2
A Cook’s tour of OCaml

To give a flavor of working with the OCaml programming language,
we introduce OCaml through an INTERPRETER of the language, called

ocaml, which is invoked from the command line thus:! ! We assume that you've already in-
stalled the OCaml tools, as described at
% ocaml the ocaml.org web site.

Upon running ocaml, you will see a PROMPT (“#”) allowing you to type
an OCaml expression.

% ocaml
0Caml version 4.14.2
#

Exercise 1

The startup of the ocaml interpreter indicates that this is version 4.14.2 of the software.
What version of ocaml are you running?

Once the OCaml prompt is available, you can enter a series of
OCaml expressions to calculate the values that they specify. Numeric
(integer) expressions are a particularly simple case, so we'll start with
those. The integer LITERALS — like 3 or 42 or - 100 — specify integer
values directly, but more complex expressions built by applying arith-
metic functions to other values do as well. Consequently, the OCaml
interpreter can be used as a kind of calculator.

# 42 ;;
:int = 42

#3+4 x5 ;;
int = 23

# (3 +4) x5 ;;
int = 35

Since this is the first example we've seen of interaction with the
OCaml interpreter, some glossing may be useful. The OCaml interac-
tive prompt, ‘#), indicates that the user can enter an OCaml expression,
suchas ‘3 + 4 * 5. Adouble semicolon ‘; ;’ demarcates the end of
the expression. The system reads the expression, evaluates it (that
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is, calculates its value), and prints an indication of the result, then
loops back to provide another prompt for the next expression. For
this reason, the OCaml interactive system is referred to as the “READ-

EVAL-PRINT LOOP” or REPL.2 Whenever we show the results of an 2To exit the REPL, just enter the end-
interaction with the REPL, the interpreter’s output will be shown in a of-file character, “d, typed by holding

o L . down the control key while pressing the
slanted font to distinguish it from the input. d key.

You'll notice that the REPL obeys the standard order of operations,
with multiplication before addition for instance. This precedence can
be overwritten in the normal manner using parentheses.

Exercise 2

Try entering some integer expressions into the OCaml interpreter and verify that appro-
priate values are returned.

Although we'll introduce the aspects of the OCaml language in-
crementally over the next few chapters, to get a general idea of using
the language, we demonstrate its use with the GCD algorithm from
Chapter 1. We type the definition of the gcd_euclid function into the
REPL:

# let rec gcd_euclid a b =

# if b = 0 then a

# else gcd_euclid b (a mod b) ;;

val gcd_euclid : int -> int -> int = <fun>

Now we can make use of that definition to calculate the greatest com-
mon divisor of 20 and 28

# gcd_euclid 20 28 ;;
- int = 4

But we're getting ahead of ourselves.
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