

8

Higher-order functions and functional programming

We’ve laid the groundwork for programming with functions in Chap-

ter 6, and provided some useful structures for data in Chapter 7, espe-

cially lists. In this chapter we show how higher-order functions serve as

a mechanism to satisfy the edict of irredundancy. By examining some

cases of similar code, we will present the use of higher-order functions

to achieve the abstraction, in so doing presenting some of the most

well known abstractions of higher-order functional programming on

lists – map, fold, and filter.

8.1 The map abstraction

In Exercises 47 and 48, you wrote functions to increment and to square

all of the elements of a list. After solving the first of these exercises with

let rec inc_all (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> (1 + hd) :: (inc_all tl) ;;

val inc_all : int list -> int list = <fun>

you may have thought to cut and paste the solution, modifying it

slightly to solve the second:

let rec square_all (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> (hd * hd) :: (square_all tl) ;;

val square_all : int list -> int list = <fun>

These “apparently dissimilar” pieces of code bear a striking resem-

blance, a result of the cutting and pasting. And to the extent that they

echo the same idea, we’ve written the same code twice, violating the

edict of irredundancy. Can we view them abstractly as “instantiating

an underlying identity”?

The differences between these functions are localized in their last

lines, where they compute the head of the output list from the head

96 P RO G R A M M I N G W E L L

of the input list – in inc_all as 1 + hd, in square_all as hd * hd.

But the redundancies here are not merely the use of different values

(as they were in Section 6.5), but different computations over values.

Do we have a tool to characterize these different computations, what

is done to the head of the input list in each case? Yes, the function! In

inc_all, we are essentially applying the function fun x -> 1 + x

to the head, and in square_all, the function fun x -> x * x. We

can make this clearer by rewriting the two snippets of code as explicit

applications of a function.

let rec inc_all (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> (fun x -> 1 + x) hd :: (inc_all tl) ;;

let rec square_all (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> (fun x -> x * x) hd :: (square_all tl) ;;

Now, we can take advantage of the fact that in OCaml functions

are first-class values, which can be used as arguments or outputs of

functions, to construct a single function that performs this general

task of applying a function, call it f, to each element of a list. We add f

as a new argument and replace the different functions being applied

to hd with this f. Historically, this abstract pattern of computation –

performing an operation on all elements of a list – is called a M A P. We

capture it in a function named map that abstracts both inc_all and

square_all.

let rec map (f : int -> int) (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> f hd :: (map f tl) ;;

val map : (int -> int) -> int list -> int list = <fun>

The map function takes two arguments (curried), the first of which

is itself a function, to be applied to all elements of its second integer

list argument. Its type is thus (int -> int) -> int list -> int

list. With map in hand, we can perform the equivalent of inc_all and

square_all directly.

map (fun x -> 1 + x) [1; 2; 4; 8] ;;

- : int list = [2; 3; 5; 9]

map (fun x -> x * x) [1; 2; 4; 8] ;;

- : int list = [1; 4; 16; 64]

In fact, map can even be used to define the functions inc_all and

square_all.

H I G H E R- O R D E R F U N C T I O N S A N D F U N C T I O N A L P RO G R A M M I N G 97

let inc_all (xs : int list) : int list =

map (fun x -> 1 + x) xs ;;

val inc_all : int list -> int list = <fun>

let square_all (xs : int list) : int list =

map (fun x -> x * x) xs ;;

val square_all : int list -> int list = <fun>

These definitions of inc_all and square_all don’t suffer from the

violation of the edict of irredundancy exhibited by our earlier ones.

By abstracting out the differences in those functions and capturing

them in a single higher-order function map, we’ve simplified each of the

definitions considerably.

But making full use of higher-order functions as an abstraction

mechanism allows even further simplification, via partial application.

