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Values and types

OCaml is a

• value-based,

• strongly, statically, implicitly typed,

• functional

programming language. In this chapter, we introduce these aspects of

the language.

4.1 OCaml expressions have values

The OCaml language is, at its heart, a language for calculating values.

The expressions of the language specify these values, and the process

of calculating the value of an expression is termed E VA LU AT I O N. We’ve

already seen examples of OCaml evaluating some simple expressions

in Chapter 2:

# 3 + 4 * 5 ;;

- : int = 23

# (3 + 4) * 5 ;;

- : int = 35

The results of these evaluations are integers, and the output printed by

the R E P L indicates this by the int, about which we’ll have more to say

shortly.

4.1.1 Integer values and expressions

Integer values are built using a variety of operators and functions.

We’ve seen the standard arithmetic operators for integer addition (+),

subtraction (-), multiplication (*), and division (/). Integer negation

is with the ~- operator (a tilde followed by a hyphen), which is kept

distinct from the subtraction operator for clarity.
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A full set of built-in operators is provided in OCaml’s Stdlib mod-

ule, one of a large set of OCaml library modules that provide a range

of functions. The Stdlib module is OCaml’s “standard library” in the

sense that the values it provides can be referred to anywhere without

any additional qualification, whereas values from other modules re-

quire a prefix, for example, List.length or Hashtbl.create.1 You’ll 1 There is nothing special going on with
Stdlib. It’s just that by default, the
Stdlib module is “opened”, whereas
other library modules like List and
Hashtbl are not. The behavior of
modules will become clear when they
are fully introduced in Chapter 12.

want to look over the Stdlib module documentation to get a sense of

what is available.

Here are some examples of integer expressions using these opera-

tors:

# 1001 / 365 ;; (* # of years in 1001 nights *)

- : int = 2

# 1001 mod 365 ;; (* # of nights left over *)

- : int = 271

# 1001 - (1001 / 365) * 365 ;; (* ...or alternatively *)

- : int = 271

Notice the use of comments to document the intentions behind the

calculations.

4.1.2 Floating point values and expressions

In addition to integers, OCaml provides other kinds of values. Real

numbers can be represented using a floating point approximation.

Floating point literals can be expressed in several ways, using decimal

notation (3.14), with an exponent (314e-2), and even in hexadecimal

(0x1.91eb851eb851fp+1).

# 3.14 ;;

- : float = 3.14

# 314e-2 ;;

- : float = 3.14

# 0x1.91eb851eb851fp+1 ;;

- : float = 3.14

Floating point expressions can be built up with a variety of oper-

ators, including addition (+.), subtraction (-.), multiplication (*.),

division (/.), and negation (~-.). Again, the Stdlib module provides a

fuller set, including operators for square root (sqrt) and various kinds

of rounding (floor and ceil).

# 3.14 *. 2. *. 2. ;; (* area of circle of radius 2 *)

- : float = 12.56

# ~-. 5e10 /. 2.718 ;;

- : float = -18395879323.0316429

Notice that the floating point operators are distinct from those for

integers. Though this will take some getting used to, the reason for this

design decision in the language will become apparent shortly.

https://url.cs51.io/3wq
https://url.cs51.io/3wq
https://url.cs51.io/ejw
https://url.cs51.io/och
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Exercise 8

Use the OCaml R E P L to calculate the value of the G O L D E N R AT I O,

1+p
5

2
,

a proportion thought to be especially pleasing to the eye (Figure 4.1).
You’ll want to use the built in sqrt function for floating point numbers. Be careful

to use floating point literals and operators. If you find yourself confronted with errors in
solving this exercise, come back to it after reading Section 4.2.

Figure 4.1: A rectangle with width and
height in the golden ratio.

4.1.3 Character and string values

As in many programming languages, text is represented as strings

of C H A R AC T E R S. Character literals are given in single quotes, for in-

stance, ’a’, ’X’, ’3’. Certain special characters can be specified only

by escaping them with a backslash, for instance, the single-quote char-

acter itself ’\’’ and the backslash ’\\’, as well as certain whitespace

characters like newline ’\n’ or tab ’\t’.

String literals are given in double quotes (with special characters

similarly escaped), for instance, "", "first", " and second". They

can be concatenated with the ^ operator.2 2 A useful trick is to use the escape
sequence of a backslash, a newline, and
any amount of whitespace, all of which
will be ignored, so as to split a string
over multiple lines. For instance,

# "First, " ^ "second, \

# third, \

# and fourth." ;;

- : string = "First, second, third, and fourth."

