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Structured data and composite types

The kinds of data that we’ve introduced so far have been unstructured.

The values are separate atoms,1 discrete undecomposable units. Each 1 The term “atom” is used here in its
sense from Democritus and other clas-
sical philosophers, the indivisible units
making up the physical universe. Now,
of course, we know that though chemi-
cal elements are made of atoms, those
atoms themselves have substructure
and are not indivisible. Unlike the phys-
ical world, the world of discrete data can
be well thought of as being built from
indivisible atoms.

integer is separate and atomic, each floating point number, each truth

value. But the power of data comes from the ability to build new data

from old by putting together data structures.

In this chapter, we’ll introduce three quite general ways built into

OCaml to structure data: tuples, lists, and records. For each such way,

we describe how to construct structures from their parts using value

constructors; what the associated type of the structures is and how to

construct a type expression for them using type constructors; and how

to decompose the structures into their component parts using pattern-

matching. (We turn to methods for generating your own composite

data structures in Chapter 11.) We start with tuples.

7.1 Tuples

The first structured data type is the T U P L E, a fixed length sequence

of elements. The smallest tuples are pairs, containing two elements,

then triples, quadruples, quintuples, sextuples, septuples, and so forth.

(The etymology of the term “tuple” derives from this semi-productive

suffix.)

In OCaml, a tuple value is formed using the VA LU E C O N S T RU C TO R

for tuples, an infix comma. A pair containing the integer 3 and the

truth value true, for instance, is given by 3, true. The order is crucial;

the pair true, 3 is a different pair entirely. (Indeed, as we will see,

these two pairs are not even of the same type.)

The type of a pair is determined by the types of its parts. We name

the type by forming a type expression giving the types of the parts

combined using the infix T Y P E C O N S T RU C TO R *, read “cross” (for

“cross product”). For instance, the pair 3, true is of type int * bool

(read, “int cross bool”).

https://url.cs51.io/s9o
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Exercise 35

What are the types for the following pair expressions?

1. false, 5

2. false, true

3. 3, 5

4. 3.0, 5

5. 5.0, 3

6. 5, 3

7. succ, pred

Triples are formed similarly. A triple of the elements 1, 2, and

"three" would be 1, 2, "three"; its type is int * int * string.

This triple should not be confused with the pair consisting of the inte-

ger 1 and the int * string pair 2, "three". Such a pair containing

a pair is also constructable, as 1, (2, "three"), and is of type int *
(int * string). The parentheses in both the value expression and

the type expression make clear that this datum is structured as a pair,

not a triple.

Exercise 36

Construct a value for each of the following types.

1. bool * bool

2. bool * int * float

3. (bool * int) * float

4. (int * int) * int * int

5. (int -> int) * int * int

6. (int -> int) * int -> int

Exercise 37

Integer division leaves a remainder. It is sometimes useful to calculate both the result of
the quotient and the remainder. Define a function div_mod : int -> int -> (int *
int) that takes two integers and returns a pair of their quotient and the remainder. For
instance,

# div_mod 40 20 ;;
- : int * int = (2, 0)
# div_mod 40 13 ;;
- : int * int = (3, 1)
# div_mod 0 12 ;;
- : int * int = (0, 0)

Using this technique of returning a pair, we can get the effect of a function that returns
multiple values.

Exercise 38

In Exercise 31, you are asked to implement the computus to calculate the month and
day of Easter for a given year by defining two functions, one for the day and one for the
year. A more natural approach is to define a single function that returns both the month
and the day. Use the technique from Exercise 37 to implement a single function for
computus.
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7.2 Pattern matching for decomposing data structures

The value constructor is used to construct composite values from

parts. How can we do the inverse, extracting the parts from the com-

posite structure? Perhaps surprisingly, we make use of the value con-

structor for this purpose as well, by matching a template pattern con-

taining the constructor against the structure being decomposed. The

match construction is used to perform this matching and decomposi-

tion. The general form of a match is2 2 The . . . in this BNF rule is intended to
indicate that there may be any number
of such pattern-expression pairs in the
construct. We’ll leave this addition to
the BNF notation as informal, though
precide formulations of the idea can be
constructed.

