
6

Functions

Recall that abstraction is the process of viewing a set of apparently

dissimilar things as instantiating an underlying identity. Plato in his

Phaedrus has Socrates adduce two rhetorical principles. The first

Socrates describes as

That of perceiving and bringing together in one idea the scattered

particulars, that one may make clear by definition the particular thing

which he wishes to explain. (Plato, 1927)

that is, a principle of abstraction. (Socrates’s second principle shows

up in Chapter 8.)

Abstraction in programming is this process applied to code, and

can be enabled by appropriate language constructs. Programming

abstraction is important because it enables programmers to satisfy

perhaps the most important edict of programming:

Edict of irredundancy:

Never write the same code twice.

A standard technique that beginning programmers use is “cut and

paste” programming – you find some code that does more or less

what you need, perhaps code you’ve written before, and you cut and

paste it into your program, adjusting as necessary for the context the

code now appears in. There is a high but mostly hidden cost to the

cut and paste approach. If you find a bug in one of the copies, it needs

to be fixed in all of the copies. If some functionality changes in one

of the copies, the other copies don’t benefit unless they are modified

too. As documentation is added to clarify one of the copies, it must

be maintained for all of them. When one of the copies is tested, no

assurance is thereby gained for the other copies. There’s a theme here.

Having written the same code twice, all of the problems of debugging,

maintaining, documenting, and testing code have been similarly

multiplied.

60 P RO G R A M M I N G W E L L

The edict of irredundancy is the principle of avoiding the problems

introduced by duplicative code. Rather than write the same code twice,

the edict calls for viewing the apparently dissimilar pieces of code as

instantiating an underlying identity, and factoring out the common

parts using an appropriate abstraction mechanism.

Given the emphasis in the previous chapters, it will be unsurprising

to see that the abstraction mechanism we turn to for satisfying the

edict of irredundancy is the function itself. but before getting there,

there is much to be introduced about how functions are defined and

used in OCaml.

We will thus introduce how OCaml supports functions, their ap-

plication and their definition, including some notational issues that

simplify writing functions and connections to the typing constraints

that make sure that code works properly. Then, we’ll have the tools to

provide an example of how functions can factor out redundancies from

code in keeping with the edict of irredundancy. Finally, we’ll extend

the expressivity of functions even further with recursive functions,

and introduce the idea of unit testing of functions to help verify their

correctness.

6.1 Function application

We introduced functions in Section 4.4 as mappings from an argument

to the function’s value at that argument. We can make use of a function

by A P P LY I N G it to its argument. You’ll be most familiar with the tradi-

tional and ubiquitous mathematical notation for function application,

in which a symbol naming the function precedes a parenthesized,

comma-separated list of the arguments, as, for instance, f (1,2,3).1 1 Some historical background on this
notation is provided in Section B.1.2.It is thus perhaps surprising that OCaml doesn’t use this notation for

function application. Instead, it follows the notational convention

proposed by Church in his lambda calculus. (See Section 1.2.) In the

lambda calculus, functions and their application are so central (in-

deed, there’s basically nothing else in the logic) that the addition of the

parentheses in the function application notation becomes onerous. In-

stead, Church proposed merely prefixing the function to its argument.

Instead of f (1), Church’s notation would have f 1. Instead of f (g (1)),

he would have f (g 1), using the parentheses for grouping, but not for

demarcating the arguments.

Similarly, in OCaml, the function merely precedes its argument. The

successor of 41 is thus simply succ 41. The square root of two is sqrt

2.0.

succ 41 ;;

- : int = 42

F U N C T I O N S 61

sqrt 2.0 ;;

- : float = 1.41421356237309515

Syntactically, we can codify that in a simple BNF rule for function

application:

〈expr〉 ::= 〈exprfunc〉 〈exprarg〉

Recall from Section 4.4 that functions (as all values) have types,

which can be expressed as type expressions using the -> operator. For

instance, the successor function succ has the type given by the type

expression int -> int and the string_of_int function the type int

-> string.

6.2 Multiple arguments and currying

Figure 6.1: Moses Schönfinkel (1889–
1942), Russian logician and math-
ematician, first specified the use of
higher-order functions to mimic the
effect of multiple-argument functions.