# "" ^ "first" ^ " and second" ;;

- : string = "first and second"

4.1.4 Truth values and expressions

There are two T RU T H VA LU E S, indicated in OCaml by the literals true

and false. Logical reasoning based on truth values was codified by the

British mathematician George Boole (1815–1864), leading to the use of

the term boolean for such values, and the type name bool for them in

OCaml.

Just as arithmetic values can be operated on with arithmetic oper-

ators, the truth values can be operated on with logical operators, such

as operators for conjunction (&&), disjunction (||), and negation (not).

(See Section B.3 for definitions of these operators.)

# false ;;

- : bool = false

# true || false ;;

- : bool = true

# true && false ;;

- : bool = false

# true && not false ;;

- : bool = true

The equality operator = tests two values3 for equality, returning 3 This is the first example of a function
that can apply to values of different
types, a powerful idea that we will
explore in detail in Chapter 9.

true if they are equal and false otherwise. There are other C O M PA R I -

S O N O P E R ATO R S as well: < (less than), > (greater than), <= (less than or

equal), >= (greater than or equal), <> (not equal).

https://url.cs51.io/k6z
https://url.cs51.io/lym
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# 3 = 3 ;;

- : bool = true

# 3 > 4 ;;

- : bool = false

# 1 + 1 = 2 ;;

- : bool = true

# 3.1416 = 314.16 /. 100. ;;

- : bool = false

# true = false ;;

- : bool = false

# true = not false ;;

- : bool = true

# false < true ;;

- : bool = true

Exercise 9

Are any of the results of these comparisons surprising? See if you can figure out why the
results are that way.

Of course, the paradigmatic use of truth values is in the ability

to compute different values depending on the truth or falsity of a

condition. The OCaml C O N D I T I O N A L expression is structured as

follows:4 4 We describe the syntax of the construct
using the BNF rule notation introduced
in Chapter 3. We will continue to do
so throughout as we introduce new
constructs of the language.

As mentioned in footnote 2 on
page 34, in defining expression classes
using this notation, we use subscripts
to differentiate among different occur-
rences of the same expression class,
as we have done here with the three
instances of the 〈expr〉 class – 〈exprtest〉,
〈exprtrue〉, and 〈exprfalse〉.

〈expr〉 ::= if 〈exprtest〉 then 〈exprtrue〉 else 〈exprfalse〉

The value of such an expression is the value of the 〈exprtrue〉 if the value

of the test expression 〈exprtest〉 is true and the value of the 〈exprfalse〉 if

the value of 〈exprtest〉 is false.

# if 3 = 3 then 0 else 1 ;;

- : int = 0

# 2 * if 3 > 4 then 3 else 4 + 5 ;;

- : int = 18

# 2 * (if 3 > 4 then 3 else 4) + 5 ;;

- : int = 13

4.2 OCaml expressions have types

We’ve introduced these additional values grouped according to their

use. Integers are the type of things that integer operations are appro-

priate for; floating point numbers are the type of things that floating

point operations are appropriate for; truth values are the type of things

that logical operations are appropriate for. And conversely, it makes

no sense to apply operations to values for which they are not appro-

priate. Therefore, OCaml is a T Y P E D language. Every expression of the

language is associated with a type.
Figure 4.2: Small inconsistencies can
lead to major problems: The explosion
of the Ariane 5 on June 4, 1996.

Using values in ways inconsistent with their type is perilous. The

maiden flight of the Ariane 5 rocket on June 4, 1996 ended spectac-

ularly 37 seconds after launch when the rocket self-destructed. The

https://url.cs51.io/zgm
https://url.cs51.io/zgm
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reason? A floating-point value was used as an integer, causing an im-

plicit conversion that overflowed. Using values in inappropriate ways

is a frequent source of bugs in code, even if not with the dramatic after-

math of the Ariane 5 explosion. As we will see, associating values with

types can often prevent these kinds of bugs.

The OCaml language is S TAT I C A L LY T Y P E D, in that the type of an

expression can be determined just by examining the expression in

its context. It is not necessary to run the code in which an expression

occurs in order to determine the type of an expression, as might be

necessary in a DY N A M I C A L LY T Y P E D language (Python or JavaScript,

for instance).

Types are themselves a powerful abstraction mechanism. Types are

essentially abstract values. By reasoning about the types of expressions,

we can convince ourselves of the correctness of code without having to

run it.