On a stylistic point, the first vertical
bar in match constructs is, strictly
speaking, optional. We uniformly use
it for consistency of demarcating the
patterns appearing on consecutive
lines, as discussed in Section C.1.7.

〈expr〉 ::= match 〈exprvalue〉 with
| 〈pattern1〉 -> 〈expr1〉
| 〈pattern2〉 -> 〈expr2〉
. . .

Without going into a formal BNF definition of 〈pattern〉 phrases, they

are essentially expressions constructed only of variables, and value

constructors (including literals like true or []). The structured value

given by 〈exprvalue〉 is pattern-matched against each of the patterns

〈pattern1〉, 〈pattern2〉, and so on, in that order. Whichever pattern

matches first, the variables therein name the corresponding parts

of the 〈exprvalue〉 being matched against. The corresponding 〈expri〉,
which may use the variables just bound by the 〈patterni〉, is evaluated

to provide the value of the match construction as a whole. The vari-

ables in a 〈patterni〉 are newly introduced names, just like those in let

and fun expressions, and like those variables, they also have a scope,

namely, the corresponding 〈expri〉.

Figure 7.1: Computer scientist Marianne
Baudinet’s (1985) work with David
MacQueen on compiling ML-style
pattern matching constructs to efficient
matching code proved to be the break-
through that made the extensive use of
pattern matching in ML-style languages
practical.

For example, suppose we want to add the integers in an integer pair.

We need to extract the integers in order to operate on them. Here is a

function that extracts the two parts of the pair and returns their sum.

# let addpair (pair : int * int) : int =

# match pair with

# | x, y -> x + y ;;

val addpair : int * int -> int = <fun>

# addpair (3, 4) ;;

- : int = 7

In the pattern x, y, the variables x and y are names that can be used

for the two components of the pair, as they have been in the expression

x + y. There is nothing special about the names x and y; any variables

could be used.

The match used here is especially simple in having just a single

pattern/result pair. Only one is needed because there is only one value

constructor for pairs. We’ll shortly see examples where more than one

pattern is used.
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Notice how the match construction allows us to deconstruct a struc-

tured datum into its component parts simply by matching against

a template that uses the very same value constructor that is used to

build such data in the first place. This method for decomposition is

extremely general. It allows extracting the component parts from arbi-

trarily structured data.

You might think, for instance, that it would be useful to have a

function that directly extracts the first or second element of a pair. But

these can be written in terms of the match construct.3 3 The functions fst and snd are avail-
able as part of the Stdlib module, but
it’s useful to see how they can be writ-
ten in terms of the core of the OCaml
language.

# let fst (pair : int * int) : int =

# match pair with

# | x, y -> x ;;

Line 3, characters 5-6:

3 | | x, y -> x ;;

^

Warning 27 [unused-var-strict]: unused variable y.

val fst : int * int -> int = <fun>

# fst (3, 4) ;;

- : int = 3

The warning message arises because the variable y appears in the

pattern, but is never used in the corresponding action. Often this is a

sign that something is awry in one’s code: Why would you establish a

variable only to ignore its value? For that reason, this warning message

can be quite useful in catching subtle bugs. But in cases like this, where

the value of the variable really is irrelevant, the warning is misleading.

To eliminate it, an A N O N Y M O U S VA R I A B L E – a variable starting with

the underscore character – can be used instead. This codifies the

programmer’s intention that the variable not be used, and disables the

warning message. This is a good example of the edict of intention: by

clearly and uniformly expressing our intention not to use a variable,

the language interpreter can help find latent bugs where we intended

to use a variable but did not (as when a variable name is misspelled).