Figure 6.2: Haskell Curry (1900–1982),
American logician, promulgator of
the use of higher-order functions
to simulate functions of multiple
arguments, which is referred to as
currying in his honor.

The simple prefix notation for function application is only appropriate

when functions take exactly one argument. But it turns out that this

is not a substantial limitation in a system (like the lambda calculus

and like OCaml) in which functions are themselves values. Suppose

we have a function that we think of as taking multiple arguments

simultaneously (like f (1,2,3)). We can reconceptualize f as taking only

one argument (in this case, the argument 1), returning a function that

takes the second argument 2, again returning a function that takes the

third and final argument 3, returning the final value. The type of such a

function, which takes three integers returning an integer result, say, is

thus

int -> (int -> (int -> int))

In essence, the function takes its three arguments one at a time, return-

ing a function after each argument before the last. Although this trick

was first discussed by Schönfinkel (1924), it is referred to as C U R RY I N G

a function, the resulting function being curried, so named after Haskell

Curry who popularized the approach.

Because in OCaml functions take one argument, the language

makes extensive use of currying, and language constructs facilitate

its use. For instance, the -> type expression operator is right associa-

tive (see Section 3.2) in OCaml, so that the type of the curried three-

argument function above can be expressed as

int -> int -> int -> int

Application, conversely, is left associative, so that applying a curried

function f to its arguments can be notated f 1 2 3 instead of ((f 1)

2) 3.

62 P RO G R A M M I N G W E L L

We’ve already used some curried functions without noticing. The

two-argument arithmetic and boolean operators, like +, /., and &&, are

curried. As usual, the R E P L reveals their type:

(+) ;;

- : int -> int -> int = <fun>

(/.) ;;

- : float -> float -> float = <fun>

(&&) ;;

- : bool -> bool -> bool = <fun>

Normally, we write these operators I N F I X, placing the operator be-

tween its two arguments, but by placing the operator in parentheses2 2 Care must be taken when parenthesiz-
ing the multiplication operators * and

*. to convert them to prefix functions.
Since OCaml comments are provided
as (* 〈〉 *), parenthesizing as (*) will
be misinterpreted as the beginning of a
comment. To avoid this problem, place
spaces between the parentheses and the
operator: (*).

as we’ve done, the OCaml R E P L interprets them as regular P R E F I X

functions, in which the function appears before its argument. Making

use of this ability, they can even be applied in the one-by-one manner,

as we’ve done here both parenthesized and unparenthesized:

((+) 3) 4 ;;

- : int = 7

(+) 3 4 ;;

- : int = 7

Exercise 21

What (if anything) are the types and values of the following expressions? Try to figure
them out yourself before typing them into the R E P L to verify your answer.

1. (-) 5 3

2. 5 - 3

3. - 5 3

4. "O" ^ "Caml"

5. (^) "O" "Caml"

6. (^) "O"

7. (**) – See footnote 2.

6.3 Defining anonymous functions

Now we get to the whole point of functional programming: defining

your own functions. Suppose we want to specify a function that maps a

certain input, call it x, to an output, say the doubling of x. The follow-

ing expression does the trick: fun x : int -> 2 * x.

fun x : int -> 2 * x ;;

- : int -> int = <fun>

The keyword fun introduces the function definition. The arrow ->

separates the typing of a variable that represents the input, the integer

x, from an expression that represents the output value, 2 * x. The

output expression can, of course, make free use of the input variable as

part of the computation.

F U N C T I O N S 63

We can apply this function to an argument (21, say). We use the

usual OCaml prefix function application syntax, placing the function

before its argument:

(fun x : int -> 2 * x) 21 ;;

- : int = 42

Syntactically, we construct such a “function without a name”, an

A N O N Y M O U S F U N C T I O N, with the OCaml fun construct, given by the

following syntactic rule:3 3 Warning: The same arrow symbol ->
is used in defining both function values
and function types. This sometimes
leads to confusion. Be aware that
though the same symbol is used for
both, the two are quite distinct.

〈expr〉 ::= fun 〈var〉 : 〈type〉 -> 〈expr〉

Here, 〈var〉 is a variable, the name of the argument of the function, and

〈expr〉 is an expression defining the output of the function, which will

be of the given 〈type〉.
The fun construct, like the let construct, is a binding construct.