8.2 Partial application

Although we traditionally think of functions as being able to take

more than one argument, in OCaml functions always take exactly one

argument. Here, for instance, is the power function, which appears to

take two arguments, an exponent n and a base x, and returns xn :1 1 In general, it’s good practice to provide
typing information in the header of a
function. In this section and the rest
of the chapter, however, we leave off
types in the headers so as to emphasize
the structural relationships among
the various versions of the functions
we discuss. The typings would be
distracting from the point being made.

let rec power (n, x) =

if n = 0 then 1

else x * power ((n - 1), x) ;;

val power : int * int -> int = <fun>

power (3, 4) ;;

- : int = 64

Though it appears to be a function of two arguments, “desugaring”

makes clear that there is really only one argument. First, we desugar

the let:

let rec power =

fun (n, x) ->

if n = 0 then 1

else x * power ((n - 1), x) ;;

and then desugar the pattern match in the fun:

let rec power =

fun arg ->

match arg with

| (n, x) -> if n = 0 then 1

else x * power ((n - 1), x) ;;

demonstrating that all along, power was a function (defined with fun)

of one argument (now called arg).

How about this definition of power?

let rec power n x =

if n = 0 then 1

98 P RO G R A M M I N G W E L L

else x * power (n - 1) x ;;

val power : int -> int -> int = <fun>

power 3 4 ;;

- : int = 64

Again, desugaring reveals that all of the functions in the definition take

a single argument.

let rec power =

fun n ->

fun x ->

if n = 0 then 1

else x * power (n - 1) x ;;

As described in Section 6.2, we use the term “currying” for encoding

a multi-argument function using nested, higher-order functions,

as this latter definition of power. In OCaml, we tend to use curried

functions, rather than uncurried definitions like the first definition of

power above; the whole language is set up to make that easy to do.

We can use the power function to define a function to cube num-

bers (take numbers to the third power):

let cube x = power 3 x ;;

val cube : int -> int = <fun>

cube 4 ;;

- : int = 64

But since power is curried, we can define the cube function even more

simply, by applying the power function to its “first” argument only.

let cube = power 3 ;;

val cube : int -> int = <fun>

cube 4 ;;

- : int = 64

A perennial source of confusion is that in this definition of the cube

function by partial application, no overt argument of the function

appears in its definition. There’s no let cube x = ... here. The

expression power 3 is already a function (of type int -> int). It is the

cubing function, not just the result of applying the cubing function.

This is PA RT I A L A P P L I C AT I O N: the applying of a curried function

to only some of its arguments, resulting in a function that takes the

remaining arguments.

The order in which a curried function takes its arguments thus

becomes an important design consideration, as it determines what

partial applications are possible. With partial application at hand, we

can define other functions for powers of numbers. Here’s a version of

square:

let square = power 2 ;;

val square : int -> int = <fun>

H I G H E R- O R D E R F U N C T I O N S A N D F U N C T I O N A L P RO G R A M M I N G 99

square 4 ;;

- : int = 16

Understanding what’s going on in these examples is a good indica-

tion that you “get” higher-order functional programming. So we pause

for a little practice with partial application.

Exercise 51

A T E S S E R AC T is the four-dimensional analog of a cube, so fourth powers of numbers are
sometimes referred to as T E S S E R AC T I C N U M B E R S. Use the power function to define a
function tesseract that takes its integer argument to the fourth power.

Now, map is itself a curried function and therefore can itself be par-

tially applied to its first argument. It takes its function argument and

its list argument one at a time. Applying it only to its first argument

generates a function that applies that argument function to all of the

elements of a list. We can partially apply map to the successor function

to generate the inc_all function we had before.

let inc_all = map (fun x -> 1 + x) ;;

val inc_all : int list -> int list = <fun>

But there are even further opportunities for partial application.2 2 � Partial application takes full advan-
tage of the first-class nature of functions
to enable compact and elegant def-
initions of functions. However, you
should be aware that it does make type
inference more difficult in the pres-
ence of polymorphism, an advanced
topic discussed in Section 9.6 for the
adventurous.

The addition function (+) itself is curried, as we noted in Section 6.2.

It can thus be partially applied to one argument to form the successor

function: (+) 1. (Recall the use of parentheses around the + operator

in order to allow it to be used as a normal prefix function.) Notice

how the types work out: Both fun x -> 1 + x and (+) 1 have the

same type, namely, int -> int. So the definition of inc_all can be

expressed simply is as

let inc_all = map ((+) 1) ;;

val inc_all : int list -> int list = <fun>

inc_all [1; 2; 4; 8] ;;

- : int list = [2; 3; 5; 9]

Similarly, square_all can be written as the mapping of the square

function:

let square_all = map square ;;

val square_all : int list -> int list = <fun>

square_all [1; 2; 4; 8] ;;

- : int list = [1; 4; 16; 64]

Compare this to the original definition of square_all:

let rec square_all (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> (hd * hd) :: (square_all tl) ;;

val square_all : int list -> int list = <fun>

100 P RO G R A M M I N G W E L L

Exercise 52

Use the map function to define a function double_all that takes an int list argument
and returns a list with the elements doubled.