# let fst (pair : int * int) : int =

# match pair with

# | x, _y -> x ;;

val fst : int * int -> int = <fun>

# fst (3, 4) ;;

- : int = 3

Exercise 39

Define an analogous function snd : int * int -> int that extracts the second
element of an integer pair. For instance,

# snd (3, 4) ;;
- : int = 4

As another example, consider the problem of calculating the dis-

tance between two points, where the points are given as pairs of
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floats. First, we need to extract the coordinates in each dimension

by pattern matching:

let distance p1 p2 =

match p1 with

| x1, y1 ->

match p2 with

| x2, y2 -> ...calculate the distance... ;;

Rather than use two separate pattern matches, one for each argument,

we can perform both matches at once using a pattern that matches

against the pair of points p1, p2.

let distance p1 p2 =

match p1, p2 with

| (x1, y1), (x2, y2) -> ...calculate the distance... ;;

Once the separate components of the points are in hand, the distance

can be calculated:

# let distance p1 p2 =

# match p1, p2 with

# | (x1, y1), (x2, y2) ->

# sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

val distance : float * float -> float * float -> float = <fun>

The ability to pattern match to extract and name data components

is so useful that OCaml provides syntactic sugar to integrate it into

other binding constructs, such as the let and fun constructs. In cases

where there is only a single pattern to be matched (as in the examples

above), the matching can be performed directly in the let. That is, an

expression of the form

let 〈var〉 = 〈expr〉 in

match 〈var〉 with

| 〈pattern1〉 -> 〈expr1〉
can be “sugared” to4 4 Anonymous functions can benefit

from this syntactic sugar as well, for
instance, as in

# (fun (x, y) -> x + y) (3, 4) ;;

- : int = 7

let 〈pattern1〉 = 〈expr〉 in

〈expr1〉
Using this sugared form further simplifies the distance function.

let distance p1 p2 =

let (x1, y1), (x2, y2) = p1, p2 in

sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

Finally, pattern matching can even be used in global let constructs,

to further simplify.

# let distance (x1, y1) (x2, y2) =

# sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

val distance : float * float -> float * float -> float = <fun>

# distance (1., 1.) (2., 2.) ;;

- : float = 1.41421356237309515



82 P RO G R A M M I N G W E L L

As usual, it is useful to add typings in the global definition to make

clear the intended types of the arguments and the result:5 5 This example provides a good oppor-
tunity to mention that for readability
code lines should be kept short. We
use a convention described in the style
guide (Section C.3.4) for breaking up
long function definition introductions.

# let distance (x1, y1 : float * float)

# (x2, y2 : float * float)

# : float =

# sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

val distance : float * float -> float * float -> float = <fun>

# distance (1., 1.) (2., 2.) ;;

- : float = 1.41421356237309515

Exercise 40

Simplify the definitions of addpair and fst above by taking advantage of this syntactic
sugar.

Using this shorthand can make code much more readable, and

is thus recommended. See the style guide (Section C.4.2) for further

discussion.

Exercise 41

Define a function slope : float * float -> float * float -> float that returns
the slope between two points.

7.2.1 Advanced pattern matching

It’s not only composite types that can be the object of pattern match-

ing. Patterns can match particular values of atomic types as well, such

as int or bool. One could, for instance, write

# let int_of_bool (cond : bool) : int =

# match cond with

# | true -> 1

# | false -> 0 ;;

val int_of_bool : bool -> int = <fun>

# int_of_bool true ;;

- : int = 1

# int_of_bool false ;;

- : int = 0

For booleans, however, the use of a conditional is considered a better

approach:6 6 Using cond = true as the test part
of the conditional is redundant and
stylistically poor. See Section C.5.2.# let int_of_bool (cond : bool) : int =

# if cond then 1 else 0 ;;

val int_of_bool : bool -> int = <fun>

Integers can also be matched against:

# let is_small_int (x : int) : bool =

# match abs x with

# | 0 -> true

# | 1 -> true
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# | 2 -> true

# | _ -> false ;;

val is_small_int : int -> bool = <fun>

# is_small_int ~-1 ;;

- : bool = true

# is_small_int 2 ;;

- : bool = true

# is_small_int 7 ;;

- : bool = false

Notice here the use of an anonymous variable _ as a W I L D - C A R D

pattern that matches any value.

