

11

Algebraic data types

Data types can be divided into the atomic types (with atomic type

constructors like int and bool) and the composite types (with parame-

terized type constructors like 〈〉 * 〈〉 , 〈〉 list, and 〈〉 option).

What is common to all of the built-in composite types introduced

so far1 is that they allow building data structures through the combina- 1 The exception is the composite type
of functions. Functions are the rare
case of a composite type in OCaml not
structured as an algebraic data type as
defined below.

tion of just two methods.

1. Conjunction: Multiple components can be conjoined to form a

composite value containing all of the components.

For instance, values of pair type, int * float say, are formed as

the conjunction of two components, the first component an int

and the second a float.

2. Alternation: Multiple components can be disjoined, serving as

alternatives to form a composite value containing one of the values.

For instance, values of type int list are formed as the alternation

of two components. One alternative is []; the other is the “cons”

(itself a conjunction of a component of type int and a component

of type int list).

Data types built by conjunction and disjunction are called A LG E B R A I C

D ATA T Y P E S.2 As mentioned, we’ve seen several examples already, as

2 Algebra is the mathematical study of
structures that obey certain laws. Typi-
cal of algebras is to form such structures
by operations that have exactly the
duality of conjunction and alternation
found here. For instance, arithmetic
algebras have multiplication and ad-
dition as, respectively, the conjunction
and alternation operators. Boolean
algebras have logical conjunction (‘and’)
and disjunction (‘or’). Set algebras have
cross-product and union. The term
algebraic data type derives from this
connection to these structured algebras.

built-in composite data types. But why should the power of algebraic

data types be restricted to built-in types? Such a simple and elegant

construction like algebraic types could well be a foundational con-

struct of the language, not only to empower programmers using the

language but also to provide a foundation for the built-in constructs

themselves.

OCaml inherits from its antecedents (especially, the Hope program-

ming language developed at the University of Edinburgh, the univer-

sity that brought us ML as well) the ability to define new algebraic data

types as user code.

138 P RO G R A M M I N G W E L L

Let’s start with a simple example based on genome processing, ex-

emplifying the use of alternation. DNA sequences are long sequences

composed of only four base amino acids: guanine (G), cytosine (C),

adenine (A), and thymine (T).

Figure 11.1: DNA carries information
encoded as sequences of four amino
acids.

We can define an algebraic data type for the DNA bases via alter-

nation. The type, called base, will have four value constructors cor-

responding to the four base letters. The alternatives are separated by

vertical bars (|). Here is the definition of the base type, introduced by

the keyword type:

type base = G | C | A | T ;;

type base = G | C | A | T

This kind of type declaration defines a VA R I A N T T Y P E, which lists a set

of alternatives, variant ways of building elements of the type: A or T

or C or G.3 Having defined the base type, we can refer to values of that 3 Using argumentless variants in this
way serves the purpose of enumerated
types in other languages – enum in C, C
derivatives, Java, and Perl, for instance.
Variants thus generalize enumerated
types.

type.

A ;;

- : base = A

G ;;

- : base = G

As with all composite types, computations that depend on the

particular values of the type use pattern-matching to structure the

cases. For instance, each DNA base has a complementary base: A

and T are complementary, as are G and C. A function to return the

complement of a base uses pattern-matching to individuate the cases:

let comp_base bse =

match bse with

| A -> T

| T -> A

| G -> C

| C -> G ;;

val comp_base : base -> base = <fun>

comp_base G ;;

- : base = C

Variants correspond to the alternation approach to building com-

posite values. The conjunction approach is enabled by allowing the

alternative value constructors to take an argument of a specified type.

That argument itself can conjoin components by tupling.

As an example, DNA sequences themselves can be implemented as

an algebraic data type that we’ll call dna. Taking inspiration from the

list type for sequences, DNA sequences can be categorized into two

alternatives, two variants – the empty sequence, for which we will use

the value constructor Nil; and non-empty sequences, for which we

will use the value constructor Cons. The Cons constructor will take two

https://url.cs51.io/za0
https://url.cs51.io/za0

A LG E B R A I C D ATA T Y P E S 139

arguments (uncurried), one for the first base in the sequence and one

for the rest of the dna sequence.4 4 � There is a subtle distinction con-
cerning when type constructors take a
single tuple argument or multiple argu-
ments written with tuple notation. For
the most part, the issue can be ignored,
so long as the type definition doesn’t
place the argument sequence within
parentheses. For the curious, see the
“Note on tupled constructors” in the
OCaml documentation.

type dna =

| Nil

| Cons of base * dna ;;

type dna = Nil | Cons of base * dna

The Cons constructor takes two arguments (using tuple notation), the

first of type base and the second of type dna. It thus serves to conjoin a

base element and another dna sequence.

