
3

Expressions and the linguistics of programming lan-

guages

Programming is an expressive activity: We express our intentions to a

computer using a language – a programming language – that is in some

ways similar to the natural languages that we use to communicate with

each other.

One of the deep truths of linguistics, known since the time of the

great Sanskrit grammarian Pān. ini in the fourth century B C E, is that the

expressive units of natural languages, or E X P R E S S I O N S as we will call

them, have hierarchical structure. (The recovery of that structure used

to be a typical subject matter taught to students in “grammar school”

through the exercise of sentence diagramming.) Characterizing what

are the well-formed and -structured phrases of a language constitutes

the realm of S Y N TA X.

3.1 Specifying syntactic structure with rules

The expressions of English (and other natural languages) are formed as

sequences of words to form expressions of various types. By way of ex-

ample, noun phrases can be formed in various ways: as a single noun

(party or drinker or tea), or by putting together (in sequential order) a

noun phrase and a noun (as in tea party), or by putting together (again

in order) an adjective (iced or mad) and another noun phrase as in

(iced tea). We can codify these rules by defining classes of expressions

like 〈noun〉 or 〈nounphrase〉 or 〈adjective〉. We’ll write the rule that

allows forming a noun phrase from a single noun as

〈nounphrase〉 ::= 〈noun〉

32 P RO G R A M M I N G W E L L

The rules that form a noun phrase from an adjective and a noun

phrase or from a noun phrase and a noun are, respectively,

〈nounphrase〉 ::= 〈adjective〉 〈nounphrase〉
〈nounphrase〉 ::= 〈nounphrase〉 〈noun〉

In these rules, we write 〈noun〉 to indicate the class of noun expres-

sions, 〈nounphrase〉 to indicate the class of noun phrases, and in

general, put the names of classes of expressions in angle brackets to

represent elements of that class. The notation ::= should be read as

“can be composed from”, so that expressions of the class on the left of

the ::= can be composed by putting together expressions of the classes

listed on the right of the ::=, in the order indicated.

This rule notation for presenting the syntax of languages is called

B AC K U S -N AU R F O R M (BNF), named after John Backus and Peter

Naur, who proposed it for specifying the syntax of the A LG O L family of

programming languages. But as noted above, the idea goes back much

further, at least to Pān. ini.

Putting these rules together, the BNF specification for noun phrases

is

〈nounphrase〉 ::= 〈noun〉
| 〈adjective〉 〈nounphrase〉
| 〈nounphrase〉 〈noun〉

Here, we’ve rephrased the three rules as a single rule with three

alternative right-hand sides. The BNF notation allows separating

alternative right-hand sides with the vertical bar (|) as we have done

here.

A specification of a language using rules of this sort is referred to as

a G R A M M A R. According to this grammar, we can build noun phrases

like mad tea party

〈nounphrase〉

〈nounphrase〉

〈noun〉

party

〈nounphrase〉

〈noun〉

tea

〈adjective〉

mad

or iced tea drinker

E X P R E S S I O N S A N D T H E L I N G U I S T I C S O F P RO G R A M M I N G L A N G UAG E S 33

〈nounphrase〉

〈noun〉

drinker

〈nounphrase〉

〈nounphrase〉

〈noun〉

tea

〈adjective〉

iced

Notice the difference in structure. In mad tea party, the adjective mad

is combined with the phrase tea party, but in iced tea drinker, the

adjective iced does not combine with tea drinker. The drinker isn’t

iced; the tea is!

But these same rules can also be used to build an alternative tree for

“iced tea drinker”:

〈nounphrase〉

〈nounphrase〉

〈noun〉

drinker

〈nounphrase〉

〈noun〉

tea

〈adjective〉

iced

The expression iced tea drinker is A M B I G U O U S (as is mad tea party);

the trees make clear the two syntactic analyses.

