

5

Naming and scope

In this chapter, we introduce the ability to give names to values, an

ability with multiple benefits.

5.1 Variables are names for values

We introduced the concept of a variable in Chapter 1 as seen in the

imperative programming paradigm – the variable as a locus of mutable

state, which takes on different values over time. But in the functional

paradigm, variables are better thought of simply as names for values.

To introduce a name for a value for use in some other expression,

OCaml provides the local naming expression, introduced by the key-

word let:

〈expr〉 ::= let 〈var〉 : 〈type〉 = 〈exprdef〉 in 〈exprbody〉

In this construct, 〈var〉 is a variable,1 which will be the name of a value

1 Variables in OCaml are required
to be sequences of alphabetic and
numeric characters along with the
underscore character (_) and the prime
character (’). The first character in the
variable name must be alphabetic or an
underscore. The special role of the latter
case is discussed later in Section 7.2.

of the given 〈type〉; 〈exprdef〉 is an expression defining a value of the

given 〈type〉; and 〈exprbody〉 is an expression within which the variable

can be used as the name for the defined value. The expression as

a whole specifies whatever the 〈exprbody〉 evaluates to. We say that

the construction B I N D S the name 〈var〉 to the value 〈exprdef〉 for use

in 〈exprbody〉.2 For this reason, the let expression is referred to as a 2 The name being defined is sometimes
referred to as the D E F I N I E N D U M,
the expression it names being the
D E F I N I E N S.

B I N D I N G C O N S T RU C T. We’ll introduce other binding constructs in

Chapters 6 and 7.

As an example,3 we might provide a name for the important con- 3 In these examples, we follow the stylis-
tic guidelines described in Section C.1.7
in indenting the body of a let to the
same level as the let keyword itself. The
rationale is provided there.

stant π in the context of calculating the area of a circle of radius 2:

let pi : float = 3.1416 in

pi *. 2. *. 2. ;;

- : float = 12.5664

Informally speaking (and we’ll provide a more rigorous description in

Chapter 13), the construct operates as follows: The 〈exprdef〉 expression

52 P RO G R A M M I N G W E L L

is evaluated to a value, and then the 〈exprbody〉 is evaluated, but as if

occurrences of the definiendum 〈var〉 were first replaced by the value

of the definiens 〈exprdef〉.

Notice how by naming the value pi, we document our intention

that the value serves as the mathematical constant, π, consistent with

the edict of intention.

5.2 The type of a let-bound variable can be inferred

It may seem obvious to you that in an expression like

let pi : float = 3.1416 in

pi *. 2. *. 2. ;;

the variable pi is of type float. What else could it be, given that its

value is a float literal, and it is used as an argument of the *. oper-

ator, which takes float arguments? You would be right, and OCaml

itself can make this determination, inferring the type of pi without the

explicit typing being present. For that reason, the type information in

the let construct is optional. We can simply write

let pi = 3.1416 in

pi *. 2. *. 2. ;;

and the calculation proceeds as usual. This ability to infer types is what

we mean when we say (as in Section 4.2.1) that OCaml is implicitly

typed.

Although these typings when introducing variables are optional,

nonetheless, it can still be useful to provide explicit type information

when naming a value. First, (and again following the edict of inten-

tion), it allows the programmer to make clear the intended types, so

that the OCaml interpreter can verify that the programmer’s intention

was followed and so that readers of the code are aware of that inten-

tion. Second, there are certain (relatively rare) cases (Section 9.6) in

which OCaml cannot infer a type for an expression in context; in such

cases, the explicit typing is necessary.

5.3 let expressions are expressions

Remember that all expressions in OCaml have values, even let expres-

sions. Thus we can use them as subexpressions of larger expressions.

3.1416 *. (let radius = 2.

in radius *. radius) ;;

- : float = 12.5664

N A M I N G A N D S C O P E 53

Exercise 14

Are the parentheses necessary in this example? Try out the expression without the
parentheses and see what happens.

A particularly useful application of the fact that let expressions

can be used as first-class values is that they may be embedded in other

let expressions to get the effect of defining multiple names. Here, we

define both the constant π and a radius to calculate the area of a circle

of radius 4:

let pi = 3.1416 in

let radius = 4. in

pi *. radius ** 2. ;;

- : float = 50.2656

Exercise 15

Use the let construct to improve the readability of the following code to calculate the
length of the hypotenuse of a particular right triangle:

sqrt (1.88496 *. 1.88496 +. 2.51328 *. 2.51328) ;;
- : float = 3.1416

5.4 Naming to avoid duplication

We introduce an extended example to more crisply demonstrate the

advantages of naming. Suppose we wanted to determine the area of

the larger of the two triangles in Figure 5.1.

Figure 5.1: Two triangles, the left with
sides of length 1, 1, and 1.41, and the
right with sides of length 1.75, .75, and
2. Which has the larger area?