Having defined this new type, we can construct values of that type:

let seq = Cons (A, Cons (G, Cons (T, Cons (C, Nil)))) ;;

val seq : dna = Cons (A, Cons (G, Cons (T, Cons (C, Nil))))

and pattern-match against them:

let first_base =

match seq with

| Cons (x, _) -> x

| Nil -> failwith "empty sequence" ;;

val first_base : base = A

The dna type is defined recursively,5 as one of its variants (Cons) 5 In value definitions (with let), recur-
sion must be marked explicitly with
the rec keyword. In type definitions,
no such explicit marking is required,
and in fact nonrecursive definitions
can only be formed using distinct type
names. This design decision was pre-
sumably motivated by the ubiquity of
recursive type definitions as compared
to recursive value definitions. It’s a
contentious matter as to whether this
quirk of OCaml is a feature or a bug.

includes another value of the same type. By using recursion, we can

define data types whose values can be of arbitrary size.

To process data values of arbitrary size, recursive functions are an

ideal match. A function to construct the complement of an entire DNA

sequence is naturally recursive.

let rec complement seq =

match seq with

| Nil -> Nil

| Cons (b, seq) -> Cons (comp_base b, complement seq) ;;

val complement : dna -> dna = <fun>

complement seq ;;

- : dna = Cons (T, Cons (C, Cons (A, Cons (G, Nil))))

11.1 Built-in composite types as algebraic types

The dna type looks for all the world just like the list type built into

OCaml, except for the fact that its elements are always of type base.

Indeed, our choice of names of the value constructors (Nil and Cons)

emphasizes the connection.

In fact, many of the built-in composite types can be implemented as

algebraic data types in this way. Boolean values are essentially a kind of

enumerated type, hence algebraic.6

6 We name the type bool_ so as not to
shadow the built-in type bool. Similarly
for the underscore versions list_ and
option_ below.

Value constructors in defined alge-
braic types are restricted to starting with
capital letters in OCaml. The built-in
type differs only in using lower case
constructors true and false.

type bool_ = True | False ;;

type bool_ = True | False

https://url.cs51.io/9f1
https://blog.janestreet.com/ocaml-annoyance-23-type-declarations-are-implicitly-recursive/
https://blog.janestreet.com/ocaml-annoyance-23-type-declarations-are-implicitly-recursive/

140 P RO G R A M M I N G W E L L

We’ve already seen an algebraic type implementation of base lists.

Similar implementations could be generated for lists of other types.

type int_list = INil | ICons of int * int_list ;;

type int_list = INil | ICons of int * int_list

type float_list = FNil | FCons of float * float_list ;;

type float_list = FNil | FCons of float * float_list

Following the edict of irredundancy, we’d prefer not to write this same

code repeatedly, differing only in the type of the list elements. Fortu-

nately, variant type declarations can be polymorphic.

type 'a list_ = Nil | Cons of 'a * 'a list_ ;;

type 'a list_ = Nil | Cons of 'a * 'a list_

In polymorphic variant data type declarations like this, a new type

constructor (list_ in this case) is defined that takes a type argument

(here, the type variable ’a). The type constructor is always postfix, like

the built-in constructors list and option that you’ve already seen.7 7 If we need a type constructor that takes
more than one type as an argument, we
use the cross-product type notation, as
in the (’key, ’value) dictionary

type defined in Section 11.3.

Option types can be viewed as a polymorphic variant type with two

constructors for the None and Some cases.

type 'a option_ = None | Some of 'a ;;

type 'a option_ = None | Some of 'a

The point of seeing these alternative implementations of the built-

in composite types (booleans, lists, options) is not that one would

actually use these implementations. That would flout the edict of

irredundancy. And the reimplementations of lists and options don’t

benefit from the concrete syntax niceties of the built-in versions; no

infix :: for instance, or bracketed lists. Rather than defining a dna type

in this way, in a real application we’d just use the base list type. If a

name for this type is desired the type name dna can be defined by

type dna = base list ;;

The point instead is to demonstrate the power of algebraic data type

definitions and show that even more of the language can be viewed

as syntactic sugar for pre-provided user code. Thus, the language can

again be seen as deploying a small core of basic notions to build up a

highly expressive medium.