Furthermore, OCaml is S T RO N G LY T Y P E D; values may not be

used in ways inappropriate for their type. One of the ramifications of

OCaml’s strong typing is that functions only apply to values of certain

types and only return values of certain types. For instance, the addition

function specified by the + operator expects integer arguments and

returns an integer result.

By virtue of strong, static typing, the programming system (com-

piler or interpreter) can tell the programmer when type constraints are

violated even before the program is run, thereby preventing bugs before

they happen. If you attempt to use a value in a manner inconsistent

with its type, OCaml will complain with a typing error. For instance,

integer multiplication can’t be performed on floating point numbers or

strings:

# 5 * 3 ;;

- : int = 15

# 5 * 3.1416 ;;

Line 1, characters 4-10:

1 | 5 * 3.1416 ;;

^^^^^^

Error: This expression has type float but an expression was

expected of type

int

# "five" * 3 ;;

Line 1, characters 0-6:

1 | "five" * 3 ;;

^^^^^^

Error: This expression has type string but an expression was

expected of type

int

Programmers using a language with strong static typing for the first

time often find the frequent type errors limiting and even annoying.
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Type Type expression Example values An example expression

integers int 1 -2 42 (3 + 4) * 5

floating point numbers float 3.14 -2. 2e12 (3.0 +. 4.) *. 5e0

characters char ’a’ ’&’ '\n' char_of_int (int_of_char ’s’)

strings string "a" "3 + 4" "re" ^ "bus"

truth values bool true false true && not false

unit unit () ignore (3 + 4)

Table 4.1: Some of the atomic OCaml
types with example values and an
example expression.

Furthermore, there are some computations that can’t be expressed well

with such strict limitations, especially low-level systems computations

that need access to the underlying memory representation of values.

But a type error found at compile time is a warning that data use er-

rors could show up at run time after the code has been deployed – and

when it’s far too late to repair it. Strong static type constraints are thus

an example of a language restraint that frees programmers from verify-

ing that their code does not contain “bad” operations by empowering

the language interpreter to do so itself. (Looking ahead to the edict of

prevention in Chapter 11, it makes the illegal inexpressible.)

4.2.1 Type expressions and typings

In OCaml, every type has a “name”. These names are given as T Y P E

E X P R E S S I O N S, a kind of little language for naming types. Just as there

are value expressions for specifying values, there are type expressions

for specifying types.

In this language of type expressions, each ATO M I C T Y P E has its

own name. We’ve already seen the names of the integer, floating point,

and truth value types – int, float, and bool, respectively – in the

examples earlier in this chapter, because the R E P L prints out a type

expression for a value’s type along with the value itself, for instance,

# 42 ;;

- : int = 42

# 3.1416 ;;

- : float = 3.1416

# false ;;

- : bool = false

Notice that the R E P L presents the type of each computed value after a

colon (:). (Why a colon? You’ll see shortly.)

Table 4.1 provides a more complete list of some of the atomic types

in OCaml (some not yet introduced), along with their type names,

some example values, and an example expression that specifies a value

of that type using some functions that return values of the given type.
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(We’ll get to non-atomic (composite) types in Chapter 7.)

It is often useful to notate that a certain expression is of a certain

type. Such a T Y P I N G is notated in OCaml using the : operator, placing

the value to the left of the operator and its type to the right. So, for

instance, the following typings hold:

• 42 : int

• true : bool

• 3.14 *. 2. *. 2. : float

• if 3 > 4 then 3 else 4 : int

The first states that the expression 42 specifies an integer value, the

second that true specifies a boolean truth value, and so forth. The :

operator is sometimes read as “the”, thus “42, the integer” or “true, the

bool”. The typing operator is special in that it combines an expression

from the value language (to its left) with an expression from the type

language (to its right).

We can test out these typings right in the R E P L. (The parentheses

are necessary.)

# (42 : int) ;;

- : int = 42

# (true : bool) ;;

- : bool = true

# (3.14 *. 2. *. 2. : float) ;;

- : float = 12.56

# (if 3 > 4 then 3 else 4 : int) ;;

- : int = 4

The R E P L generates an error when a value is claimed to be of an

inappropriate type.

# (42 : float) ;;

Line 1, characters 1-3:

1 | (42 : float) ;;

^^

Error: This expression has type int but an expression was expected

of type

float

Hint: Did you mean `42.'?

Exercise 10

Which of the following typings hold?

1. 3 + 5 : float

2. 3. + 5. : float

3. 3. +. 5. : float

4. 3 : bool
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5. 3 || 5 : bool

6. 3 || 5 : int

Try typing these into the R E P L to see what happens. (Remember to surround them with
parentheses.)