Importantly, as shown by these examples, it is the syntactic tree

structures that dictate what the expression means. The first tree seems

to describe a drinker of cold beverages, the second a cold drinker

of beverages. The syntactic structure of an utterance thus plays a

crucial role in its meaning. The characterization of the meanings of

expressions on the basis of their structure is the realm of S E M A N T I C S,

pertinent to both natural and programming languages. We’ll come

back to the issue of semantics in detail in Chapters 13 and 19.

Exercise 3

Draw a second tree structure for the phrase mad tea party, thereby demonstrating that it
is also ambiguous.

Exercise 4

How many trees can you draw for the noun phrase flying purple people eater? Keep in
mind that flying and purple are adjectives and people and eater are nouns.

The English language, and all natural languages, are ambiguous that

way. Fortunately, context, intonation, and other clues disambiguate

https://url.cs51.io/5aa

34 P RO G R A M M I N G W E L L

these ambiguous constructions so that we are mostly unaware of

the ambiguities.1 In the case of the mad tea party, we understand 1 The rare exceptions where ambiguities
are brought to our attention account
for the humor (of a sort) found in
syntactically ambiguous sentences, as
in the old joke that begins “I shot an
elephant in my pajamas.”

the phrase as having the syntactic structure as displayed above (as

opposed to the one referred to in Exercise 3).

3.2 Disambiguating ambiguous expressions

Programming language expressions, like the utterances of natural

language, have syntactic structure as well. Without some care, pro-

gramming languages might be ambiguous too. Consider the following

BNF rules for simple arithmetic expressions built out of numbers and

B I N A RY O P E R ATO R S (operators, like +, -, *, and /, that take two argu-

ments).2 2 In defining expression classes using
this notation, we use subscripts to dif-
ferentiate among different occurrences
of the same expression class, such as
the two 〈expr〉 instances 〈exprleft〉 and
〈exprright〉 in the first BNF rule.

〈expr〉 ::= 〈exprleft〉〈binop〉〈exprright〉
| 〈number〉

〈binop〉 ::= + | - | * | /
〈number〉 ::= 0 | 1 | 2 | 3 | · · ·

Using these rules, we can build two trees for the expression 3 + 4 *
5:

〈expr〉

〈expr〉

〈number〉

5

〈binop〉

*

〈expr〉

〈expr〉

〈number〉

4

〈binop〉

+

〈expr〉

〈number〉

3

or

〈expr〉

〈expr〉

〈expr〉

〈number〉

5

〈binop〉

*

〈expr〉

〈number〉

4

〈binop〉

+

〈expr〉

〈number〉

3

https://url.cs51.io/lme

E X P R E S S I O N S A N D T H E L I N G U I S T I C S O F P RO G R A M M I N G L A N G UAG E S 35

But in the case of programming languages, we don’t have the luxury

of access to intonation or shared context to disambiguate expressions.

Instead, we rely on other tools – conventions and annotations.

In the way of conventions, we rely on a conventional O R D E R O F

O P E R AT I O N S that dictates which operations we tend to do “first”, that

is, lower in the tree. We refer to this kind of priority of operators as

their P R E C E D E N C E, with higher precedence operators appearing lower

in the tree than lower precedence operators. By convention, we take

the additive operators (+ and -) to have lower precedence than the

multiplicative operators (*, /). Thus, the expression 3 + 4 * 5 has the

structure shown in the second tree, not the one shown in the first. For

that reason, it expresses the value 23 and not 35.

Precedence is not sufficient to disambiguate, for instance, expres-

sions with two binary operators of the same precedence. Precedence

alone doesn’t disambiguate the structure of 5 - 4 - 1: Is it (5 - 4)

- 1, that is, 0, or 5 - (4 - 1), that is, 2. Here, we rely on the A S S O -

C I AT I V I T Y of an operator. We say that subtraction, by convention, is

L E F T A S S O C I AT I V E, so that the operations are applied starting with

the left one. The grouping is (5 - 4) - 1. Other operators, such as

OCaml’s exponentiation operator ** are R I G H T A S S O C I AT I V E, so that

2. ** 2. ** 3. is disambiguated as 2. ** (2. ** 3.). Its value is

256., not 64..3 3 The ** operator applies to and returns
floating point values, hence the decimal
point dots in the arguments and return
values.

