STUART M. SHIEBER

PROGRAMMING
WELL:
ABSTRACTION AND
DESIGN IN
COMPUTATION

©2025 Stuart M. Shieber. All rights reserved for the time being, though
the intention is for this document to eventually be licensed under a CC
license. In the meantime, please do not cite, quote, or redistribute.

CI Build: 89-1leeelc9 (Mon Jan 13 22:22:06 UTC 2025)

Commit leeelc9 from Mon Jan 13 17:08:39 2025 -0500 by (CS51 Bot.

Contents

Preface

1 Introduction

1.1
1.2
1.3
1.4

An extended example: greatest common divisor
Programmingasdesign
The OCaml programming language
Tools and skills fordesign

2 A Cook’s tour of OCaml

3 Expressions and the linguistics of programming languages

3.1
3.2
3.3
3.4

Specifying syntactic structure withrules
Disambiguating ambiguous expressions
Abstract and concrete syntax
Expressing your intentions
341 Commenting

4 Values and types

4.1

4.2

4.3
4.4

OCaml expressions havevalues
4.1.1 Integer values and expressions
4.1.2 Floating point values and expressions
4.1.3 Character and stringvalues
4.1.4 Truthvalues and expressions
OCaml expressionshavetypes.
4.2.1 Type expressions and typings.
Theunittype
Functions are themselvesvalues

5 Naming and scope

5.1
5.2
5.3
5.4
5.5

Variables are names forvalues
The type of a Let-bound variable can be inferred

let expressions are expressions
Naming to avoid duplication.
Scope e

13

19
21
24
26
28

29

31
31
34
36
37
38

41
41
41
42
43
43
44
46
48
48

6 PROGRAMMING WELL

5.6 Global naming and top-level let 57

6 Functions 59
6.1 Function application 60

6.2 Multiple arguments and currying 61

6.3 Defining anonymous functions 62

6.4 Namedfunctions 63
6.4.1 Compact function definitions 64

6.4.2 Providing typings for function arguments and

outputs 65
6.5 Function abstraction and irredundancy 67
6.6 Definingrecursive functions 69
6.7 Unittesting 72
6.8 Supplementarymaterial 76
7 Structured data and composite types 77
7.0 Tuples e 77
7.2 Pattern matching for decomposing data structures . .. 79
7.2.1 Advanced pattern matching 82
7.3 Lists e 83
7.3.1 Some usefullist functions 85
74 Records 90
7.4.1 Fieldselection 92
7.5 Comparativesummary 92
8 Higher-order functions and functional programming 95
8.1 Themapabstraction 95
8.2 Partialapplication 97
8.3 Thefoldabstraction 100
8.4 Thefilterabstraction 102
8.5 Problem section: Credit card numbers and the Luhn
check L 103
8.6 Supplementary material 105
9 Polymorphism and generic programming 107
9.1 Polymorphism 108
9.2 Polymorphicmap 109
9.3 Regainingexplicittypes. 110
9.4 Thelistlibrary 112
9.5 Problem section: Function composition 113
9.6 Weaktypevariables 114
9.7 Supplementarymaterial 115

10 Handling anomalous conditions 117

CONTENTS 7

10.1 Anon-solution: Errorvalues 118
10.2 Optiontypes v v i vt 119
10.2.1 Optionpoisoning. 121

10.3 Exceptions 122
10.3.1 Handlingexceptions 125
10.3.2 Zippinglists oL 126
10.3.3 Declaringnewexceptions 130

10.4 Optionsorexceptions? 131
10.5 Unit testing with exceptions 132
10.6 Supplementary material 134
11 Algebraic data types 137
11.1 Built-in composite types as algebraic types 139
11.2 Example: Boolean documentsearch 140
11.3 Example: Dictionaries 146
11.4 Example: Arithmetic expressions 149
11.5 Problem section: Binarytrees 151
11.6 Supplementarymaterial 153
12 Abstract data types and modular programming 155
121 Modules e 158
122 Aqueuemodule oL L. 159
12.3 Signatures hide extra components 162
12.4 Modules with polymorphic components 165
12.5 Abstract data types and programming for change 166
12.5.1 Astringsetmodule. 169
12.5.2 Agenericsetsignature 172
12.5.3 A generic setimplementation 176