11.2 Example: Boolean document search

The variant type definitions in this chapter aren’t the first examples of

algebraic type definitions you’ve seen. In Section 7.4, we noted that

record types were user-defined types, defined with the type keyword,

as well.

A LG E B R A I C D ATA T Y P E S 141

Record types are a kind of dual to variant types. Instead of starting

with alternation – this or that or the other – record types start with

conjunction – this and that and the other.

As an example, consider a data type for documents. A document

will be made up of a list of words (each a string), as well as some meta-

data about the document, perhaps its title, author, and so forth. For

this example, we’ll stick just to titles, so an appropriate type definition

would be

type document = { title : string;

words : string list } ;;

type document = { title : string; words : string list; }

A corpus of such documents can be implemented as a document

list. We build a small corpus of first lines of novels.8

8 As an aid in building a document
corpus, it will be useful to have a func-
tion tokenize : string -> string

list that splits up a string into its
component words (here defined as any
characters separated by whitespace).
We use some functions from the Str
library module, made available using
the #load directive to the R E P L, to split
up the string.

#load "str.cma" ;;

let tokenize : string -> string list =

Str.split (Str.regexp "[\t\n]+") ;;

val tokenize : string -> string list = <fun>

Did you notice the use of partial appli-
cation?

We’ve also suppressed the output for
this R E P L input to save space, as indi-
cated by the (* output suppressed

*) comment here and elsewhere.

let first_lines : document list = (* output suppressed *)

[{title = "Moby Dick";

words = tokenize

"Call me Ishmael ."};

{title = "Pride and Prejudice";

words = tokenize

"It is a truth universally acknowledged , \

that a single man in possession of a good \

fortune must be in want of a wife ."};

{title = "1984";

words = tokenize

"It was a bright cold day in April , and \

the clocks were striking thirteen ."};

{title = "Great Gatsby";

words = tokenize

"In my younger and more vulnerable years \

my father gave me some advice that I've \

been turning over in my mind ever since ."}

] ;;

We might want to query for documents with particular patterns of

words. A boolean query allows for different query types: requesting

documents in which a particular word occurs; or (inductively) docu-

ments that satisfy both one query and another query; or documents

that satisfy either one query or another query. We instantiate the idea

in a variant type definition.

type query =

| Word of string

| And of query * query

| Or of query * query ;;

type query = Word of string | And of query * query | Or of query *
query

To evaluate such queries against a document, we’ll write a function

eval : document -> query -> bool, which should return true just

in case the document satisfies the query.

142 P RO G R A M M I N G W E L L

let rec eval ({title; words} : document)

(q : query)

: bool = ...

Note the use of pattern-matching right in the header line, as well as the

use of field punning to simplify the pattern.

The evaluation of the query depends on its structure, so we’ll want

to match on that.

let rec eval ({title; words} : document)

(q : query)

: bool =

match q with

| Word word -> ...

| And (q1, q2) -> ...

| Or (q1, q2) -> ...

For the first variant, we merely check that the word occurs in the list of

words:

let rec eval ({title; words} : document)

(q : query)

: bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> ...

| Or (q1, q2) -> ...

(The function List.mem : ’a -> ’a list -> bool is useful here,

a good reason to familiarize yourself with the rest of the List library

module.)

What about the other variants? In these cases, we’ll want to recur-

sively evaluate the subparts of the query (q1 and q2) against the same

document. We’ve already decomposed the document into its compo-

nents title and words. We could reconstruct the document as needed

for the recursive evaluations:

let rec eval ({title; words} : document)

(q : query)

: bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> (eval {title; words} q1)

&& (eval {title; words} q2)

| Or (q1, q2) -> (eval {title; words} q1)

|| (eval {title; words} q2) ;;

but this seems awfully verbose. We refer to {title; words} four

different times. It would be helpful if we could both pattern match

against the document argument and name it as a whole as well. OCaml

provides a special pattern constructed as

〈pattern〉 as 〈var〉

A LG E B R A I C D ATA T Y P E S 143

for just such cases. Such a pattern both pattern matches against the

〈pattern〉 as well as binding the 〈var〉 to the expression being matched

against as a whole. We use this technique both to provide a name for

the document as a whole (doc) and to extract its components. (Once

we have a variable doc for the document as a whole, we no longer need

to refer to title, so we use an anonymous variable instead.)