The fun construct introduces a variable and binds occurrences of that

variable in its scope. The scope of the variable is the body of the fun,

the expression 〈expr〉 after the arrow.

As was the case for let expressions, when the type of the variable

can be inferred from how it is used in the definition part, as is typically

the case, the typing part can be left off. So, for instance, the doubling

function could be written

fun x -> 2 * x ;;

- : int -> int = <fun>

and the same type int -> int still inferred.

Exercise 22

Try defining your own functions, perhaps one that squares a floating point number, or
one that repeats a string.

6.4 Named functions

Now that we have the ability to define functions (with fun) and the

ability to name values (with let), we can put them together to name

newly-defined functions. Here, we give a global naming of the dou-

bling function and use it:

let double = fun x -> 2 * x ;;

val double : int -> int = <fun>

double 21 ;;

- : int = 42

Here are functions for the circumference and area of circles of given

radius:

64 P RO G R A M M I N G W E L L

let pi = 3.1416 ;;

val pi : float = 3.1416

let area =

fun radius ->

pi *. radius ** 2. ;;

val area : float -> float = <fun>

let circumference =

fun radius ->

2. *. pi *. radius ;;

val circumference : float -> float = <fun>

area 4. ;;

- : float = 50.2656

circumference 4. ;;

- : float = 25.1328

6.4.1 Compact function definitions

This method for defining named functions, though effective, is a bit

cumbersome. For that reason, OCaml provides a simpler syntax for

defining functions, in which a definition for the calling pattern itself is

provided. Instead of the phrasing

let 〈varfunc〉 = fun 〈vararg〉 -> 〈expr〉

OCaml allows the following equivalent phrasing

let 〈varfunc〉 〈vararg〉 = 〈expr〉

This syntax for defining functions may be more familiar from other

languages. It is also consistent with a more general pattern-matching

syntax that we will come to in Section 7.2.

This compact syntax for function definition is an example of S Y N -

TAC T I C S U G A R,4 a bit of additional syntax that serves to abbreviate 4 The term “syntactic sugar” was first
used by Landin (1964) (Figure 17.7)
to describe just such abbreviatory
constructs.

a more complex construction. By adding some syntactic sugar, the

language can provide simpler expressions without adding underlying

constructs to the language; a language with a small core set of con-

structs can still have a sufficiently expressive concrete syntax that it

is pleasant to program in. As we introduce additional syntactic sugar

constructs, notice how they allow for idiomatic programming without

increasing the core language.

We can use this more compact function definition notation to

provide a more elegant definition of the doubling function:

let double x = 2 * x ;;

val double : int -> int = <fun>

double (double 3) ;;

- : int = 12

F U N C T I O N S 65

This compact notation applies to local definitions as well.

let double x = 2 * x in

double (double 3) ;;

- : int = 12

It even extends to multiple-argument curried functions. The defini-

tion

let hypotenuse x y =

sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

is syntactic sugar for (and hence completely equivalent to) the defini-

tion

let hypotenuse =

fun x ->

fun y ->

sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

6.4.2 Providing typings for function arguments and outputs

As in all definitions, you can provide a typing for the variable being

defined, as in

let hypotenuse : float -> float -> float =

fun x ->

fun y ->

sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

and it is good practice to do so for top-level definitions. That way,

you are registering your intentions as to the types – remember the

edict of intention? – and the language interpreter can verify that those

intentions are satisfied. (See Section C.3.4.)

In the compact notation, typings can and should be provided for

the application of the function to its arguments, as well as for the ar-

guments itself. In the hypotenuse function definition, the application

hypotenuse x y is of type float, which can be recorded as

let hypotenuse x y : float =

sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

Each of the arguments can be explicitly typed as well.

let hypotenuse (x : float) (y : float) : float =

sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

Here, we have recorded that x and y are each of float type, and the re-

sult of an application hypotenuse x y is also a float, which together

66 P RO G R A M M I N G W E L L

capture the full information about the type of hypotenuse itself. Con-

sequently, the type inferred for the hypotenuse function itself is, as

before, float -> float -> float, that is, a curried binary function

from floats to floats.

Exercise 23

Consider the following beginnings of function declarations. How would these appear
using the compact notation (using whatever argument variable names you prefer)?

1. let foo : bool -> int -> bool = ...

2. let foo : (float -> int) -> float -> bool = ...