In the is_small_int function, the same result is appropriate for

multiple patterns. Rather, than repeat the result expression in each

case, multiple patterns can be associated with a single result, by listing

the patterns interspersed with vertical bars (|).

# let is_small_int (x : int) : bool =

# match abs x with

# | 0 | 1 | 2 -> true

# | _ -> false ;;

val is_small_int : int -> bool = <fun>

7.3 Lists

Tuples are used for packaging together fixed-length sequences of

elements of perhaps differing type. L I S T S, conversely, are used for

packaging together varied-length sequences of elements all of the same

type. The type constructor list for lists thus operates on a single type,

the type of the list elements, and is written in P O S T F I X position – that

is, following its argument. For instance, the type corresponding to a list

of integers is given by the type expression int list, a list of booleans

as bool list, a list of coordinates (pairs of floats, say) as (float *
float) list.

There are two value constructors for lists. The first value con-

structor, written [] and conventionally read as “N I L”, specifies the

empty list, that is, the list containing no elements at all. The second

value constructor, written with an infix :: and conventionally read

as “C O N S”,7 takes two arguments – a first element and a further list of 7 The term “cons” for this constructor
derives from the cons function in one
of the earliest and most influential
functional programming languages,
Lisp. It reflects the idea of constructing a
list by adding a new element.

elements – and specifies the list whose first element is its first argu-

ment and whose remaining elements are the second. (The two parts

of a non-empty list, the first element and the remaining elements, are

called the H E A D and the TA I L of the list, respectively.)

Suppose we want a list of integers containing just the integer 4.

Such a list can be constructed by starting with the empty list [], and

“consing” 4 to it as 4 :: []. The list containing, in sequence, 2 and 4
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is constructed by consing 2 onto the list containing 4, that is, 2 :: (4

:: []). The list of the integers 1, 2, and 4 is analogously 1 :: (2 ::

(4 :: [])).

As usual, some notational cleanup is in order. First, we can take

advantage of the fact that the :: operator is right associative, so that

the parentheses in the lists above are not needed. We can simply write

1 :: 2 :: 4 :: []. Second, OCaml provides a more familiar alterna-

tive notation – more sugar – for lists, writing the elements of the list in

order within brackets and separated by semicolons, as [1; 2; 4]. We

can think of all of these as alternative concrete syntaxes for the same

underlying abstract syntax, given by

::

::

::

[]4

2

1

You can verify the equivalence of these notations by entering them into

OCaml:

# 1 :: (2 :: (4 :: [])) ;;

- : int list = [1; 2; 4]

# 1 :: 2 :: 4 :: [] ;;

- : int list = [1; 2; 4]

# [1; 2; 4] ;;

- : int list = [1; 2; 4]

Notice that in all three cases, OCaml provides the inferred type int

list and reports the value using the sugared list notation.8 8 The list containing elements, say, 1
and 2 – written [1; 2] – should not
be confused with the pair of those
same elements – written (1, 2). The
concrete syntactic differences may
be subtle (semicolon versus comma;
brackets versus parentheses) but their
respective types make the distinction
quite clear.

Exercise 42

Which of the following expressions are well-formed, and for those that are, what are their
types and how would their values be written using the sugared notation?