For a more complete presentation of
the precedences and associativities of
all of the built-in operators of OCaml,
see the documentation on OCaml’s
operators.

Associativity and precedence conventions go a long way in picking

out the abstract structure of concrete expressions. But what if we want

to override those conventions? What if, say, we want to express the

left-branching tree for 3 + 4 * 5? We can use annotations, as indeed,

we already have, to enforce a particular structure. This is the role of

PA R E N T H E S E S, to override conventional rules for disambiguating

expressions. In the case at hand, we write (3 + 4) * 5 to obtain the

left-branching tree.

Exercise 5

What is the structure of the following OCaml expressions? Draw the corresponding
tree so that it reflects the actual precedences and associativities of OCaml. Then, try
typing the expressions into the R E P L to verify that they are interpreted according to the
structure you drew.

1. 10 / 5 / 2

2. 5. +. 4. ** 3. /. 2.

3. (5. +. 4.) ** (3. /. 2.)

4. 1 - 2 - 3 - 4

You may have been taught this kind of rule under the mnemonic

P E M D A S. But the ideas of precedence, associativity, and annotation

are quite a bit broader than the particulars of the P E M D A S convention.

They are useful in thinking more generally about the relationship

between what we will call concrete syntax and abstract syntax.

https://url.cs51.io/qhb
https://url.cs51.io/qhb
https://url.cs51.io/9qm

36 P RO G R A M M I N G W E L L

3.3 Abstract and concrete syntax

The right way to think of expressions, then, is as hierarchically struc-

tured objects, which we have been depicting with trees as specified

by BNF grammar rules. From a practical perspective, however, when

programming, we are forced to notate these expressions in an unstruc-

tured linear form as a sequence of characters, in order to enter them

into a computer. We use the term A B S T R AC T S Y N TA X for expressions

viewed as structured objects, and C O N C R E T E S Y N TA X for expressions

viewed as unstructured linear text.

In order to more directly present the abstract syntax that corre-

sponds to a concrete expression, we draw trees as above that depict the

structure.4 So, for instance, the concrete syntax expression 3 + 4 * 5 4 The trees shown in Section 3.1, and
those shown below, provide more detail
than necessary for capturing the struc-
ture of the concrete expressions. For
that reason, they are, strictly speaking,
more like PA R S E T R E E S, rather than
abstract syntax trees. (The abbreviated
versions introduced below get more to
the point of true abstract syntax trees.)
But since these parse trees capture
structure that the concrete linear forms
do not, they will serve our purposes, and
we will continue to use these trees to
represent abstract syntactic structure
and BNF notation to define them. A
good course in programming languages
will more precisely distinguish parse
trees that structure the concrete syntax
from abstract syntax trees.

corresponds to the A B S T R AC T S Y N TA X T R E E

〈expr〉

〈expr〉

〈expr〉

〈number〉

5

〈binop〉

*

〈expr〉

〈number〉

4

〈binop〉

+

〈expr〉

〈number〉

3

We might abbreviate the tree structure to highlight the important

aspects by eliding the expression classes as

+

*

54

3

Then the alternative abstract syntax tree

*

5+

43

would correspond to the concrete syntax (3 + 4) * 5. Parentheses as

used for grouping are therefore notions of concrete syntax, not abstract

syntax. Similarly, conventions of precedence and associativity have to

do with the interpretation of concrete syntax, as opposed to abstract

syntax.

E X P R E S S I O N S A N D T H E L I N G U I S T I C S O F P RO G R A M M I N G L A N G UAG E S 37

In fact, there are multiple concrete syntax expressions for this ab-

stract syntax, such as (3 + 4) * 5, ((3 + 4) * 5), (3 + ((4))) *
5. But certain expressions that may seem related do not have this same

abstract syntax: 5 * (3 + 4) or ((4 + 3) * 5) or (3 + 4 + 0) *
5. Although these expressions specify the same value, they do so in

syntactically distinct ways. The fact that multiplication and addition

are commutative, or that 0 is an additive identity – these are semantic

properties, not syntactic.