12.6 Adictionarymodule. 181
12.7 Alternative methods for defining signatures and modules 185
12.7.1 Setand dictionarymodules. 186

12.8 LibraryModules, 188
12.9 Problem section: Image manipulation 189
12.10Problem section: An abstract data type for intervals . . . 190
12.11Problem section: Mobiles 191
12.12Supplementary material 194
13 Semantics: The substitution model 195
13.1 Semantics of arithmetic expressions 197
13.2 Semantics oflocalnaming 201
13.3 Defining substitution 204
13.3.1 A problem with variablescope 204
13.3.2 Free and bound occurrences of variables 205

13.3.3 Handling variable scope properly 206

8 PROGRAMMING WELL

13.4 Implementing a substitution semantics 207
13.4.1 Implementing substitution 208
13.4.2 Implementing evaluation 209

13.5 Problem section: Semantics of booleans and conditionals 212

13.6 Semantics of function application 212
13.6.1 More on capturing free variables 214

13.7 Substitution semantics ofrecursion 218

13.8 Supplementary material 221

14 Efficiency, complexity, and recurrences 223

14.1 The need for an abstract notion of efficiency 224

14.2 Twosortingfunctions 225

14.3 Empirical efficiency 227

144 Big-Onotation 229
14.4.1 Informal function notation 231
14.4.2 Useful propertiesof O 232
14.4.3 Big-O as the metric of relative growth 233

14.5 Recurrenceequations 234
14.5.1 Solving recurrences by unfolding 236
14.5.2 Complexity of reversingalist 237
14.5.3 Complexity of reversing a list with accumulator . 239
14.5.4 Complexity of inserting in a sorted list 240
14.5.5 Complexity of insertionsort 241
14.5.6 Complexity of merginglists 242
14.5.7 Complexity of splittinglists 243
14.5.8 Complexity of divide and conquer algorithms . . 243
14.5.9 Complexity of mergesort 244
14.5.10 Basic Recurrence patterns 245

14.6 Problem section: Complexity of the Luhn check 246

14.7 Supplementary material 246

15 Mutable state and imperative programming 247

15.1 References 249
15.1.1 Reference operatortypes 250
15.1.2 Boxesandarrows 251
15.1.3 References and pointers 252

15.2 Other primitive mutable datatypes 254
15.2.1 Mutablerecordfields 254
1522 Arrays 255

15.3 Referencesand mutation 255

15.4 Mutablelists 258

15.,5 Imperativequeues 260
15.5.1 Method 1: Listreferences 262

15.5.2 Method2: Twostacks 262

15.5.3 Method 3: Mutablelists
15,6 Hashtables
157 Conclusion
15.8 Supplementarymaterial

16 Loops and procedural programming
16.1 Loopsrequireimpurity
16.2 Recursion versusiteration
16.2.1 Savingstackspace
16.2.2 Tailrecursion
16.3 Saving data structurespace
16.3.1 Problem section: Metering allocations
16.3.2 Reusing space through mutable data structures .
16.4 In-placesorting
16.5 Supplementarymaterial

17 Infinite data structures and lazy programming

17.1 Delaying computation
17.2 Streams

17.2.1 Operationsonstreams
17.3 Lazyrecomputationand thunks.

17.3.1 ThelazyModule
17.4 Application: Approximatingm
17.5 Problem section: Circuits and boolean streams
17.6 Aunit testing framework
17.7 Abriefhistoryoflaziness
17.8 Supplementary material

18 Extension and object-oriented programming

18.1 Drawing graphicalelements
18.2 Objectsintroduced
18.3 Object-oriented terminology and syntax
18.4 Inheritance

18.4.1 Overriding
185 Subtyping
18.6 Problem section: Object-oriented counters
18.7 Supplementary material

19 Semantics: The environment model
19.1 Review of substitution semantics
19.2 Environment semantics
19.2.1 Dynamic environment semantics
19.2.2 Lexical environment semantics
19.3 Conditionalsandbooleans