8.3 The fold abstraction

Let’s take a look at some other functions that bear a striking resem-

blance. Exercises 44 and 45 asked for definitions of functions that took,

respectively, the sum and the product of the elements in a list. Here are

some possible solutions, written in the recursive style of Chapter 7:

let rec sum (xs : int list) : int =

match xs with

| [] -> 0

| hd :: tl -> hd + (sum tl) ;;

val sum : int list -> int = <fun>

let rec prod (xs : int list) : int =

match xs with

| [] -> 1

| hd :: tl -> hd * (prod tl) ;;

val prod : int list -> int = <fun>

As before, note the striking similarity of these two definitions. They

differ in just two places (highlighted above): an initial value to return

on the empty list and the operation to apply to the next element of the

list and the recursively processed suffix of the list.

This abstract pattern of computation – combining all of the ele-

ments of a list one at a time with a binary function, starting with an

initial value – is called a F O L D. We repeat the abstraction process from

the previous section, defining a function called fold to capture the

abstraction.

let rec fold (f : int -> int -> int)

(xs : int list)

(init : int)

: int =

match xs with

| [] -> init

| hd :: tl -> f hd (fold f tl init) ;;

val fold : (int -> int -> int) -> int list -> int -> int = <fun>

Notice the two additional arguments – f and init – which correspond

exactly to the two places that sum and prod differed.3 In summary, the

3 Ideally, these two arguments – f and
init – would be placed as the first two
arguments of fold so that they could be
conveniently partially applied. (In fact,
the Haskell functional programming
language uses that argument order for
their fold functions.) By convention,
however, the argument order for this
fold operation in OCaml is as provided
here, allowing for partially applying
the f argument but not init. The init
argument is placed at the end to reflect
its use as the rightmost element being
operated on during the fold. As you’ll
see later, the alternative fold_left
function uses the Haskell argument
order.type of fold is (int -> int -> int) -> int list -> int -> int.

The fold abstraction is simply the repeated embedded application

of a binary function, starting with an initial value, to all of the elements

of a list. That is, given a list of n elements [x_1, x_2, x_3, ...,

x_n], the fold of a binary function f with initial value init is

H I G H E R- O R D E R F U N C T I O N S A N D F U N C T I O N A L P RO G R A M M I N G 101

f x_1 (f x_2 (f x_3 (· · · (f x_n init)· · ·))) .

Now sum can be defined using fold:

let sum lst =

fold (fun x y -> x + y) lst 0 ;;

val sum : int list -> int = <fun>

or, noting that + is itself the curried addition function we need as the

first argument to fold:

let sum lst = fold (+) lst 0 ;;

val sum : int list -> int = <fun>

The prod function, similarly, is a kind of fold, this time of the prod-

uct function starting with the multiplicative identity 1.

let prod lst = fold (*) lst 1 ;;

val prod : int list -> int = <fun>

A wide variety of list functions follow this pattern. Consider taking

the length of a list, a function from Section 7.3.1.

let rec length (lst : int list) : int =

match lst with

| [] -> 0

| _hd :: tl -> 1 + length tl ;;

This function matches the fold structure as well. The initial value, the

length of an empty list, is 0, and the operation to apply to the head of

the list and the recursively processed tail is to simply ignore the head

and increment the value for the tail.

let length lst = fold (fun _hd tlval -> 1 + tlval) lst 0 ;;

val length : int list -> int = <fun>

#

length [1; 2; 4; 8] ;;

- : int = 4

The function that we’ve called fold operates “right-to-left” produc-

ing

f x_1 (f x_2 (f x_3 (· · · (f x_n init)· · ·))) .

For this reason, it is sometimes referred to as fold_right; in fact, that

is the name of the corresponding function in OCaml’s List module.