Finally, in OCaml, expressions are I M P L I C I T LY T Y P E D. Although all

expressions have types, and the types of expressions can be annotated

using typings, the programmer doesn’t need to specify those types in

general. Rather, the OCaml interpreter can typically deduce the types

of expressions at compile time using a process called T Y P E I N F E R-

E N C E. In fact, the examples shown so far depict this inference. The

R E P L prints not only the value calculated for each expression but also

the type that it inferred for the expression.

4.3 The unit type

In OCaml, the phrases of the language are expressions, expressing

values. In many other programming languages, the phrases of the lan-

guage are not always used to express values. Rather, they are used as

commands. They are of interest because of what they do, not what they

are. This approach is especially prevalent in imperative programming,

the term ‘imperative’ deriving from the Latin ‘imperativus’, meaning

‘pertaining to a command’. But OCaml, like other functional languages,

is uniform in privileging expressions over commands.

Occasionally, we have an expression that really need compute

no value. But since every expression has to have a value in OCaml,

we need to assign a value to such expressions as well. In this case,

we use the value (), spelled with an open and close parenthesis and

pronounced “unit”. This value is the only value of the type unit. Since

the unit type has only one value, that value conveys no information,

which is just what we want as the value of an expression whose value

is irrelevant. The unit type will feature more prominently once we

explore imperative programming within OCaml in Chapter 15.

Exercise 11

Give a typing for a value of the unit type.

4.4 Functions are themselves values

Functions play a central role in OCaml. They serve as the primary

programming abstraction, as they do in many languages.

In a mathematical sense, a F U N C T I O N is simply a mapping from an

input (called the function’s A RG U M E N T) to an output (the function’s

VA LU E). Some functions that are built into OCaml are depicted in

Figure 4.3.

...

-2→ -1

-1→ 0

0→ 1

1→ 2

2→ 3

...

...

-2→ "-2"

-1→ "-1"

0→ "0"

1→ "1"

2→ "2"

...

true→ false

false→ true

(a) (b) (c)

Figure 4.3: Three example functions:
(a) the function from integers to their
successors, available in OCaml as the
succ function; (b) the function from
integers to their string representation,
available in OCaml as the string_of_-
int function; (c) the function mapping
each boolean value onto its negation,
available as the not function in OCaml.
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OCaml is a F U N C T I O N A L P RO G R A M M I N G L A N G UAG E. By this we

mean more than that functions play a central role in the language. We

mean that functions are F I R S T- C L A S S VA LU E S – they can be passed as

arguments to functions or returned as the value of functions. Func-

tions that take functions as arguments or return functions as values

are referred to as H I G H E R- O R D E R F U N C T I O N S, and the powerful pro-

gramming paradigm that makes full use of this capability, which we

will introduce in Chapter 8, is H I G H E R- O R D E R F U N C T I O N A L P RO -

G R A M M I N G.

Related to the idea that functions are values is that they have types

as well. In Exercise 8, you used the sqrt function to take the square

root of a floating point number. This function, sqrt, is itself a value

and has a type. The type of a function expresses both the type of its

argument (in this case, float) and the type of its output (again float).

The type expression for a function (the type’s “name”) is formed by

placing the symbol -> (read “arrow” or “to”) between the argument

type and the output type. Thus the type for sqrt is float -> float

(read “float arrow float” or “float to float”), or, expressed as a typing,

sqrt : float -> float.

You can verify this typing yourself, just by evaluating sqrt:

# sqrt ;;

- : float -> float = <fun>

Since functions are themselves values, they can be evaluated, and the

R E P L performs type inference and provides the type float -> float

along with a printed representation of the value itself <fun>, indicating

that the value is a function of some sort.5 5 The actual value of a function is a
complex data object whose internal
structure is not useful to print, so this
abstract presentation <fun> is printed
instead.

Because the argument type of sqrt is float, it can only be applied

to values of that type. And since the result type of sqrt is float, only

functions that take float arguments can apply to expressions like

sqrt 42..

Exercise 12

What are the types of the three functions – succ, string_of_int, and not – from
Figure 4.3?

Exercise 13

Try applying the sqrt function to an argument of some type other than float, for
instance, a value of type bool. What happens?

Of course, the real power in functional programming comes from

defining your own functions. We’ll move to this central topic in Chap-

ter 6, but first, it is useful to provide a means of naming values (includ-

ing functions), to which we turn in the next chapter.
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