264
266
270
270

271
272
273
273
274
275
276
277
278
283

285
285
287
288
291
293
294
296
297
301
302

303
304
308
311
313
315
316
319
320

CONTENTS 9

10 PROGRAMMING WELL

19.4 Recursion 332
19.5 Implementing environment semantics. 334
19.6 Semantics of mutable storage 335
19.6.1 Lexical environment semantics of recursion . . . 339
19.7 Supplementary material 340
20 Concurrency 341
20.1 Sequential, concurrent, and parallel computation 342
20.2 Dependencies 343
203 Threads 344
20.4 Interthread communication 347
205 Futures o 350
20.6 Futuresarenotenough 352
20.7 Locks 356
20.7.1 Abstractinglockusage 358
20.8 Deadlock 359
A Final project: Implementing MiniML 361
Al Overviewo 361
A.l.1 Grading and collaboration 362

A.1.2 Adigression: How is this project different from a
problemset? 362
A.2 Implementing a substitution semantics for MiniML . . . 363
A.3 Implementing an environment semantics for MiniML . 368
A4 Extendingthelanguage 371
A4.1 Extensionideas 371
A.4.2 Alexically scoped environment semantics 372
A4.3 TheMiniMLparser. 375
A.5 Submitting the project 375
A.6 Alternative final projects 376
A Problem sets 377
Al Theprisoners'dilemma 377
A.2 Higher-order functional programming 378
A.3 Bignumsand RSAencryption 379
A.4 Symbolic differentiation 380
A5 Orderedcollections 381
A.6 The search for intelligent solutions 382
A6.1 Searchproblems 382
A7 Refs,streams,andmusic 384
A.8 Force-directed graphdrawing 384
A8.1 Background 385
A9 Simulating an infectious process 387

A9.1 Thesimulation 387

B Mathematical background and notations 389
Bl Functions« ..., 389
B.1.1 Defining functions with equations. 389
B.1.2 Notating function application 390

B.1.3 Alternative mathematical notations for func-
tions and their application 390
B.1.4 Thelambda notation for functions 393
B2 Summation 0oL 394
B3 Logic. 395
B4 Geometry e 395
B5 Sets 396
B.6 Equalityandidentity 397
C Astyle guide 399
C.1 Formatting 400
C.1.1 Notabcharacters. 400
C.1.2 80columnlimit.................... 400
C.1.3 Noneedlessblanklines 400
C.1.4 Useparenthesessparely 400
C.1.5 Delimiting code used for side effects 401
C.1.6 Spacing for operators and delimiters 402
C.1.7 Indentation 403
C.2 Documentation 404
C.2.1 Commentsbeforecode 404
C.2.2 Comment length should match abstraction level 405
C.2.3 Multi-line commenting 405
C.3 Naminganddeclarations. 405
C.3.1 Namingconventions. 405
C.3.2 Usemeaningfulnames 406
C.3.3 Constants and magicnumbers 407
C.3.4 Function declarations and type annotations . . . 407
C.3.5 Avoid global mutable variables 408
C.3.6 Whentorename variables 408
C.3.7 Order of declarationsinamodule 408
C.4 Patternmatching 409
C.4.1 Noincomplete pattern matches 409

C.4.2 Pattern match in the function arguments when
possible 409
C.4.3 Pattern match with as few match expressions as

NECESSATY . . .« v v vttt i e 410
C.4.4 Misusingmatch expressions 410
C.4.5 Avoid using too many projection functions . .. 411

C5 Verbosity 411

CONTENTS 11

12 PROGRAMMING WELL

C.5.1 Reuse code where possible
C.5.2 Do not abuse if expressions
C.5.3 Don't rewrap functions

C.5.4 Avoid computing values twice

C.6 Other common infelicities
D Solutions to selected exercises
Bibliography
Index

Image Credits

415

475

479

484

Preface

This book began as the notes for Computer Science 51, a second
semester course in programming at Harvard College, which follows
the legendary CS50 course that ably introduces some half of all Har-
vard undergraduate students to computer programming, and in its
online HarvardX version CS50x has benefited hundreds of thousands
of other students.

Students just learning to program, like those in CS50, typically view
the end product of programming as a program that works — that “gets
the right answer”. Once such a program is in hand, the student thinks,
the programmer’s job is done. This book was developed to move stu-
dents past this view of programming, to focus on programming well,
regarding programming not as a transaction but as an art and a craft.

