provided.

But as it turns out, the algorithm underlying both of these implemen-

tations is a truly bad one. Counting down is just not the right way to

calculate the GCD of two numbers. As far back as 300 B C E, Euclid of

Alexandria provided a far better algorithm in Proposition 1 of Book

7 (Figure 1.4) of his treatise on mathematics, Elements. Euclid’s algo-

rithm for GCD is based on the following insight: Any square tiling of a

20 by 28 area will tile both a 20 by 20 square and the 8 by 20 remainder.

More generally, any square tiling of an a by b area (where a is greater

than b) will tile both a b by b square and the b by a − b remainder.

Thus, to calculate the GCD of a and b, it suffices to calculate the GCD

of b and a −b. Eventually, we’ll be looking for the GCD of two instances

of the same number (that is, a and b will be the same; we’ll be looking

to tile a square area) in which case we know the GCD; it is a (or b) it-

self. Figure 1.5 shows the succession of smaller and smaller rectangles

explored by Euclid’s algorithm for the 20 by 28 case.

An initial presentation of Euclid’s algorithm is this:

let rec gcd_euclid a b =

if a < b then gcd_euclid b a

else if a = b then a

else gcd_euclid b (a - b) ;;

Now, in the case that a = b, were we to continue on one more round of

checking the GCD of b and a −b, the difference a −b would simply be

0. Thus, we can check for this condition instead.

let rec gcd_euclid a b =

if a < b then gcd_euclid b a

else if b = 0 then a

else gcd_euclid b (a - b) ;;

We can simplify further. When subtracting off b from a, the remainder

may still be greater than b, in which case, we’ll want to subtract b

again, continuing to subtract b until, eventually, the remainder is less

than b. Thus, instead of using the difference a −b as the new second

argument of the recursive call, we can use the remainder a modulo b.

let rec gcd_euclid a b =

if a < b then gcd_euclid b a

24 P RO G R A M M I N G W E L L

20

28

8

20

8

4
4

4
20

28

(a) (b) (c) (d) (e)

Figure 1.5: Euclid’s algorithm for GCD
starting (a) with a 20×28 rectangle to
be tiled. Removing the 20×20 square
(b) leaves a 20× 8 remainder to be
tiled. From that rectangle, we remove,
successively, two 8× 8 squares (c),
leaving a 4× 8 remainder. Finally,
removing a 4×4 square (d) leaves a 4×4
square, the largest square that can tile
the whole (e).

else if b = 0 then a

else gcd_euclid b (a mod b) ;;

Finally, notice that if a < b, then the values b and a mod b are just b

and a, respectively – exactly the values we want to use for the recursive

call in that case. We can therefore drop the test for a < b entirely.

let rec gcd_euclid a b =

if b = 0 then a

else gcd_euclid b (a mod b) ;;

This is E U C L I D ’ S A LG O R I T H M. Compare it to the countdown algo-

rithm above. The difference is stark. Euclid’s method is beautiful in its

simplicity.

It is also, as it turns out, much more efficient. This can be deter-

mined analytically or experienced empirically.

1.2 Programming as design

Euclid’s algorithm for GCD shows us that there is more than one way

to solve a problem, and some ways are better than others. The dimen-

sions along which programmed solutions can be better or worse are

manifold. They include

• succinctness,

• efficiency,

• readability,

• maintainability,

• provability,

• testability,

I N T RO D U C T I O N 25

and, most importantly but ineffably,

• beauty.

Computer programming is not the only practice where practitioners

may generate multiple ways of satisfying a goal, which can be eval-

uated along multiple independent and perhaps conflicting metrics.

Architects, engineers, illustrators, industrial designers may generate

wildly different plans in response to a client’s constraints and desires.

All live in a space of possibilities from which they choose solutions that

vary along multiple, often competing, criteria.

What all of these practices have in common is D E S I G N – the navi-

gation of a space of options, generated by applicable tools, in search of

the good, as measured along multiple dimensions. In the case of com-

puter programming, the tools are exactly the abstraction mechanisms

provided by a programming language.