3. let foo : bool -> (int -> bool) -> int = ...

Exercise 24

What are the types for the following expressions?

1. let greet y = "Hello" ˆ y in greet "World!" ;;

2. fun x -> let exp = 3. in x ** exp ;;

Exercise 25

Define a function square, using compact notation, that squares a floating point number.
For instance,

square 3.14 ;;
- : float = 9.8596
square 1234567. ;;
- : float = 1524155677489.

Exercise 26

Define a function abs : int -> int, using compact notation, that computes the
absolute value of an integer.

abs (-5) ;;
- : int = 5
abs 0 ;;
- : int = 0
abs (3 + 4) ;;
- : int = 7

Exercise 27

The Stdlib.string_of_bool function returns a string representation of a boolean.
Here it is in operation:

string_of_bool (3 = 3) ;;
- : string = "true"
string_of_bool (0 = 3) ;;
- : string = "false"

What is the type of string_of_bool? Provide your own function definition for it.

Exercise 28

Define a function even : int -> bool that determines whether its integer argument
is an even number. It should return true if so, and false otherwise. Try using both the
compact notation for the definition and the full desugared notation. Try versions with
and without typing information for the function name.

Exercise 29

Define a function circle_area : float -> float that returns the area of a circle of a
given radius specified by its argument. Try all of the variants described in Exercise 28. Figure 6.3: The frustrum of a cone,

with top and bottom radii r1 and r2
respectively, and height h.

F U N C T I O N S 67

Exercise 30

A frustrum (Figure 6.3) is a three-dimensional solid formed by slicing off the top of a
cone parallel to its base. The volume V of a frustrum with radii r1 and r2 and height h is
given by the formula

V = πh

3
(r 2

1 + r1r2 + r 2
2) .

Implement a function to calculate the volume of a frustrum given the radii and height.

Problem 31

The calculation of the date of Easter, a calculation so important to early Christianity
that it was referred to simply as C O M P U T U S (“the computation”), has been the subject
of innumerable algorithms since the early history of the Christian church. An especially
simple method, published in Nature in 1876 and attributed to “A New York correspon-
dent” (1876), proceeds by sequentially calculating the following values on the basis of the
year Y :

a = Y mod 19 h = (19a +b −d − g +15) mod 30

b = Y

100
i = c

4

c = Y mod 100 k = c mod 4

d = b

4
l = (32+2e +2i −h −k) mod 7

e = b mod 4 m = a +11h +22l

451

f = b +8

25
month = h + l −7m +114

31

g = b − f +1

3
day = ((h + l −7m +114) mod 31)+1

Write two functions, computus_month and computus_day, which take an integer year
argument and return, respectively, the month and day of Easter as calculated by the
method above. Use them to verify that the date of Easter in 2018 was April 1.

6.5 Function abstraction and irredundancy

We have enough background in place to see directly how functions are

key to obeying the edict of irredundancy. Recall the comparison of the

areas of two triangles from Section 5.4. By appropriate use of naming

subcalculations, the computation was defined as

let left_area =

let left_sp = (1. +. 1. +. 1.41) /. 2. in

sqrt (left_sp

*. (left_sp -. 1.)

*. (left_sp -. 1.)

*. (left_sp -. 1.41)) in

let right_area =

let right_sp = (1.5 +. 0.75 +. 2.) /. 2. in

sqrt (right_sp

*. (right_sp -. 1.5)

*. (right_sp -. 0.75)

*. (right_sp -. 2.)) in

if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

But some obvious redundancies remain. The calculation of left_-

area and right_area are structured identically, composed of first a

68 P RO G R A M M I N G W E L L

calculation of the semiperimeter for the three sides and then the area

calculation itself, again using the three side lengths in corresponding

places.

Of course, they are not strictly identical; if they were, we could just

use the naming trick (Section 5.4) to remove the redundancy. How-

ever, except for the three side lengths, the two calculations are the

same. The two area values involve the same computation over the side

lengths, the same mapping from side lengths to area, the same func-

tion of the side lengths so to speak. We can view these two dissimilar

expressions as manifesting an underlying identity by thinking of them

as applications of one and the same function (call it area) to the three

side lengths.