1. 3 :: []

2. true :: false

3. true :: [false]

4. [true] :: [false]

5. [1; 2; 3.1416]

6. [4; 2; -1; 1_000_000]

7. ([true], false)

Using the :: and bracketing notations, we can construct lists from

their elements. How can we extract those elements from lists? As al-

ways in OCaml, decomposing structured data is done with pattern-

matching; no new constructs are needed. We’ll see examples shortly.
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7.3.1 Some useful list functions

To provide some intuition with list processing, we’ll construct a few

useful functions, starting with a function to determine if an integer list

is empty or not. We start with considering the type of the function. Its

argument should be an integer list (of type int list) and its result a

truth value (of type bool), so the type of the function itself is int list

-> bool. This type information is just what we need in order to write

the first line of the function definition, naming the function’s argument

and incorporating the typing information:

let is_empty (lst : int list) : bool = ...

Now we need to determine whether lst is empty or not, that is, what

value constructor was used to construct it. We can do so by pattern

matching lst against a series of patterns. Since lists have only two

value constructors, two patterns will be sufficient.

let is_empty (lst : int list) : bool =

match lst with

| [] -> ...

| head :: tail -> ...

What should we do in these two cases? In the first case, we can con-

clude that lst is empty, and hence, the value of the function should

be true. In the second case, lst must have at least one element (now

named head by the pattern match), and is thus non-empty; the value

of the function should be false.9

9 We’ve used alignment of the arrows
in the pattern match to emphasize the
parallelism between these two cases.
See the discussion in the style guide
(Section C.1.7) for differing views on this
practice.

# let is_empty (lst : int list) : bool =

# match lst with

# | [] -> true

# | head :: tail -> false ;;

Line 4, characters 2-6:

4 | | head :: tail -> false ;;

^^^^

Warning 27 [unused-var-strict]: unused variable head.

Line 4, characters 10-14:

4 | | head :: tail -> false ;;

^^^^

Warning 27 [unused-var-strict]: unused variable tail.

val is_empty : int list -> bool = <fun>

Since neither head nor tail are used in the second pattern match,

they should be made anonymous variables to codify that intention

(and avoid a warning message).10

10 The “wild card” anonymous variable
_ is special in not serving as a name
that can be later referred to, and is thus
allowed to be used more than once in a
pattern.

# let is_empty (lst : int list) : bool =

# match lst with

# | [] -> true

# | _ :: _ -> false ;;

val is_empty : int list -> bool = <fun>
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# is_empty [] ;;

- : bool = true

# is_empty [1; 2; 3] ;;

- : bool = false

# is_empty (4 :: []) ;;

- : bool = false

Sure enough, the function works well on the test cases.

Let’s try another example: calculating the L E N G T H of a list, the

count of its elements. We use the same approach, starting with the

type of the function. The argument is an int list as before, but the

result type is an int providing the count of the elements; overall, the

function is of type int list -> int. The type of the function in

hand, the first line writes itself.

let length (lst : int list) : int = ...

And again, a pattern match on the sole argument is a natural first step

to decide how to proceed in the calculation.

let length (lst : int list) : int =

match lst with

| [] -> ...

| hd :: tl -> ...

In the first match case, the list is empty; hence its length is 0.

let length (lst : int list) : int =

match lst with

| [] -> 0

| hd :: tl -> ...

The second case is more subtle, however. The length must be at

least 1 (since the list at least has the single element hd). But the length

of the list overall depends on tl, and in particular, the length of tl. If

only we had a method for calculating the length of tl.

But we do; the length function itself can be used for this purpose!

Indeed, the whole point of length is to calculate lengths of int lists

like tl. We can call length recursively on tl, and add 1 to the result to

calculate the length of the full list lst. 11

11 As with the definition of the recursive
factorial function in Section 6.6, the
well-founded basis of this recursive
definition depends on the recursive
calls heading in the direction of the base
case. In this case, the recursive applica-
tion of the function is to a smaller data
structure, the tail of the original argu-
ment, and all further applications will
similarly be to smaller and smaller data
structures. This process can’t continue
indefinitely. Inevitably, it will bottom
out in application to the empty list, at
which point the computation is non-
recursive and terminates. Recursive
computation may seem a bit magical
when you first confront it, but over time
it becomes a powerful tool natural to
deploy.