A crucial consideration in teaching programming from this perspec-

tive is what abstraction mechanisms to concentrate on, as these define

the space of options within which we can navigate. As discussed above,

the most important of these abstraction mechanisms is the function.

In addition to being a fantastic method for abstracting computation

(which will become clear some time around Chapter 8), functions

also serve as a platform upon which many other abstraction mecha-

nisms can be deployed and combined. It may be difficult at first to see

the incredible utility of the function as a unifying abstraction mecha-

nism, but hopefully, as you see more and more examples of their use

in combination with other techniques, you will come to appreciate the

function’s centrality in the design of programs.

Figure 1.6: Princeton professor Alonzo
Church (1903–1995), inventor of the
lambda calculus, the foundation of all
functional programming languages;
PhD adviser of Alan Turing.

Indeed, functions and their application are such a powerful compu-

tational tool that they constitute, by themselves, a complete universal

computational mechanism. The Princeton mathematician and logi-

cian Alonzo Church (1936) developed a “calculus” of functions alone,

the so-called L A M B D A C A LC U LU S (see Section B.1.4), a logical system

that includes functions and their application and literally nothing

else – no data objects or data structures of any kind, neither atomic

(like integers) nor composite (like lists); no mutable state (like vari-

able assignment); no control structures (like conditionals or loops).

Astoundingly, Turing (1937) was then able to show that anything that

can be computed by his universal model of computation, the Turing

machine, can also be computed in Church’s lambda calculus. Thus, the

lambda calculus – comprised only of functions and their applications

remember – is itself a universal model of computation. This argument

for the universality of Turing’s and Church’s computation models is

now known as the C H U RC H -T U R I N G T H E S I S. (The close connection

26 P RO G R A M M I N G W E L L

between the lambda calculus and the Turing machine mirrors the close

relationship between Church and Turing; Church was Turing’s PhD

adviser at Princeton.)

In this book, we concentrate on the following abstraction mecha-

nisms, listed with the style of programming they are associated with:

Abstraction Programming paradigm

functions functional programming

algebraic data types structure-driven programming

polymorphism generic programming

abstract data types modular programming

mutable state imperative programming

loops procedural programming

lazy evaluation programming with infinite data structures

object dispatch object-oriented programming

concurrency concurrent programming

Table 1.1: Some abstraction mecha-
nisms and the programming paradigms
they allow.

Of course, there are many other abstraction mechanisms and pro-

gramming paradigms, but these should both give you a good sense of

the importance of a variety of abstractions and provide an excellent

base on which to build.

As with any design practice, computer programming is best learned

by seeing a range of examples of the space of options – examples that

are better or worse along one dimension or another – with attention

paid to the process of developing, modifying, and improving such

solutions. For that reason, we will often show computer programs be-

ing built up in stages and being modified to demonstrate alternative

designs (as we did with the GCD example above), and programming

problems will be revisited as new abstraction mechanisms open fur-

ther parts of the design space. You may find the multiple variations on

a theme redundant – as indeed they are – but we know of no better way

to get across the idea of programming as a design practice than the

careful development and exploration of a significant program design

space.

1.3 The OCaml programming language

Figure 1.7: Robin Milner (1934–2010),
developer of the ML programming lan-
guage, the first functional language with
type inference, and the programming
language from which OCaml derives. He
received the Turing Award in 1991 for
his work on ML and other innovations.

In order that we can introduce multiple abstraction mechanisms

and programming paradigms with a minimum of programming lan-

guage detail, we use a multi-paradigm programming language called

OC A M L. (The examples above were written in OCaml.) OCaml is a

member of the ML family of programming languages first developed

I N T RO D U C T I O N 27

at University of Edinburgh by Robin Milner (Figure 1.7) in the 1970’s.

The OCaml dialect of ML itself was developed at the French national

research lab Institut National de Recherche en Informatique et en

Automatique (INRIA), where it continues to be developed and main-

tained. OCaml is a multi-paradigm programming language in that it

provides support not only for functional programming, but also imper-

ative programming, object-oriented programming, and all the other

mechanisms and paradigms listed in Table 1.1.