let rec eval ({words; _} as doc : document)

(q : query)

: bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> (eval doc q1) && (eval doc q2)

| Or (q1, q2) -> (eval doc q1) || (eval doc q2) ;;

That’s better. But we’re still calling eval doc four times on different

subqueries. We can abstract that function and reuse it; call it eval’:

let eval ({words; _} as doc : document)

(q : query)

: bool =

let rec eval' (q : query) : bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> (eval' q1) && (eval' q2)

| Or (q1, q2) -> (eval' q1) || (eval' q2) in

... ;;

There’s an important idea hidden here, which follows from the scoping

rules of OCaml. Because the eval’ definition falls within the scope

of the definition of eval and the associated variables words and q,

those variables are available in the body of the eval’ definition. And in

fact, we make use of that fact by referring to words in the first pattern-

match. (The outer q is actually shadowed by the inner q, so it isn’t

referred to in the body of the eval’ definition. The occurrence of q in

the match q is a reference to the q argument of eval’.)

Now that we have eval’ defined it suffices to call it on the main

query and let the recursion do the rest. At this point, however, the

alternative variable name doc is no longer referenced, and can be

eliminated.

let eval ({words; _} : document)

(q : query)

: bool =

let rec eval' (q : query) : bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> (eval' q1) && (eval' q2)

| Or (q1, q2) -> (eval' q1) || (eval' q2) in

eval' q ;;

val eval : document -> query -> bool = <fun>

144 P RO G R A M M I N G W E L L

Let’s try it on some sample queries. We’ll use the first line of The Great

Gatsby.

let gg = nth first_lines 3 ;; (* output suppressed *)

eval gg (Word "the") ;;

- : bool = false

eval gg (Word "and") ;;

- : bool = true

eval gg (And ((Word "the"), (Word "and"))) ;;

- : bool = false

eval gg (Or ((Word "the"), (Word "and"))) ;;

- : bool = true

Now, we return to the original goal, to search among a whole corpus

of documents for those satisfying a query. The function eval_all :

document list -> query -> string list will return the titles of all

documents in the document list that satisfy the query.

The eval_all function should be straightforward to write, as it

involves filtering the document list for those satisfying the query, then

extracting their titles. The filter and map list-processing functions are

ideal for this.

let eval_all (docs : document list)

(q : query)

: string list =

List.map (fun doc -> doc.title)

(List.filter (fun doc -> (eval doc q))

docs) ;;

val eval_all : document list -> query -> string list = <fun>

We start with the docs, filter them with a function that applies eval to

select only those that satisfy the query, and then map a function over

them to extract their titles.

From a readability perspective, it is unfortunate that the description

of what the code is doing – start with the corpus, then filter, then map

– is “inside out” with respect to how the code reads. This follows from

the fact that in OCaml, functions come before their arguments in

applications, whereas in this case, we like to think about a data object

followed by a set of functions that are applied to it. A language with

backwards application would be able to structure the code in the more

readable manner.

Happily, the Stdlib module provides a B AC K WA R D S A P P L I C AT I O N

infix operator |> for just such occasions.

succ 3 ;;

- : int = 4

3 |> succ ;; (* start with 3; increment *)

- : int = 4

3 |> succ (* start with 3; increment; ... *)

A LG E B R A I C D ATA T Y P E S 145

|> ((*) 2) ;; (* ... and double *)

- : int = 8

Exercise 87

What do you expect the type of |> is?

Exercise 88

How could you define the backwards application operator |> as user code?