We start with a definition of this area function.

let area x y z =

let sp = (x +. y +. z) /. 2. in

sqrt (sp *. (sp -. x) *. (sp -. y) *. (sp -. z)) ;;

val area : float -> float -> float -> float = <fun>

The two original computations of left_area and right_area match

this pattern exactly, just with different values substituted for the three

side lengths x, y, and z.

To generate these two instances, we apply the area function to the

two sets of side lengths and compare the results as before.

let left_area = area 1. 1. 1.41 in

let right_area = area 1.5 0.75 2. in

if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

It is worth noting that this solution to the triangle area comparison

problem specifies each of the six side lengths exactly once. Compare

that with the initial version, in which each of the six side lengths ap-

pears ten times in the calculation, providing the risk of accidentally

modifying some of the occurrences but not others and introducing

bugs that way. Similarly, the definition of semiperimeter occurs once

in this version, but 16 times in the original version. The definition of

area by Heron’s method appears only once here but four times in the

original. This is the essence of abstraction, capturing the underlying

idea once that unifies many instances.

We’ve now seen two abstraction techniques for eliminating re-

dundancies. For trivial redundant expressions, exact duplications,

it suffices to name the expression once and refer to it by its name

multiple times. When the redundancy is a bit more subtle, involving

systematic differences as to particular values in particular places, we

can introduce a function that abstracts over those places, applying it

to the particular values. But there are cases where mere substitution

F U N C T I O N S 69

of simple values (like in the area example) is not sufficient. The true

power of functions comes in with these even more sophisticated cases,

which we explore in detail in Chapter 8.

To prepare for those abstraction techniques, we extend the expres-

sivity of functions even further by allowing functions to be defined in

terms of themselves, recursive functions.

6.6 Defining recursive functions

Consider the F AC TO R I A L function, which maps its integer argument

n onto the product of all the positive integers that are no larger than

n. Thus, the factorial of 3, traditionally notated with a suffixed excla-

mation mark as 3!, is the product of 1, 2, and 3, that is, 6; and 4! is 24.

Notice that 4! is 4 · 3!, which makes sense because 3! has already in-

corporated all the integers up to 3, so the only remaining integer to

multiply in is 4 itself. Indeed, in general,

n! = n · (n −1)!

for all integers n greater than 1, and if we take the value of 0! to be 1,

the equation even holds for n = 1. This serves to completely define

the factorial function. We can take its definition to be given by the two

equations5 5 See Section B.1.1 for more background
on defining mathematical functions by
equations.0! = 1

n! = n · (n −1)! for n > 0

We can implement the factorial function directly from this defini-

tion. The first line of the definition, setting up the name of the function

(fact), its single integer argument (n), and its output type (int) is

straightforward.

let fact (n : int) : int =

...

The body of the function starts by distinguishing the two cases, when n

is zero and when n is positive.

let fact (n : int) : int =

if n = 0 then ...

else ...

The zero case is simple; the output value is 1.

let fact (n : int) : int =

if n = 0 then 1

else ...

The non-zero case involves multiplying n by the factorial of n - 1.

70 P RO G R A M M I N G W E L L

let fact (n : int) : int =

if n = 0 then 1

else n * fact (n - 1) ;;

Let’s try it.

let fact (n : int) : int =

if n = 0 then 1

else n * fact (n - 1) ;;

Line 3, characters 9-13:

3 | else n * fact (n - 1) ;;

^^^^

Error: Unbound value fact

Hint: If this is a recursive definition,

you should add the 'rec' keyword on line 1

There seems to be a problem. Recall from Section 5.5 that the scope

of a let is the body of the let (or the code following a global let),

but not the definition part of the let. Yet we’ve referred to the name

fact in the definition of the fact function. The scope rules for the let

constructs (both local and global) disallow this.

In order to extend the scope of the naming to the definition itself, to

allow a recursive definition, we add the rec keyword after the let.

let rec fact (n : int) : int =

if n = 0 then 1

else n * fact (n - 1) ;;

val fact : int -> int = <fun>

The rec keyword means that the scope of the let includes not only its

body but also its definition part. With this change, the definition goes

through, and in fact, the function works well:

fact 0 ;;

- : int = 1

fact 1 ;;

- : int = 1

fact 4 ;;

- : int = 24

fact 20 ;;

- : int = 2432902008176640000

You may in the past have been admonished against defining some-

thing in terms of itself, such as “comb: an object used to comb one’s

hair; to comb: to run a comb through.” You may therefore find some-

thing mysterious about recursive definitions. How can we make use of

a function in its own definition? We seem to be using it before it’s even

fully defined. Isn’t that problematic?

