2
A Cook’s tour of OCaml

To give a flavor of working with the OCaml programming language,
we introduce OCaml through an INTERPRETER of the language, called

ocaml, which is invoked from the command line thus:! ! We assume that you've already in-
stalled the OCaml tools, as described at
% ocaml the ocaml.org web site.

Upon running ocaml, you will see a PROMPT (“#”) allowing you to type
an OCaml expression.

% ocaml
0Caml version 4.14.2
#

Exercise 1

The startup of the ocaml interpreter indicates that this is version 4.14.2 of the software.
What version of ocaml are you running?

Once the OCaml prompt is available, you can enter a series of
OCaml expressions to calculate the values that they specify. Numeric
(integer) expressions are a particularly simple case, so we'll start with
those. The integer LITERALS — like 3 or 42 or - 100 — specify integer
values directly, but more complex expressions built by applying arith-
metic functions to other values do as well. Consequently, the OCaml
interpreter can be used as a kind of calculator.

42 ;;
:int = 42

#3+4 x5 ;;
int = 23

(3 +4) x5 ;;
int = 35

Since this is the first example we've seen of interaction with the
OCaml interpreter, some glossing may be useful. The OCaml interac-
tive prompt, ‘#), indicates that the user can enter an OCaml expression,
suchas ‘3 + 4 * 5. Adouble semicolon ‘; ;’ demarcates the end of
the expression. The system reads the expression, evaluates it (that

https://ocaml.org/docs/install.html

30 PROGRAMMING WELL

is, calculates its value), and prints an indication of the result, then
loops back to provide another prompt for the next expression. For
this reason, the OCaml interactive system is referred to as the “READ-

EVAL-PRINT LOOP” or REPL.2 Whenever we show the results of an 2To exit the REPL, just enter the end-
interaction with the REPL, the interpreter’s output will be shown in a of-file character, “d, typed by holding

o L . down the control key while pressing the
slanted font to distinguish it from the input. d key.

You'll notice that the REPL obeys the standard order of operations,
with multiplication before addition for instance. This precedence can
be overwritten in the normal manner using parentheses.

Exercise 2

Try entering some integer expressions into the OCaml interpreter and verify that appro-
priate values are returned.

Although we'll introduce the aspects of the OCaml language in-
crementally over the next few chapters, to get a general idea of using
the language, we demonstrate its use with the GCD algorithm from
Chapter 1. We type the definition of the gcd_euclid function into the
REPL:

let rec gcd_euclid a b =

if b = 0 then a

else gcd_euclid b (a mod b) ;;

val gcd_euclid : int -> int -> int = <fun>

Now we can make use of that definition to calculate the greatest com-
mon divisor of 20 and 28

gcd_euclid 20 28 ;;
- int = 4

But we're getting ahead of ourselves.

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