Taking advantage of the backwards application operator can make

the code considerably more readable. Instead of

List.filter (fun doc -> (eval doc q))

docs

we can start with docs and then filter it:

docs

|> List.filter (fun doc -> (eval doc q))

Then we can map the title extraction function over the result:

docs

|> List.filter (fun doc -> (eval doc q))

|> List.map (fun doc -> doc.title)

The final definition of eval_all is then

let eval_all (docs : document list)

(q : query)

: string list =

docs

|> List.filter (fun doc -> (eval doc q))

|> List.map (fun doc -> doc.title) ;;

val eval_all : document list -> query -> string list = <fun>

Some examples:

eval_all first_lines (Word "and") ;;

- : string list = ["1984"; "Great Gatsby"]

eval_all first_lines (Word "me") ;;

- : string list = ["Moby Dick"; "Great Gatsby"]

eval_all first_lines (And (Word "and", Word "me")) ;;

- : string list = ["Great Gatsby"]

eval_all first_lines (Or (Word "and", Word "me")) ;;

- : string list = ["Moby Dick"; "1984"; "Great Gatsby"]

The change in readability from using backwards application has

a moral. Concrete syntax can make a big difference in the human

usability of a programming language. The addition of a backwards

application adds not a jot to the expressive power of the language, but

when used appropriately it can dramatically reduce the cognitive load

on a human reader.9

9 Not coincidentally, natural languages
often allow alternative orders for
phrases for just this same goal of
moving “heavier” phrases to the right.
For example, the normal order for verb
phrases with the verb “give” places
the object before the recipient, as in
“Arden gave the book to Bellamy”. But
when the object is very “heavy” (long
and complicated), it sounds better to
place the object later, as in “Arden gave
to Bellamy every last book in the P. G.
Wodehouse collection.” Backwards
application gives us this same flexibility,
to move “heavy” expressions (like
complicated functions) later in the
code.

146 P RO G R A M M I N G W E L L

11.3 Example: Dictionaries

A dictionary is a data structure that manifests a relationship between

a set of keys and their associated values. In an English dictionary, for

instance, the keys are the words of the language and the associated

values are their definitions. But dictionaries can be used in a huge

variety of applications.

A dictionary data type will depend on the types of the keys and the

values. We’ll want to define the type, then, as polymorphic – a (’key,

’value) dictionary.10 One approach (an exceptionally poor one 10 Names of type variables are arbitrary,
so we might as well use that ability to
give good mnemonic names to them
– ’key and ’value instead of’a and
’b – following the edict of intention in
making our intentions clear to readers
of the code.

as it will turn out, but bear with us) is to store the keys and values as

separate equal-length lists in two record fields.

type ('key, 'value) dictionary = { keys : 'key list;

values : 'value list } ;;

type ('key, 'value) dictionary = { keys : 'key list; values :

'value list; }

Looking up an entry in the dictionary by key, returning the correspond-

ing value, can be performed in a few ways. Here’s one:

let rec lookup ({keys; values} : ('key, 'value) dictionary)

(request : 'key)

: 'value option =

match keys, values with

| [], [] -> None

| key :: keys, value :: values ->

if key = request then Some value

else lookup {keys; values} request ;;

Lines 4-8, characters 0-34:

4 | match keys, values with

5 | | [], [] -> None

6 | | key :: keys, value :: values ->

7 | if key = request then Some value

8 | else lookup {keys; values} request...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

([], _::_)

val lookup : ('key, 'value) dictionary -> 'key -> 'value option =

<fun>

The problem with this dictionary representation is obvious. The

entire notion of a dictionary assumes that for each key there is a single

value. But this approach to implementing dictionaries provides no

such guarantee. An illegal dictionary – like {keys = [1; 2; 3];

values = ["first"; "second"]}, in which one of the keys has no

value – is representable. In such cases, the lookup function will raise

an exception.

let bad_dict = {keys = [1; 2; 3];

values = ["first"; "second"]} ;;

A LG E B R A I C D ATA T Y P E S 147

val bad_dict : (int, string) dictionary =

{keys = [1; 2; 3]; values = ["first"; "second"]}

lookup bad_dict 4 ;;

Exception: Match_failure ("//toplevel//", 4, 0).

lookup bad_dict 3 ;;

Exception: Match_failure ("//toplevel//", 4, 0).

Adding additional match cases merely postpones the problem.

let rec lookup ({keys; values} : ('key, 'value) dictionary)

(request : 'key)

: 'value option =

match keys, values with

| [], _

| _, [] -> None

| key :: keys, value :: values ->

if key = request then Some value

else lookup {keys; values} request ;;

val lookup : ('key, 'value) dictionary -> 'key -> 'value option =

<fun>

lookup bad_dict 4 ;;

- : string option = None

lookup bad_dict 3 ;;

- : string option = None

The function still allows data structures that do not express legal dic-

tionaries to be used. Indeed, we can no longer even distinguish be-

tween simple cases of lookup of a missing key and problematic cases of

lookup in an ill-formed dictionary structure.