To demonstrate some of the advantages of naming, we attempt

to calculate the area of the larger without recourse to the let con-

struct. To calculate the areas, we’ll use a method attributed to Heron of

Alexandria around 60 CE.

Calculating the area of the larger triangle without defining local

names is possible, but ungainly:

1 # if sqrt (((1. +. 1. +. 1.41) /. 2.)

2 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

3 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

4 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.41))

5 # > sqrt (((1.5 +. 0.75 +. 2.) /. 2.)

6 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 1.5)

7 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 0.55)

8 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 2.))

9 # then

10 # sqrt (((1. +. 1. +. 1.41) /. 2.)

11 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

12 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

13 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.41))

14 # else

15 # sqrt (((1.5 +. 0.75 +. 2.) /. 2.)

16 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 1.5)

17 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 0.75)

18 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 2.)) ;;

- : float = 0.477777651606895504

54 P RO G R A M M I N G W E L L

It’s extraordinarily difficult to tell what’s going on in this code. Cer-

tainly, the various side lengths appear repeatedly, and in fact, calcu-

lations making use of them repeat as well. Lines 1–4 and 10–13 both

separately calculate the area of the left triangle in the figure, and lines

5–8 and 15–18 calculate the area of the right triangle. The calculations

are redundant, and worse, provide the opportunity for bugs to creep in

if the copies aren’t kept in perfect synchrony.

Appropriate use of naming can partially remedy these problems.

(We’ll address their solution more systematically in Chapters 6 and 8.)

First, by naming the two area calculations, we need calculate each only

once.

let left_area = sqrt (((1. +. 1. +. 1.41) /. 2.)

*. ((1. +. 1. +. 1.41) /. 2. -. 1.)

*. ((1. +. 1. +. 1.41) /. 2. -. 1.)

*. ((1. +. 1. +. 1.41) /. 2. -. 1.41)) in

let right_area = sqrt (((1.5 +. 0.75 +. 2.) /. 2.)

*. ((1.5 +. 0.75 +. 2.) /. 2. -. 1.5)

*. ((1.5 +. 0.75 +. 2.) /. 2. -. 0.75)

*. ((1.5 +. 0.75 +. 2.) /. 2. -. 2.)) in

if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

We also correct a bug in line 7, which you may not have noticed, that

uses inconsistent values for one of the side lengths in the area calcula-

tions. By defining the area once and using the value twice, we remove

the possibility for such inconsistencies to even arise.

Finally, notice the repeated calculation of, for instance, (1. +. 1.

+. 1.41) /. 2., which is calculated some four times, and similarly

for (1.5 +. 0.75 +. 2.) /. 2.. Each of these is the S E M I P E R I M E -

T E R of a triangle (that is, half the perimeter). The semiperimeter fea-

tures heavily in Heron’s method of calculating triangle areas. By nam-

ing these two subexpressions, we clarify even further what is going on

in the example.

let left_area =

let left_sp = (1. +. 1. +. 1.41) /. 2. in

sqrt (left_sp

*. (left_sp -. 1.)

*. (left_sp -. 1.)

*. (left_sp -. 1.41)) in

let right_area =

let right_sp = (1.5 +. 0.75 +. 2.) /. 2. in

sqrt (right_sp

*. (right_sp -. 1.5)

*. (right_sp -. 0.75)

*. (right_sp -. 2.)) in

if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

There’s still much room for improvement, but to make further

N A M I N G A N D S C O P E 55

progress on this example awaits additional techniques beyond nam-

ing, as described in Section 6.5.

5.5 Scope

The name defined in the let expression is available only in the body

of the expression. The name is L O C A L to the body, and unavailable

outside of the body. We say that the S C O P E of the variable – that is,

the code region within which the variable is available as a name of the

defined value – is the body of the let expression. This explains the

following behavior:

(let s = "hi ho " in

s ^ s) ^ s ;;

Line 2, characters 9-10:

2 | s ^ s) ^ s ;;

^

Error: Unbound value s

The body of the let expression in this example ends at the closing

parenthesis, and thus the variable s defined by that construct is un-

available (“unbound”) thereafter.

Exercise 16

Correct the example to provide the triple concatenation of the defined string.

Exercise 17

What type do you expect is inferred for s in the example?

In particular, the scope of a local let naming does not include the

definition itself (the 〈exprdef〉 part between the = and the in). Thus the

following expression is ill-formed:

let x = x + 1 in

x * 2 ;;

Line 1, characters 8-9:

1 | let x = x + 1 in

^

Error: Unbound value x

And a good thing too, for what would such an expression mean? This

kind of recursive definition isn’t well founded. Nonetheless, there are

useful recursive definitions, as we will see in Section 6.6.

What if we define the same name twice? There are several cases to

consider. Perhaps the two uses are disjoint, as in this example:

sqrt ((let x = 3. in x *. x)

+. (let x = 4. in x *. x)) ;;

- : float = 5.