# let rec length (lst : int list) : int =

# match lst with

# | [] -> 0

# | _hd :: tl -> 1 + length tl ;;

val length : int list -> int = <fun>

(We’ve made _hd an anonymous variable for the same reasons as

above, and also inserted the rec keyword to allow the recursive refer-

ence to length within the definition.)

We can test the function on a few examples to demonstrate it.
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# length [1; 2; 4] ;;

- : int = 3

# length [] ;;

- : int = 0

# length [[1; 2; 4]] ;;

Line 1, characters 8-17:

1 | length [[1; 2; 4]] ;;

^^^^^^^^^

Error: This expression has type 'a list

but an expression was expected of type int

Exercise 43

Why does this last example cause an error, given that its input is a list of length one?
Chapter 9 addresses this problem more thoroughly.

As a final example, we’ll implement a function that, given a list of

pairs of integers, returns the list of products of the pairs. For example,

the following behaviors should hold.

# prods [2,3; 4,5; 0,10] ;;

- : int list = [6; 20; 0]

# prods [] ;;

- : int list = []

By now the process should be familiar. Start with the type of the

function: (int * int) list -> int list. Use the type to write the

function introduction:

let rec prods (lst : (int * int) list) : int list = ...

Use pattern-matching to decompose the argument:

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> ...

| hd :: tl -> ...

In the first pattern match, the list is empty; we should thus return the

empty list of products.

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> []

| hd :: tl -> ...

Finally, we get to the tricky bit. If the list is nonempty, the head will be

a pair of integers, which we’ll want access to. We could pattern match

against hd to extract the parts:

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> []

| hd :: tl ->

match hd with

| (x, y) -> ...
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but it’s simpler to fold that pattern match into the list pattern match

itself:

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> []

| (x, y) :: tl -> ...

Now, the result in the second pattern match should be a list of integers,

the first of which is x * y and the remaining elements of which are the

products of the pairs in tl. The latter can be computed recursively as

prods tl. (It’s a good thing we thought ahead to use the rec keyword.)

Finally, the list whose first element is x * y and whose remaining

elements are prods tl can be constructed as x * y :: prods tl.

# let rec prods (lst : (int * int) list) : int list =

# match lst with

# | [] -> []

# | (x, y) :: tl -> x * y :: prods tl ;;

val prods : (int * int) list -> int list = <fun>

# prods [2,3; 4,5; 0,10] ;;

- : int list = [6; 20; 0]

# prods [] ;;

- : int list = []

You’ll have noticed a common pattern to writing these functions,

one that is widely applicable.

1. Write down some examples of the function’s use.

2. Write down the type of the function.

3. Write down the first line of the function definition, based on the

type of the function, which provides the argument and result types.

4. Using information about the argument types, decompose one or

more of the arguments.

5. Solve each of the subcases, paying attention to the types, and using

recursion where appropriate, to construct the output value.

6. Test the examples from Step 1.

Using this S T RU C T U R E - D R I V E N P RO G R A M M I N G pattern can make

it so that simple functions of this sort almost write themselves. No-

tice the importance of types in the process. The types constrain so

many aspects of the function that they provide a guide to writing the

function itself.

Exercise 44

Define a function sum : int list -> int that computes the sum of the integers in its
list argument.
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# sum [1; 2; 4; 8] ;;
- : int = 15

What should this function return when applied to the empty list?

Exercise 45

Define a function prod : int list -> int that computes the product of the integers
in its list argument.

# prod [1; 2; 4; 8] ;;
- : int = 64

What should this function return when applied to the empty list?

Exercise 46

Define a function sums : (int * int) list -> int list, analogous to prods

above, which computes the list each of whose elements is the sum of the elements of the
corresponding pair of integers in the argument list. For example,

# sums [2,3; 4,5; 0,10] ;;
- : int list = [5; 9; 10]
# sums [] ;;
- : int list = []

Exercise 47

Define a function inc_all : int list -> int list, which increments all of the
elements in a list.