Of course, recursive definition can be problematic. For instance,

consider this recursive definition of a function to add “just one more”

to a recursive invocation of itself:

F U N C T I O N S 71

let rec just_one_more (x : int) : int =

1 + just_one_more x ;;

val just_one_more : int -> int = <fun>

The definition works just fine, but any attempt to use it fails impres-

sively:

just_one_more 42 ;;

Stack overflow during evaluation (looping recursion?).

The error message “Stack overflow during evaluation (looping recur-

sion?)” gives a hint as to what’s gone wrong; there is indeed a looping

recursion that would go on forever if the computer didn’t run out of

memory (“stack overflow”) first.

A recursion is W E L L F O U N D E D if it eventually “bottoms out” in a

non-recursive computation. Clearly, the recursion in just_one_more

is not well founded and thus not useful. But a recursion that is well

founded can be quite useful.6 In the case of factorial, each recursive 6 In fact, the computer scientist C. A. R.
Hoare in his 1981 Turing Award lecture
described his own introduction to
recursion this way:

Around Easter 1961, a course

on A LG O L 60 was offered in

Brighton, England, with Peter

Naur, Edsger W. Dijkstra, and

Peter Landin as tutors. . . . It

was there that I first learned

about recursive procedures

and saw how to program the

sorting method which I had

earlier found such difficulty

in explaining. It was there

that I wrote the procedure,

immodestly named QU I C K -

S O RT, on which my career

as a computer scientist is

founded. Due credit must

be paid to the genius of the

designers of A LG O L 60 who

included recursion in their

language and enabled me

to describe my invention

so elegantly to the world.

I have regarded it as the

highest goal of programming

language design to enable

good ideas to be elegantly

expressed. (Hoare, 1981)

invocation of fact is given an argument that is one smaller than the

previous invocation, so that eventually an invocation on argument

0 will occur and the recursion will end. Because there are branches

of computation (namely, the first arm of the conditional) without

recursive invocations of fact, and those branches will eventually be

taken, all is well.

But will those branches always be eventually taken? Unfortunately

not.

fact (~-5) ;;

Stack overflow during evaluation (looping recursion?).

This looks familiar. Counting down from any non-negative integer will

eventually get us to zero. But counting down from a negative integer

won’t. We intended the factorial function to apply only to non-negative

integers, the values for which it’s recursion is well founded, but we

didn’t express that intention – the edict of intention again – with this

unfortunate result.

You might think that we could solve this problem with types. In-

stead of specifying the argument as having integer type, perhaps we

could specify it as of non-negative integer type. Unfortunately, OCaml

does not provide for this more fine-grained type, and in any case, other

examples might require different constraints on the type, perhaps odd

integers only, or integers larger than 7, or integers within a certain

range.

Exercise 32

For each of the following cases, define a recursive function of a single argument for
which the recursion is well founded (and the computation terminates) only when the
argument is

72 P RO G R A M M I N G W E L L

1. an odd integer;

2. an integer less than or equal to 5;

3. the integer 0;

4. the truth value true.

OCaml’s type system isn’t expressive enough to capture these fine-

grained distinctions.7 Instead, we’ll have to deal with such anomalous 7 If you are interested in the issue,
you might explore the literature on
D E P E N D E N T T Y P E S Y S T E M S, which
provide this expanded expressivity at
the cost of much more complex type
inference computations.

conditions using different techniques, which will be the subject of

Chapter 10.

Exercise 33

Imagine tiling a floor with square tiles of ever-increasing size, each one abutting the
previous two, as in Figure 6.4. The sides of the tiles grow according to the F I B O N AC C I

S E QU E N C E, in which each number is the sum of the previous two. By convention, the
first two numbers in the sequence are 0 and 1. Thus, the third number in the sequence is
0+1 = 1, the fourth is 1+1 = 2, and so forth.

Figure 6.4: A Fibonacci tiling.

The first 10 numbers in the Fibonacci sequence are
0,1,1,2,3,5,8,13,21,34, . . .