Since each x is introduced with its own let and has its own body, the

scopes are disjoint. The occurrences of x in the first expression name

56 P RO G R A M M I N G W E L L

the number 3. and in the second name the number 4.. But in the

following case, the scopes are not disjoint:

sqrt (let x = 3. in

x *. x +. (let x = 4. in x *. x)) ;;

- : float = 5.

The scope of the first let encompasses the entire second let. Do the

highlighted occurrences of x in the body of the second let name 3.

or 4.? The rule used in OCaml (and most modern languages) is that

the occurrences are bound by the nearest enclosing binding construct

for the variable. The same binding relations hold as if the inner let-

bound variable x and the occurrences of x in its body were uniformly

renamed, for instance, as y:

sqrt (let x = 3. in

x *. x +. (let y = 4. in y *. y)) ;;

- : float = 5.

By virtue of this convention that variables are bound by the closest

binder, when an inner binder for a variable falls within the scope of an

outer binder for the same variable, the outer variable is inaccessible

in the inner scope. We say that the outer variable is S H A D OW E D by the

inner variable. For instance, in

let x = 1 in

x + let x = 2 in

x + let x = 4 in

x ;;

- : int = 7

the innermost x (naming 4) shadows the outer two, and the middle x

(naming 2) shadows the outer x (naming 1). Thus the three highlighted

occurrences of x name 1, 2, and 4, respectively, which the expression as

a whole sums to 7.

Since the scope of a let-bound variable is the body of the construct,

but not the definition, occurrences of the same variable in the defi-

nition must be bound outside of the let. Consider the highlighted

occurrence of x on the second line:

let x = 3 in

let x = x * 2 in

x + 1 ;;

This occurrence is bound by the let in line 1, not the one in line 2.

That is, it is equivalent to the renaming

let x = 3 in

let y = x * 2 in

y + 1 ;;

N A M I N G A N D S C O P E 57

Exercise 18

For each occurrence of the variable x in the following examples, which let construct
binds it? Rewrite the expressions by renaming the variables to make them distinct while
preserving the bindings.

1. let x = 3 in
let x = 4 in
x * x ;;

2. let x = 3 in
let x = x + 2 in
x * x ;;

3. let x = 3 in
let x = 4 + (let x = 5 in x) + x in
x * x ;;

5.6 Global naming and top-level let

The let construct introduced above introduces a local name, local in

the sense that its scope is just the body of the let. OCaml provides a

global naming construct as well, defined by this BNF rule:4 4 �Unlike the local naming construct,
the global naming construct expressed
in this BNF rule is not an expression
(that is, of syntactic class 〈expr〉).
Rather, we categorize it as a D E F I N I -
T I O N (of syntactic class 〈definition〉).
Such definitions are allowed only at the
top level of program files or the R E P L.

〈definition〉 ::= let 〈var〉 : 〈type〉 = 〈exprdef〉

By simply leaving off the ‘in 〈exprbody〉’ part of the let construct, the

name can continue to be used thereafter; the scope of the naming

extends all the way through the remainder of the R E P L session or to the

end of the program file.

let pi = 3.1416 ;;

val pi : float = 3.1416

let radius = 4.0 ;;

val radius : float = 4.

pi *. radius *. radius ;;

- : float = 50.2656

2. *. pi *. radius ;;

- : float = 25.1328

The R E P L indicates that new names have been introduced by present-

ing typings for the names (pi : float or radius : float) as well as

displaying their values.

This global naming may look a bit like assignment in imperative

languages. We can have, for instance,

let x = 3 ;;

val x : int = 3

let x = x + 1 ;;

val x : int = 4

x + x ;;

- : int = 8

The second line may look like it is assigning a new value to x. But no,

all that is happening is that there is a new name (coincidentally the

same as a previous name) for a new value. The old name x for the value

58 P RO G R A M M I N G W E L L

3 is still around; it’s just inaccessible, shadowed by the new name x. (In

Chapter 15, we provide a demonstration that this is so.)

Exercise 19

In the sequence of expressions

let tax_rate = 0.05 ;;
let price = 5. ;;
let price = price * (1. +. tax_rate) ;;
price ;;

what is the value of the final expression? (You can use the R E P L to verify your answer.)

Global naming is available only at the top level. A global name

cannot be defined from within another expression, for instance, the

body of a local let. The following is thus not well-formed:

let radius = 4. in

let pi = 3.1416 in

let area = pi *. radius ** 2. ;;

Line 3, characters 30-32:

3 | let area = pi *. radius ** 2. ;;

^^

Error: Syntax error

Exercise 20

How might you get the effect of this definition of a global variable area by making use of
local variables for pi and radius?

❧

We alluded to the fact that in OCaml, functions are first-class values,

and as such they can be named as well. In fact, the ability to name val-

ues becomes most powerful when the named values are functions. In

the next chapter, we introduce functions and function application in

OCaml, and start to demonstrate the power of functions as an abstrac-

tion mechanism.

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