A better dictionary design would make such illegal structures im-

possible to even represent. This idea is important enough for its own

edict.

Edict of prevention:

Make the illegal inexpressible.

We’ve seen this idea before in the small. It’s the basis of type checking

itself, which allows the use of certain values only with functions that

are appropriate to apply to them – integers with integer functions,

booleans with boolean functions – preventing all other uses. In a

strongly typed language like OCaml, illegal operations, like applying

an integer function to a boolean value, simply can’t be expressed as

valid well-typed code.

The edict of prevention11 challenges us to find an alternative struc-

11 This idea has a long history in func-
tional programming with algebraic
data types, but seen in its crispest form
is likely due to Yaron Minsky, who
phrases it as “Make illegal states unrep-
resentable.” Ben Feldman uses “Make
impossible states impossible.” But the
idea dates back to at least the begin-
nings of statically typed programming
languages. By referring to inexpressibil-
ity, rather than unrepresentability, we
generalize the notion to include cases
we consider in Chapter 12.

ture in which this kind of mismatch between the keys and values can’t

occur. Such a structure may already have occurred to you. Instead

of thinking of a dictionary as a pair of lists of keys and values, we can

think of it as a list of pairs of keys and values.12

12 An idiosyncrasy of OCaml requires
that the dictionary type be defined in
stages in this way, rather than all at once
as

type ('key, 'value) dictionary =

{ key : 'key; value : 'value } list ;;

Line 2, characters 31-35:

2 | { key : 'key; value : 'value } list ;;

^^^^

Error: Syntax error

The use of and to combine multiple type
definitions into a single simultaneous
definition isn’t required here, but is
when the type definitions are mutually
recursive.

type ('key, 'value) dict_entry =

{ key : 'key; value : 'value }

https://url.cs51.io/80h
https://url.cs51.io/80h
https://url.cs51.io/5bk
https://url.cs51.io/5bk

148 P RO G R A M M I N G W E L L

and ('key, 'value) dictionary =

('key, 'value) dict_entry list ;;

type ('key, 'value) dict_entry = { key : 'key; value : 'value; }

and ('key, 'value) dictionary = ('key, 'value) dict_entry list

The type system will now guarantee that every dictionary is a list

whose elements each have a key and a value. A dictionary with un-

equal numbers of keys and values is not even expressible. The lookup

function can still recur through the pairs, looking for the match:

let rec lookup (dict : ('key, 'value) dictionary)

(request : 'key)

: 'value option =

match dict with

| [] -> None

| {key; value} :: tl ->

if key = request then Some value

else lookup tl request ;;

val lookup : ('key, 'value) dictionary -> 'key -> 'value option =

<fun>

let good_dict = [{key = 1; value = "one"};

{key = 2; value = "two"};

{key = 3; value = "three"}] ;;

val good_dict : (int, string) dict_entry list =

[{key = 1; value = "one"}; {key = 2; value = "two"};

{key = 3; value = "three"}]

lookup good_dict 3 ;;

- : string option = Some "three"

lookup good_dict 4 ;;

- : string option = None

In this particular case, changing the structure of dictionaries to make

the illegal inexpressible also very slightly simplifies the lookup code

as well. But even if pursuing the edict of prevention makes code a bit

more complex, it can be well worth the trouble in preventing bugs

from arising in the first place.

Not all illegal states can be prevented by making them inexpressible

through the structuring of the types. For instance, this updated dictio-

nary structure still allows dictionaries that are ill-formed in allowing

the same key to occur more than once. We’ll return to this issue when

we further apply the edict of prevention in Chapter 12.
Problem 89

The game of mini-poker is played with just six playing cards: You use only the face cards
(king, queen, jack) of the two suits spades and diamonds. There is a ranking on the cards:
Any spade is better than any diamond, and within a suit, the cards from best to worst are
king, queen, jack.

In this two-player game, each player picks a single card at random, and the player
with the better card wins.

For the record, it’s a terrible game.
Provide appropriate type definitions to represent the cards used in the game. It

should contain structured information about the suit and value of the cards.

A LG E B R A I C D ATA T Y P E S 149

Figure 11.2: The cards of mini-poker,
depicted in order from best to worst.