# inc_all [1; 2; 4; 8] ;;
- : int list = [2; 3; 5; 9]

Exercise 48

Define a function square_all : int list -> int list, which squares all of the
elements in a list.

# square_all [1; 2; 4; 8] ;;
- : int list = [1; 4; 16; 64]

Exercise 49

Define a function append : int list -> int list -> int list to append two
integer lists. Some examples:

# append [1; 2; 3] [4; 5; 6] ;;
- : int list = [1; 2; 3; 4; 5; 6]
# append [] [4; 5; 6] ;;
- : int list = [4; 5; 6]
# append [1; 2; 3] [] ;;
- : int list = [1; 2; 3]

Exercise 50

Define a function concat : string -> string list -> string, which takes a
string sep and a string list lst, and returns one string with all the elements of lst
concatenated together but separated by the string sep.12 Some examples: 12 The OCaml library module String

already provides just this function under
the same name.

# concat ", " ["first"; "second"; "third"] ;;
- : string = "first, second, third"
# concat "..." ["Moo"; "Baa"; "Lalala"] ;;
- : string = "Moo...Baa...Lalala"
# concat ", " [] ;;
- : string = ""
# concat ", " ["Moo"] ;;
- : string = "Moo"

We’ve gone through the valuable exercise of writing a bunch of

useful list functions. But list processing is so ubiquitous that OCaml

provides a library module for just such functions. We’ll discuss the

List module further in Section 9.4.
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7.4 Records

Tuples and lists use the order within a sequence to individuate their

elements. An alternative, the R E C O R D, names the elements, providing

each with a unique label. The type constructor specifies the labels and

the type of element associated with each. For instance, suppose we’d

like to store information about people: first and last name and year of

birth. An appropriate record type would be

{lastname : string; firstname : string; birthyear : int}

Each of the elements in a record is referred to as a F I E L D. Since the

fields are individuated by their label, the order in which they occur is

immaterial; the same type could have been specified reordering the

fields as

{firstname : string; birthyear : int; lastname : string}

with no difference (except perhaps to add a bit of confusion to a reader

expecting a more systematic ordering).

Unlike lists and tuples, which are built-in types in OCaml, particular

record types are user-defined. OCaml needs to know about the type –

its fields, their labels and types – in order to make use of them. Records

are the first of the user-defined types we’ll explore in detail in Chap-

ter 11. To define a new type, we use the type construction to give the

type a name:13 13 The 〈definition〉 phrase type was
introduced in footnote 4.

〈definition〉 ::= type 〈typename〉 = 〈typeexpr〉

We might give the type above the name person:

# type person = {lastname : string;

# firstname : string;

# birthyear : int} ;;

type person = { lastname : string; firstname : string; birthyear :

int; }

Now that the type is defined and OCaml is aware of its fields’ labels

and types, we can start constructing values of that type. To construct a

record value, we use the strikingly similar notation of placing the fields,

separated by semicolons, within braces. In record value expressions,

the label of a field is separated from its value by an =.14 We define a

14 A common confusion when first using
record types concerns when to use :
and when to use = within fields. Here’s a
way to think about the usages: The use
of : in record type expressions evokes
the use of : in a typing. In a sense, the
type constructor provides a typing for
each of the fields. The use of = in record
value expressions evokes the use of = in
naming constructs.

value of the record type above:

# let ac =

# {firstname = "Alonzo";

# lastname = "Church";

# birthyear = 1903} ;;

val ac : person =

{lastname = "Church"; firstname = "Alonzo"; birthyear = 1903}



S T RU C T U R E D D ATA A N D C O M P O S I T E T Y P E S 91

Notice that the type inferred for ac is person, the defined name for the

record type.

