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Preface

This book began as the notes for Computer Science 51, a second
semester course in programming at Harvard College, which follows
the legendary CS50 course that ably introduces some half of all Har-
vard undergraduate students to computer programming, and in its
online HarvardX version CS50x has benefited hundreds of thousands
of other students.

Students just learning to program, like those in CS50, typically view
the end product of programming as a program that works — that “gets
the right answer”. Once such a program is in hand, the student thinks,
the programmer’s job is done. This book was developed to move stu-
dents past this view of programming, to focus on programming well,
regarding programming not as a transaction but as an art and a craft.

The book emphasizes the role of abstraction and abstraction mech-
anisms in engendering a design space in which good programs can be
constructed. These abstraction mechanisms are associated with and
enable the major programming paradigms — first- and higher-order
functional programming, structure-driven programming, generic pro-
gramming, modular programming, imperative programming, proce-
dural programming, lazy programming, object-oriented programming,
and concurrent programming. By expanding the student’s armamen-
tarium of abstraction mechanisms, this design space grows as well,
making possible programs that are better along multiple dimensions
-readability, maintainability, succinctness, efficiency, testability, and,
most importantly but ineffably, beauty.

Aims
In developing the book, I had in mind several aims.

Explicit presentation of general principles. 1introduce a small set of
very general software engineering principles — presented as “edicts”
in the text — and make frequent reference to them throughout the
text to tie together more particular software engineering ideas.

The programming edicts:

e Edict of intention: Make your
intentions clear.

* Edict of irredundancy: Never write
the same code twice.

* Edict of decomposition: Carve
software at its joints.

* Edict of prevention: Make the illegal
inexpressible.

* Edict of compartmentalization:
Limit information to those with a
need to know.


https://cs50.harvard.edu/x/2023/
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I emphasize other general principles, such as the separation of
concepts and paradigms from languages, and programming as art
and craft, not a science.

Use of formal methods and notations. Facility with notation is the
essence of mathematical maturity, and a strong correlate to com-
putational thinking. I explicitly motivate the use of formal notation,
and introduce notations for many of the core ideas in the book —
syntax, semantics, complexity — both to emphasize rigorous think-
ing and to provide practice in handling notations. Use of this kind of
notation is ubiquitous in computer science (Guy Steele has referred
to this kind of notation, which he calls “computer science metano-
tation”, as “the most popular programming language in computer
science”) though it is rarely introduced explicitly. For that reason
alone, an introductory presentation of these notations is valuable
for the early computer science student.

Provenance of ideas. Rather than presenting computational ideas or
techniques as disconnected from history, I emphasize the prove-
nance of these ideas, highlighting the role of real people in their
development and promulgation and providing acculturation into
some of the intellectual history of computer science. Special atten-
tion is given wherever appropriate to the role of women in develop-
ing the ideas.

Emphasis on reliable methods. Emphasis is placed on using modern
methods for generating reliable programs by having the computer
take on much of the work, in particular, strong static typing (and the
polymorphic type inference that makes it practical), unit testing,
and compartmentalization.

Pedagogical structure. The textbook contains a variety of components
in keeping with its pedagogical goals.

e My intention is for the text to be self-contained. Little back-
ground is assumed beyond basic programming of the sort
learned in a first-semester programming course. Any mathe-
matical ideas that arise in examples or assignments are explained
in an appendix.

* Code examples in the text are often developed step-wise, rather
than being presented as whole and complete, reflecting how
code is typically constructed. Similarly, examples are often
revisited as new concepts are introduced that can be used to
implement the examples in novel ways.


https://youtu.be/8fCfkGFF7X8?t=2299
https://youtu.be/8fCfkGFF7X8?t=2299
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* The text is tightly connected to a series of pedagogical activities
for students. Throughout the text, exercises test understanding
of the just presented material; solutions to the exercises, often
with extensive further explanations and descriptions of alter-
natives, are available in an appendix. Supplementary materials
tightly connected with the book include labs, problem sets, and a
project. Labs, intended to be done individually or synchronously
in pairs or groups, provide a series of small and carefully grad-
uated problems that build up practice with the programming
concepts introduced in the texts. Lab solutions, again provid-
ing alternatives and cross-references to previous and upcoming
discussions, are provided. Problem sets provide for more open-
ended work on larger-scale but still self-contained problems,
and relate to topical issues such as public-key encryption, sym-
bolic math, artificial intelligence search, music composition, and
epidemic simulation. The culmination is a project implement-
ing a small run-time-typed subset of OCaml, synthesizing ideas
from throughout the book, especially the presentations of formal
syntax and semantics.

Openness. The text and related materials are intended to be openly
available, allowing widespread adoption, including in venues, like
MOOC s, where closed materials aren’t appropriate.

Use of OCaml

It is typical in courses that introduce multiple programming paradigms
to introduce different programming languages geared towards one
or another of the paradigms. This language profligacy has the effect
of dramatically increasing the amount of language syntax that needs
to be introduced and misleadingly implies that the paradigms are
coincident with or require different languages. By contrast, I make use
of a single well-designed and well-supported language, OCaml, whose
relatively simple core allows development and exposition of all of these
paradigms and the abstraction mechanisms they rely on. OCaml is
introduced and used not for its own sake but as a vehicle for conveying
the wide range of programming and computational concepts.

OCaml is an ideal language for pedagogical purposes for the follow-
ing reasons:

Simple core. The language is designed based on a relatively simple
core set of orthogonal constructs, which are extended via syntactic
sugar. This spareness means that students can get to the level of
implementing an interpreter for a nontrivial subset of the language

15
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by the end of the book.

Clean semantics. The language has quite clean semantics, which aids
understanding.

Type discipline. Programs are strongly statically typed, so that stu-
dents are confronted from the start with thinking in terms of always
and only using values consistently with their types. Experience with
reasoning about the types of expressions can inform better pro-
gramming practice even when programming later in languages with
weaker type systems or dynamic typing.

Multi-paradigm. Although the core of the language is relatively spare,
built on top of the core is syntactic support for multiple paradigms
including functional, modular, imperative, lazy, and object-oriented
programming.

Nonproprietary. The language is supported by an open-source, non-
proprietary, cross-platform toolset.

The primary disadvantage of using OCaml is that the language is
little known and not widely used in the software industry. It is generally
viewed as an “academic language”, of interest to computer scientists
rather than mainstream software developers. Nonetheless, the general
approach of strongly statically typed languages based on a functional
foundation is gaining currency through languages like F#, Reason,
Rust, and Elm. More importantly, the goal of the textbook is not to
teach a particular language so as to improve employability; rather, it is
to teach a range of programming concepts that will be of use whatever
language one programs in.

Limitations
The book is intentionally limited in certain ways.

It does not cover the OCaml language exhaustively, and does not
serve as a language reference. This is in keeping with the use of
OCaml as a vehicle for presenting concepts. Just enough OCaml is
presented to make possible the implementations of the presented
concepts. (Cf. Minsky et al.’s Real World OCaml.)

» It does not cover formal proofs of correctness (though there is lim-
ited and informal discussion of invariants). The importance of
correct code is highlighted in a focus on unit testing. (Indeed, a re-
curring thematic example is the building up of a simple unit testing
framework for OCaml.)



CONTENTS

» There is no coverage of interactive systems, graphics, or user in-
terface design and implementation. (Cf. Stein’s text Interactive
Programming In Java.)

* No large application examples are given in their entirety. (Cf. the
Whitington or Cousineau texts.) However, the problem sets provide
opportunity for working with larger-scale examples.
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