Problem 90

What is an appropriate type for a function better that determines which of two cards is
“better” in the context of mini-poker, returning true if and only if the first card is better
than the second?

Problem 91

Provide a definition of the function better.

11.4 Example: Arithmetic expressions

One of the elegancies admitted by the generality of algebraic data types

is their use in capturing languages.

By way of example, a language of simple integer arithmetic expres-

sions can be defined by the following grammar, written in Backus-Naur

form as described in Section 3.1.

〈expr〉 ::= 〈integer〉
| 〈expr1〉 + 〈expr2〉
| 〈expr1〉 - 〈expr2〉
| 〈expr1〉 * 〈expr2〉
| 〈expr1〉 / 〈expr2〉
| ~- 〈expr〉

(We’ll take this to define the abstract syntax of the language. Concrete

syntax notions like precedence and associativity of the operators and

parentheses for disambiguating structure will be left implicit in the

usual way.)

We can define a type for abstract syntax trees for these arithmetic

expressions as an algebraic data type. The definition follows the gram-

mar almost trivially, one variant for each line of the grammar.

type expr =

| Int of int

| Plus of expr * expr

| Minus of expr * expr

| Times of expr * expr

| Div of expr * expr

| Neg of expr ;;

type expr =

Int of int

| Plus of expr * expr

| Minus of expr * expr

150 P RO G R A M M I N G W E L L

| Times of expr * expr

| Div of expr * expr

| Neg of expr

The arithmetic expression given in OCaml concrete syntax as (3 + 4)

* ~- 5 corresponds to the following value of type expr:

Times (Plus (Int 3, Int 4), Neg (Int 5)) ;;

- : expr = Times (Plus (Int 3, Int 4), Neg (Int 5))

A natural thing to do with expressions is to evaluate them. The

recursive definition of the expr type lends itself to recursive evaluation

of values of that type, as in this definition of a function eval : expr

-> int.

let rec eval (exp : expr) : int =

match exp with

| Int v -> v

| Plus (x, y) -> (eval x) + (eval y)

| Minus (x, y) -> (eval x) - (eval y)

| Times (x, y) -> (eval x) * (eval y)

| Neg x -> ~- (eval x) ;;

Lines 2-7, characters 0-29:

2 | match exp with

3 | | Int v -> v

4 | | Plus (x, y) -> (eval x) + (eval y)

5 | | Minus (x, y) -> (eval x) - (eval y)

6 | | Times (x, y) -> (eval x) * (eval y)

7 | | Neg x -> ~- (eval x)...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Div (_, _)

val eval : expr -> int = <fun>

Helpfully, the interpreter warns us of a missing case in the match.

One of the variants in the algebraic type definition, division, is not

covered by the match. A key feature of defining variant types is that

the interpreter can perform these kinds of checks on your behalf. The

oversight is easily corrected.

let rec eval (exp : expr) : int =

match exp with

| Int v -> v

| Plus (x, y) -> eval x + eval y

| Minus (x, y) -> eval x - eval y

| Times (x, y) -> eval x * eval y

| Div (x, y) -> eval x / eval y

| Neg x -> ~- (eval x) ;;

val eval : expr -> int = <fun>

We can test the evaluator with examples like the one above.

eval (Times (Plus (Int 3, Int 4), Neg (Int 5))) ;;

- : int = -35

A LG E B R A I C D ATA T Y P E S 151

eval (Int 42) ;;

- : int = 42

eval (Div (Int 5, Int 0)) ;;

Exception: Division_by_zero.

Of course, we already have a way of doing these arithmetic calcula-

tions in OCaml. We can just type the expressions into OCaml directly

using OCaml’s concrete syntax.

(3 + 4) * ~- 5 ;;

- : int = -35

42 ;;

- : int = 42

5 / 0 ;;

Exception: Division_by_zero.

So what use is this kind of thing?

This evaluator is not trivial. By making the evaluation of this lan-

guage explicit, we have the power to change the language to diverge

from the language it is implemented in. For instance, OCaml’s inte-

ger division truncates the result towards zero. But maybe we’d rather

round to the nearest integer? We can implement the evaluator to do

that instead.

Exercise 92

Define a version of eval that implements a different semantics for the expression
language, for instance, by rounding rather than truncating integer divisions.