As usual, we use pattern matching to decompose a record into its

constituent parts. A simple example decomposes the ac value just

created to extract the birth year.

# match ac with

# | {lastname = _lname;

# firstname = _fname;

# birthyear = byear} -> byear ;;

- : int = 1903

We can define a function that takes a value of type person and

returns the person’s full name as a single string by extracting and con-

catenating the first and last names.

# let fullname (p : person) : string =

# match p with

# | {firstname = fname;

# lastname = lname;

# birthyear = _byear} ->

# fname ^ " " ^ lname ;;

val fullname : person -> string = <fun>

This function can be used to generate the full name:

# fullname ac ;;

- : string = "Alonzo Church"

It’s a bit cumbersome to have to mention every field in a record

pattern match when we are interested in only a subset of the fields.

Fortunately, patterns need only specify a subset of the fields, using the

notation _ to stand for any remaining fields.15 15 In fact, the _ notation isn’t necessary,
but it performs the useful role of
capturing the programmer’s intention
that the set of fields is not complete.
In fact, OCaml will provide a warning
(when properly set up) if an incomplete
record match isn’t marked with this
notation.

let fullname (p : person) : string =

match p with

| {firstname = fname; lastname = lname; _} ->

fname ^ " " ^ lname ;;

Another simplification in record patterns, called F I E L D P U N N I N G,

is allowed for fields in which the label and the variable name are iden-

tical. In that case, the label alone is all that is required. We can use field

punning to simplify fullname:

let fullname (p : person) : string =

match p with

| {firstname; lastname; _} ->

firstname ^ " " ^ lastname ;;

As a final simplification, the syntactic sugar allowing single-pattern

matches in let constructs allows us to eliminate the explicit match

entirely:
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# let fullname ({firstname; lastname; _} : person) : string =

# firstname ^ " " ^ lastname ;;

val fullname : person -> string = <fun>

# fullname ac ;;

- : string = "Alonzo Church"

7.4.1 Field selection

Pattern matching permits extracting the values of all of the fields of a

record (or any subset). When only one field value is needed, however, a

more succinct technique suffices. The familiar dot notation from many

programming languages allows selection of a single field.

# ac.firstname ;;

- : string = "Alonzo"

# ac.birthyear ;;

- : int = 1903

Thus, the fullname function could have been written as

# let fullname (p : person) : string =

# p.firstname ^ " " ^ p.lastname ;;

val fullname : person -> string = <fun>

# fullname ac ;;

- : string = "Alonzo Church"

Which notation to use is again a design matter, which will depend

on the individual case.

7.5 Comparative summary

These three data structuring mechanisms provide three different ap-

proaches to the same idea – agglomerating a collection of elements

into a single unit. The differences arise in how the elements are indi-

viduated. In tuples and lists, an element is individuated by its index

in an ordered collection. In records, an element is individuated by its

label in a labeled but unordered collection.

Tuples and records collect a fixed number of elements. Because

the number of elements is fixed, they can be of differing type. The

type of the tuple or record indicates what type each element has. Lists,

on the other hand, collect an arbitrary number of elements. In order

to be able to operate on any arbitrary element, the types of all the

elements must be indicated in the type of the list itself. This constraint

is facilitated by having all elements have the same type, so that they

can be operated on uniformly.

Table 7.1 provides a summary of the differing structuring mecha-

nisms.
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Tuples Records Lists

element types differing differing uniform

selected by order label order

type constructors 〈〉 * 〈〉 〈〉 * 〈〉 * 〈〉 · · · {a : 〈〉 ; b : 〈〉 ; c : 〈〉 ; ...} 〈〉 list
value constructors 〈〉 , 〈〉 〈〉 , 〈〉 , 〈〉 · · · {a = 〈〉 ; b = 〈〉 ; c = 〈〉 ; ...} [] 〈〉 :: 〈〉

Table 7.1: Comparison of three structur-
ing mechanisms: tuples, records, and
lists.
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