The Fibonacci sequence has connections to many natural phenomena, from the
spiral structure of seashells (as alluded to in the figure) to the arrangement of seeds in a
sunflower to the growth rate of rabbits. It even relates to the golden ratio: the tiled area
depicted in the figure tends toward a golden rectangle (see Exercise 8) as more tiles are
added. (Exercise 172 explores this fact.)

Define a recursive function fib : integer -> integer that given an index into the
Fibonacci sequence returns the integer at that index. For instance,

fib 1 ;;
- : int = 0
fib 2 ;;
- : int = 1
fib 8 ;;
- : int = 13

Exercise 34

Define a function fewer_divisors : int -> int -> bool, which takes two integers,
n and bound, and returns true if n has fewer than bound divisors (including 1 and n). For
example:

fewer_divisors 17 3 ;;
- : bool = true
fewer_divisors 4 3 ;;
- : bool = false
fewer_divisors 4 4 ;;
- : bool = true

Do not worry about zero or negative arguments or divisors. Hint: You may find it useful
to define an auxiliary function to simplify the definition of fewer_divisors.

6.7 Unit testing

Having written some functions, how can we have some assurance

that our code is correct? Best might be a mathematical proof that the

code does what it’s supposed to do. Such a proof would guarantee that

the code generates the appropriate values regardless of what inputs

it is given. This is the domain of F O R M A L V E R I F I C AT I O N of software.

Unfortunately, the difficulty of providing formal specifications that can

be verified, along with the arduousness of carrying out the necessary

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number

F U N C T I O N S 73

proofs, means that this approach to program correctness is used only

in rare circumstances. It is, in any case, beyond the scope of this book.

But if we can’t have a proof that a program generates the appro-

priate values on all input values, perhaps we can at least verify that it

generates the appropriate values on some of them – even better if the

values we verify are representative of a full range of cases. This leads

us to the approach of U N I T T E S T I N G, the systematic evaluation of

code on known inputs, comparing the actual behavior to the intended

behavior.

In this section, we begin the development of a simple unit testing

framework for OCaml, continuing the development in Sections 10.5

and 17.6. We do so not because OCaml lacks a good unit testing tool

of its own; in fact, there are several such full-featured packages, such

as ounit, alcotest, qcheck, ppl_inline_tests, crowbar, bun, and

broken, providing functionality far beyond what we develop in this

running example. Rather, seeing the construction should make clearer

what is going on in such unit testing tools, making their utility clearer.

In addition, the subtle issues that arise provide a nice opportunity to

demonstrate the use of abstractions (exceptions and laziness) that we

introduce later. But we start here using only functions.

Consider the fact function defined above. It exhibits the following

(correct) behavior:

fact 1 ;;

- : int = 1

fact 2 ;;

- : int = 2

fact 5 ;;

- : int = 120

fact 10 ;;

- : int = 3628800

We can describe the correctness conditions for these inputs as a series

of boolean expressions.

fact 1 = 1 ;;

- : bool = true

fact 2 = 2 ;;

- : bool = true

fact 5 = 120 ;;

- : bool = true

fact 10 = 3628800 ;;

- : bool = true

A unit testing function for fact, call it fact_test, verifies that fact

calculates the correct values for representative examples. (Let’s start

with these.) One approach is to simply evaluate each of the conditions

and make sure that they are all true.

74 P RO G R A M M I N G W E L L

let fact_test () =

fact 1 = 1

&& fact 2 = 2

&& fact 5 = 120

&& fact 10 = 3628800 ;;

val fact_test : unit -> bool = <fun>

We run the tests by calling the function:

fact_test () ;;

- : bool = true

If all of the tests pass (as they do in this case), the testing function

returns true. If any test fails, it returns false. Unfortunately, in the

latter case it provides no help in tracking down the tests that fail.