Exercise 6

Draw the (abbreviated) abstract syntax tree for each of the following concrete syntax
expressions. Assume the further BNF rule

〈expr〉 ::= 〈unop〉〈expr〉
for unary operators like ~-, the unary negation operator.

1. (~- 4) + 6

2. ~- (4 + 6)

3. 20 / ~- 4 + 6

4. 5 * (3 + 4)

5. ((4 + 3) * 5)

6. (3 + 4 + 0) * 5

Exercise 7

What concrete syntax corresponds to the following abstract syntax trees? Show as many
as you’d like.

1. ~-

+

421

2. /

+

420

84

3. +

/

420

84

3.4 Expressing your intentions

It is through the expressions of a programming language – structured

as abstract syntax and notated through concrete syntax – that pro-

grammers express their intentions to a computer. The computer inter-

prets the expressions in order to carry out those intentions.

38 P RO G R A M M I N G W E L L

Programming is an expressive activity with multiple audiences. Of

course, the computer is one audience; a program allows for program-

mers to express their computational intentions to the computer. But

there are human audiences as well. Programs can be used to commu-

nicate to other people – those who might be interested in an algorithm

for its own sake, or those who are tasked with testing, deploying, or

maintaining the programs. One of these latter programmers might

even be the future self of the author of the original code. Weeks or even

days after writing some code, you might well have already forgotten

why you wrote the code a certain way. The following fundamental

principle thus follows:

Edict of intention:

Make your intentions clear.

Programmers make mistakes. If their intentions are well expressed,

other programmers reviewing the code can notice that those inten-

tions are inconsistent with the code. Even the computer interpreting

the program can itself take appropriate action, notifying the program-

mer with a useful error or warning before the code is executed and the

unintended behavior can manifest itself.

Over the next chapters, we’ll see many ways that the edict of inten-

tion is applied. But one of the most fundamental is through documen-

tation of code.

3.4.1 Commenting

One of the most valuable aspects of the concrete syntax of any pro-

gramming language is the facility to provide elements in a concrete

program that have no correspondence whatsoever in the abstract syn-

tax, and therefore no effect on the computation expressed by the pro-

gram. The audience for such C O M M E N T S is the population of human

readers of the program. Comments serve the crucial expressive pur-

pose of documenting the intended workings of a program for those

human readers.

In OCaml, comments are marked by surrounding them with special

delimiters: (* 〈〉 *).5 The primary purpose of comments is satisfying 5 We use the symbol 〈〉 here and
throughout the later chapters as a
convenient notation to indicate un-
specified text of some sort, a textual
anonymous variable of a sort. Here,
it stands in for the text that forms the
comment. In other contexts it stands in
for the arguments of an operator, con-
structor, or subexpression, for instance,
in 〈〉 + 〈〉 or 〈〉 list or let 〈〉 in 〈〉 .

the edict of intention. Comments should therefore describe the why

rather than the how of a program. Section C.2 presents some useful

stylistic considerations in providing comments for documenting pro-

grams.

There are other aspects of concrete syntax that can be freely de-

ployed because they have no affect on the computation that a program

carries out. These too can be judiciously deployed to help express your

E X P R E S S I O N S A N D T H E L I N G U I S T I C S O F P RO G R A M M I N G L A N G UAG E S 39

intentions. For instance, the particular spacing used in laying out the

elements of a program doesn’t affect the computation that the program

expresses. Spaces, newlines, and indentations can therefore be used to

make your intentions clearer to a reader of the code, by laying out the

code in a way that emphasizes its structure or internal patterns. Simi-

larly, the choice of variable names is completely up to the programmer.

Variables can be consistently renamed without affecting the computa-

tion. Programmers can take advantage of this fact by choosing names

that make clear their intended use.

❧

Having clarified these aspects of the syntactic structure of program-

ming languages (and OCaml in particular) – distinguishing concrete

and abstract syntax; presenting precedence, associativity, and paren-

thesization for disambiguation – we turn now to begin the discussion

of OCaml as a language of types and values.

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