Exercise 93

Define a function e2s : expr -> string that returns a string that represents the fully
parenthesized concrete syntax for the argument expression. For instance,

e2s (Times (Plus (Int 3, Int 4), Neg (Int 5))) ;;
- : string = "((3 + 4) * (~- 5))"
e2s (Int 42) ;;
- : string = "42"
e2s (Div (Int 5, Int 0)) ;;
- : string = "(5 / 0)"

The opposite process, recovering abstract syntax from concrete syntax, is called parsing.
More on this in the final project (Chapter A).

11.5 Problem section: Binary trees

Trees are a class of data structures that store values of a certain type

in a hierarchically structured manner. They constitute a fundamental

data structure, second only perhaps to lists in their repurposing flexi-

bility. Indeed, the arithmetic expressions of Section 11.4 are a kind of

tree structure.

(a)

(b)

Figure 11.3: Two trees: (a) an integer
tree, and (b) a string tree.

In this section, we concentrate on a certain kind of polymorphic

B I N A RY T R E E, a kind of tree whose nodes have distinct left and right

subtrees, possibly empty. Some examples can be seen in Figure 11.3.

A binary tree can be an empty tree (depicted with a bullet symbol (•)

152 P RO G R A M M I N G W E L L

in the diagrams), or a node that stores a single value (of type ’a, say)

along with two subtrees, referred to as the left and right subtrees.

A polymorphic binary tree type can thus be defined by the following

algebraic data type definition:

type 'a bintree =

| Empty

| Node of 'a * 'a bintree * 'a bintree ;;

type 'a bintree = Empty | Node of 'a * 'a bintree * 'a bintree

For instance, the tree of Figure 11.3(a) can be encoded as an instance

of an int bintree as

let int_bintree =

Node (16,

Node (93, Empty, Empty),

Node (3,

Node (42, Empty, Empty),

Empty)) ;;

val int_bintree : int bintree =

Node (16, Node (93, Empty, Empty),

Node (3, Node (42, Empty, Empty), Empty))

Exercise 94

Construct a value str_bintree of type string bintree that encodes the tree of
Figure 11.3(b).

Now let’s write a function to sum up all of the elements stored in an

integer tree. The natural approach to carrying out the function is to

follow the recursive structure of its tree argument.

let rec sum_bintree (t : int bintree) : int =

match t with

| Empty -> 0

| Node (n, left, right) -> n + sum_bintree left

+ sum_bintree right ;;

val sum_bintree : int bintree -> int = <fun>

Exercise 95

Define a function preorder of type ’a bintree -> ’a list that returns a list of all of
the values stored in a tree in P R E O R D E R, that is, placing values stored at a node before
the values in the left subtree, in turn before the values in the right subtree. For instance,

preorder int_bintree ;;
- : int list = [16; 93; 3; 42]

You’ll notice a certain commonality between the sum_bintree and

preorder functions. Both operate by “walking” the tree, traversing it

from its root down, recursively operating on the subtrees, and then

combining the value stored at a node and the recursively computed

values for the subtrees into the value for the tree as a whole. What

differs among them is what value to return for empty trees and what

function to apply to compute the overall value from the subparts. We

A LG E B R A I C D ATA T Y P E S 153

can abstract this tree walk functionality with a function that takes three

arguments: (i) the value to use for empty trees, (ii) the function to ap-

ply at nodes to the value stored at the node and the values associated

with the two subtrees, along with (iii) a tree to walk; it carries out the

recursive process on that tree. Since this is a kind of “fold” operation

over binary trees, we’ll name the function foldbt.

Exercise 96

What is the appropriate type for the function foldbt just described?

Exercise 97

Define the function foldbt just described.

Exercise 98

Redefine the function sum_bintree using foldbt.

Exercise 99

Redefine the function preorder using foldbt.

Exercise 100

Define a function find : ’a bintree -> ’a -> bool in terms of foldbt, such that
find t v is true just in case the value v is found somewhere in the tree t.

find int_bintree 3 ;;
- : bool = true
find int_bintree 7 ;;
- : bool = false

11.6 Supplementary material

• Lab 5: Variants, algebraic types, and pattern matching

• Problem set A.3: Bignums and RSA encryption

• Lab 6: Recursive algebraic types

• Problem set A.4: Symbolic differentiation

http://url.cs51.io/lab5
http://url.cs51.io/lab6

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