The book emphasizes the role of abstraction and abstraction mech-
anisms in engendering a design space in which good programs can be
constructed. These abstraction mechanisms are associated with and
enable the major programming paradigms — first- and higher-order
functional programming, structure-driven programming, generic pro-
gramming, modular programming, imperative programming, proce-
dural programming, lazy programming, object-oriented programming,
and concurrent programming. By expanding the student’s armamen-
tarium of abstraction mechanisms, this design space grows as well,
making possible programs that are better along multiple dimensions
-readability, maintainability, succinctness, efficiency, testability, and,
most importantly but ineffably, beauty.

Aims
In developing the book, I had in mind several aims.

Explicit presentation of general principles. 1introduce a small set of
very general software engineering principles — presented as “edicts”
in the text — and make frequent reference to them throughout the
text to tie together more particular software engineering ideas.

The programming edicts:

e Edict of intention: Make your
intentions clear.

* Edict of irredundancy: Never write
the same code twice.

* Edict of decomposition: Carve
software at its joints.

* Edict of prevention: Make the illegal
inexpressible.

* Edict of compartmentalization:
Limit information to those with a
need to know.

https://cs50.harvard.edu/x/2023/

14 PROGRAMMING WELL

I emphasize other general principles, such as the separation of
concepts and paradigms from languages, and programming as art
and craft, not a science.

Use of formal methods and notations. Facility with notation is the
essence of mathematical maturity, and a strong correlate to com-
putational thinking. I explicitly motivate the use of formal notation,
and introduce notations for many of the core ideas in the book —
syntax, semantics, complexity — both to emphasize rigorous think-
ing and to provide practice in handling notations. Use of this kind of
notation is ubiquitous in computer science (Guy Steele has referred
to this kind of notation, which he calls “computer science metano-
tation”, as “the most popular programming language in computer
science”) though it is rarely introduced explicitly. For that reason
alone, an introductory presentation of these notations is valuable
for the early computer science student.

Provenance of ideas. Rather than presenting computational ideas or
techniques as disconnected from history, I emphasize the prove-
nance of these ideas, highlighting the role of real people in their
development and promulgation and providing acculturation into
some of the intellectual history of computer science. Special atten-
tion is given wherever appropriate to the role of women in develop-
ing the ideas.

Emphasis on reliable methods. Emphasis is placed on using modern
methods for generating reliable programs by having the computer
take on much of the work, in particular, strong static typing (and the
polymorphic type inference that makes it practical), unit testing,
and compartmentalization.

Pedagogical structure. The textbook contains a variety of components
in keeping with its pedagogical goals.

e My intention is for the text to be self-contained. Little back-
ground is assumed beyond basic programming of the sort
learned in a first-semester programming course. Any mathe-
matical ideas that arise in examples or assignments are explained
in an appendix.

* Code examples in the text are often developed step-wise, rather
than being presented as whole and complete, reflecting how
code is typically constructed. Similarly, examples are often
revisited as new concepts are introduced that can be used to
implement the examples in novel ways.

https://youtu.be/8fCfkGFF7X8?t=2299
https://youtu.be/8fCfkGFF7X8?t=2299

CONTENTS

* The text is tightly connected to a series of pedagogical activities
for students. Throughout the text, exercises test understanding
of the just presented material; solutions to the exercises, often
with extensive further explanations and descriptions of alter-
natives, are available in an appendix. Supplementary materials
tightly connected with the book include labs, problem sets, and a
project. Labs, intended to be done individually or synchronously
in pairs or groups, provide a series of small and carefully grad-
uated problems that build up practice with the programming
concepts introduced in the texts. Lab solutions, again provid-
ing alternatives and cross-references to previous and upcoming
discussions, are provided. Problem sets provide for more open-
ended work on larger-scale but still self-contained problems,
and relate to topical issues such as public-key encryption, sym-
bolic math, artificial intelligence search, music composition, and
epidemic simulation. The culmination is a project implement-
ing a small run-time-typed subset of OCaml, synthesizing ideas
from throughout the book, especially the presentations of formal
syntax and semantics.

Openness. The text and related materials are intended to be openly
available, allowing widespread adoption, including in venues, like
MOOC s, where closed materials aren’t appropriate.