In order to provide information about which tests have failed, we’ll

print an indicative message associated with the test. An auxiliary

function to handle the printing will be helpful:8 8 We’re making use here of two language
constructs that, strictly speaking, belong
in later chapters, as they involve side
effects, computational artifacts that
don’t affect the value expressed: the
sequencing operator (;) discussed in
Section 15.3, and the printf function in
the Printf library module. Side effects
in general are introduced in Chapter 15.

let unit_test (test : bool) (msg : string) : unit =

if test then

Printf.printf "%s passed\n" msg

else

Printf.printf "%s FAILED\n" msg ;;

val unit_test : bool -> string -> unit = <fun>

Now the fact_test function can call unit_test to verify each of the

conditions.

let fact_test () =

unit_test (fact 1 = 1) "fact 1";

unit_test (fact 2 = 2) "fact 2";

unit_test (fact 5 = 120) "fact 5";

unit_test (fact 10 = 3628800) "fact 10" ;;

val fact_test : unit -> unit = <fun>

Running fact_test provides a report on the performance of fact on

each of the unit tests.

fact_test () ;;

fact 1 passed

fact 2 passed

fact 5 passed

fact 10 passed

- : unit = ()

We’ll want to unit test fact as completely as is practicable. We can’t

test every possible input, but we can at least try examples representing

as wide a range of cases as possible. We’re missing an especially impor-

tant case, the base case for the recursion, fact 0. We’ll add a unit test

for that case:

let fact_test () =

unit_test (fact 0 = 1) "fact 0 (base case)";

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Printf.html

F U N C T I O N S 75

unit_test (fact 1 = 1) "fact 1";

unit_test (fact 2 = 2) "fact 2";

unit_test (fact 5 = 120) "fact 5";

unit_test (fact 10 = 3628800) "fact 10" ;;

val fact_test : unit -> unit = <fun>

We haven’t tested the function on negative numbers, and probably

should. But fact as currently written wasn’t intended to handle those

cases. We postpone discussion about unit testing in such cases to

Section 10.5, when we’ll have further tools at hand. (See Exercise 81.)

Testing the hypotenuse function presents further issues. We might

want to check the simple case of the hypotenuse of a unit triangle,

whose hypotenuse ought to be about 1.41421356, as well as the limit-

ing case of a “triangle” with zero-length sides.

let hypotenuse_test () =

unit_test (hypotenuse 0. 0. = 0.) "hyp 0 0";

unit_test (hypotenuse 1. 1. = 1.41421356) "hyp 1 1" ;;

val hypotenuse_test : unit -> unit = <fun>

hypotenuse_test () ;;

hyp 0 0 passed

hyp 1 1 FAILED

- : unit = ()

The test reveals a problem. The unit triangle test has failed, not

because the hypotenuse function is wrong but because the value we’ve

proposed isn’t exactly the floating point number calculated. The float

type has a fixed capacity for representing numbers, and can’t therefore

represent all numbers exactly. The best we can do is check that floating

point calculations are approximately correct, within some tolerance.

Rather than checking the condition as above, instead we can check

that the value is within, say, 0.0001 of the value in the test, a condition

like this:

hypotenuse 1. 1. -. 1.41421356 < 0.0001 ;;

- : bool = true

Instead of writing out these more complex conditions each time

they’re needed, we’ll devise another unit testing function for approxi-

mate floating point calculations:

let unit_test_within (tolerance : float)

(test_value : float)

(expected : float)

(msg : string)

: unit =

unit_test (abs_float (test_value -. expected) < tolerance) msg ;;

val unit_test_within : float -> float -> float -> string -> unit =

<fun>

76 P RO G R A M M I N G W E L L

We can restate the hypotenuse_test function to make use of these

approximate tests. (We’ve added a few more for other conditions.)

let hypotenuse_test () =

unit_test_within 0.0001 (hypotenuse 0. 0.) 0. "hyp 0 0";

unit_test_within 0.0001 (hypotenuse 1. 1.) 1.4142 "hyp 1 1";

unit_test_within 0.0001 (hypotenuse ~-.1. 1.) 1.4142 "hyp -1 1";

unit_test_within 0.0001 (hypotenuse 2. 2.) 2.8284 "hyp 2 2" ;;

val hypotenuse_test : unit -> unit = <fun>

Calling the function demonstrates that all of the calculations hold

within the required tolerance.

hypotenuse_test () ;;

hyp 0 0 passed

hyp 1 1 passed

hyp -1 1 passed

hyp 2 2 passed

- : unit = ()

We’ll return to the question of unit testing in Sections 10.5 and 17.6,

when we have more advanced tools to use.

6.8 Supplementary material

• Lab 1: Basic functional programming

• Problem set A.1: The prisoners’ dilemma

http://url.cs51.io/lab1

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