OCaml is especially attractive from a pedagogical standpoint be-

cause it provides these capabilities on the basis of a relatively small

foundation of well-designed orthogonal primitive language constructs,

so that programming concepts can be introduced and experimented

with, without the need for learning a huge set of syntactic idiosyn-

crasies. Nonetheless, as with learning any new programming language,

it will take a bit of getting used to the ideas and notations of OCaml,

and in fact getting practice with learning new notations is a useful skill

in its own right.

I emphasize that this book is not a book about OCaml program-

ming. (For instance, this book doesn’t pretend to present the language

comprehensively, instead covering only those parts of the language

needed to present the principles being taught. For that reason, you will

want to get at least a bit familiar with the reference documentation of

the language.) Rather, it is a book about the role of abstraction in the

design of software, which uses the OCaml language as the medium in

which to express these ideas. But in order to get these ideas across, we

need some language, and it turns out that OCaml is an ideal language

for this pedagogical purpose. Of course, we’ll have to spend some time

going over the particularities of the OCaml language, which may seem

odd mostly because of their unfamiliarity. The text may have a bit of

a disjointed quality to it, bouncing back and forth between details

of OCaml and higher-level concepts. But the time spent learning the

details of the language isn’t time wasted. It pays off in lessons that gen-

eralize to any programming you will do in the future. You may discover,

like many do, that once you’ve gained some proficiency with OCaml,

you find its charms irresistible, and continue to use it (or its close

derivatives like Microsoft’s F#, Facebook’s Reason, Apple’s Swift, or

Mozilla’s Rust) when appropriate – as many companies including those

mentioned do. But whether you continue to program in OCaml or not,

the patterns of thinking and the sophistication of your understanding

will be the payoff of this process, translatable to any programming

you’ll do in the future. In fact, the market for software developers re-

flects this payoff as well. As shown in Figure 1.8, the market rewards

software developers fluent in the kinds of technologies and ideas fea-

https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/

28 P RO G R A M M I N G W E L L

tured in this book; their salaries are substantially higher on average.

Although such pecuniary benefits aren’t the point of this book, they

certainly don’t hurt.

Table 1

Erlang 115000
Scala 115000

OCaml 114000

Clojure 110000

Go 110000

Groovy 110000

Objective-C 110000

F# 108000

Hack 108000

Perl 106000

Kotlin 105000

Rust 105000

Swift 102000

TypeScript 102000

Bash/Shell 100000

CoffeeScript 100000

ObjectPascal 100000

Haskell 100000

Java 100000

Lua 100000

Ruby 100000

Julia 98500

C 98000

JavaScript 98000

Python 98000

Erlang
Scala

OCaml
Clojure

Go
Groovy

Objective-C
F#

Hack
Perl

Kotlin
Rust
Swift

TypeScript
Bash/Shell
CoffeeScript
ObjectPascal

Haskell
Java
Lua
Ruby
Julia
C

JavaScript
Python

90K 95K 100K 105K 110K 115K 120K

OCaml

�1

Figure 1.8: United States average salary
by technology, from StackOverflow
Developer Survey 2018. Highlighted
bars correspond to technologies in the
typed functional family.

1.4 Tools and skills for design

The space of design options available to you is enabled by the palette

of abstraction mechanisms that you can fluently deploy. Navigating

the design space to find the best solutions is facilitated by a set of skills

and analytic tools, which we will also introduce throughout the follow-

ing chapters as they become pertinent. These include more precise

notions of the syntax and semantics of programming languages, fa-

cility with notations, sensitivity to programming style (see especially

Appendix C), programming interface design, unit testing, tools (big-

O notation, recurrence equations) for analyzing efficiency of code.

Having these tools and skills at your disposal will add to your computa-

tional tool-box and stretch your thinking about what it means to write

good code. I expect, based on my own experiences, that learning to

develop, analyze, and express your software ideas with precision will

also benefit your abilities to develop, analyze, and express ideas more

generally.

https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