Use of OCaml

It is typical in courses that introduce multiple programming paradigms
to introduce different programming languages geared towards one
or another of the paradigms. This language profligacy has the effect
of dramatically increasing the amount of language syntax that needs
to be introduced and misleadingly implies that the paradigms are
coincident with or require different languages. By contrast, I make use
of a single well-designed and well-supported language, OCaml, whose
relatively simple core allows development and exposition of all of these
paradigms and the abstraction mechanisms they rely on. OCaml is
introduced and used not for its own sake but as a vehicle for conveying
the wide range of programming and computational concepts.

OCaml is an ideal language for pedagogical purposes for the follow-
ing reasons:

Simple core. The language is designed based on a relatively simple
core set of orthogonal constructs, which are extended via syntactic
sugar. This spareness means that students can get to the level of
implementing an interpreter for a nontrivial subset of the language

15

16 PROGRAMMING WELL

by the end of the book.

Clean semantics. The language has quite clean semantics, which aids
understanding.

Type discipline. Programs are strongly statically typed, so that stu-
dents are confronted from the start with thinking in terms of always
and only using values consistently with their types. Experience with
reasoning about the types of expressions can inform better pro-
gramming practice even when programming later in languages with
weaker type systems or dynamic typing.

Multi-paradigm. Although the core of the language is relatively spare,
built on top of the core is syntactic support for multiple paradigms
including functional, modular, imperative, lazy, and object-oriented
programming.

Nonproprietary. The language is supported by an open-source, non-
proprietary, cross-platform toolset.

The primary disadvantage of using OCaml is that the language is
little known and not widely used in the software industry. It is generally
viewed as an “academic language”, of interest to computer scientists
rather than mainstream software developers. Nonetheless, the general
approach of strongly statically typed languages based on a functional
foundation is gaining currency through languages like F#, Reason,
Rust, and Elm. More importantly, the goal of the textbook is not to
teach a particular language so as to improve employability; rather, it is
to teach a range of programming concepts that will be of use whatever
language one programs in.

Limitations
The book is intentionally limited in certain ways.

It does not cover the OCaml language exhaustively, and does not
serve as a language reference. This is in keeping with the use of
OCaml as a vehicle for presenting concepts. Just enough OCaml is
presented to make possible the implementations of the presented
concepts. (Cf. Minsky et al.’s Real World OCaml.)

» It does not cover formal proofs of correctness (though there is lim-
ited and informal discussion of invariants). The importance of
correct code is highlighted in a focus on unit testing. (Indeed, a re-
curring thematic example is the building up of a simple unit testing
framework for OCaml.)

CONTENTS

» There is no coverage of interactive systems, graphics, or user in-
terface design and implementation. (Cf. Stein’s text Interactive
Programming In Java.)

* No large application examples are given in their entirety. (Cf. the
Whitington or Cousineau texts.) However, the problem sets provide
opportunity for working with larger-scale examples.

Acknowledgements

The nature of the course — introducing a wide range of programming
abstractions and paradigms with an eye toward developing a large
design space of programs, using functional programming as its base
and OCaml as the delivery vehicle — is shared with similar courses

at a number of colleges. The instructors in those courses have for
many years informally shared ideas, examples, problems, and notes
in an open and free-flowing manner. When I took over the course
from Greg Morrisett (now Dean and Vice Provost of Cornell Tech), I
became the beneficiary of all of this collaboration, including source
materials from these courses — handouts, notes, lecture material,

and problem sets — which have been influential in the structure and
design of these notes, and portions of which have thereby inevitably
become intermixed with my own contributions in a way that would be
impossible to disentangle. I owe a debt of gratitude to all of the faculty
who have been engaged in this informal sharing, especially,

¢ Dan Grossman, University of Washington

* Michael Hicks, University of Maryland

¢ Greg Morrisett, Cornell University

* Benjamin Pierce, University of Pennsylvania

* David Walker, Princeton University

¢ Stephanie Weirich, University of Pennsylvania

» Steve Zdancewic, University of Pennsylvania

All of these faculty have kindly agreed to allow their contributions to
be used here and distributed openly.

In addition, the course and this text have benefited immensely from
the large crew of teaching staff of CS51 throughout the years. These
include the head teaching fellows(list goes here tbd) as well as Sam
Green and Serina Hu for help developing the caml- tex system that
allows running the code examples as part of the typesetting process.

17

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