The symmetrical function fold_left operates left-to-right, calculat-

ing

(f · · · (f (f (f init x_1) x_2) x_3) x_n) .

where init is as before an initial value, and f is a binary function

taking as arguments the recursively processed prefix and the next

element in the list.

102 P RO G R A M M I N G W E L L

Exercise 53

Define the higher-order function fold_left : (int -> int -> int) -> int -> int

list -> int, which performs this left-to-right fold.

Because addition is associative, a list can be summed by either a

fold_right as above or a fold_left. The definition analogous to the

one using fold_right is

let sum lst = fold_left (+) 0 lst ;;

val sum : int list -> int = <fun>

but (because the list argument of fold_left is the final argument) this

can be further simplified by partial application:

let sum = fold_left (+) 0 ;;

val sum : int list -> int = <fun>

Exercise 54

Define the length function that returns the length of a list, using fold_left.

Exercise 55

A cousin of the fold_left function is the function reduce,4 which is like fold_left 4 The higher-order functional program-
ming paradigm founded on functions
like map and reduce inspired the wildly
popular Google framework for parallel
processing of large data sets called, not
surprisingly, MapReduce (Dean and
Ghemawat, 2004).

except that it uses the first element of the list as the initial value, calculating

(f · · · (f (f x_1 x_2) x_3) x_n) .

Define the higher-order function reduce : (int -> int -> int) -> int list ->

int, which works in this way. You might define reduce recursively as we did with fold

and fold_left or nonrecursively by using fold_left itself. (By its definition reduce is
undefined when applied to an empty list, but you needn’t deal with this case where it’s
applied to an invalid argument.)

8.4 The filter abstraction

The final list-processing abstraction we look at is the F I LT E R, which

serves as an abstract version of functions that return a subset of ele-

ments of a list, such as the following examples, which return the even,

odd, positive, and negative elements of an integer list.

let rec evens xs =

match xs with

| [] -> []

| hd :: tl -> if hd mod 2 = 0 then hd :: evens tl

else evens tl ;;

val evens : int list -> int list = <fun>

let rec odds xs =

match xs with

| [] -> []

| hd :: tl -> if hd mod 2 <> 0 then hd :: odds tl

else odds tl ;;

val odds : int list -> int list = <fun>

let rec positives xs =

match xs with

H I G H E R- O R D E R F U N C T I O N S A N D F U N C T I O N A L P RO G R A M M I N G 103

| [] -> []

| hd :: tl -> if hd > 0 then hd :: positives tl

else positives tl ;;

val positives : int list -> int list = <fun>

let rec negatives xs =

match xs with

| [] -> []

| hd :: tl -> if hd < 0 then hd :: negatives tl

else negatives tl ;;

val negatives : int list -> int list = <fun>

We leave the definition of an appropriate abstracted function filter

: (int -> bool) -> int list -> int list as an exercise.

Exercise 56

Define a function filter : (int -> bool) -> int list -> int list that returns
a list containing all of the elements of its second argument for which its first argument
returns true.

Exercise 57

Provide definitions of evens, odds, positives, and negatives in terms of filter.

Exercise 58

Define a function reverse : int list -> int list, which returns the reversal of its
argument list. Instead of using explicit recursion, define reverse by mapping, folding, or
filtering.

Exercise 59

Define a function append : int list -> int list -> int list (as described in
Exercise 49) to calculate the concatenation of two integer lists. Again, avoid explicit
recursion, using map, fold, or filter functions instead.

8.5 Problem section: Credit card numbers and the Luhn

check

Here’s an interesting bit of trivia: Not all credit card numbers are well-

formed. The final digit in a 16-digit credit card number is in fact a

C H E C K S U M, a digit that is computed from the previous 15 by a simple

algorithm.

The algorithm used to generate the checksum is called the LU H N

C H E C K. To calculate the correct final checksum digit used in a 16-digit

credit card number, you perform the following computation on the

first 15 digits of the credit card number:

Figure 8.1: A sample credit card

1. Take all of the digits in an odd-numbered position (the leftmost

digit being the first, not the zero-th digit, hence an odd-numbered

one) and double them, subtracting nine if the doubling is greater

than nine (called “casting out nines”).

104 P RO G R A M M I N G W E L L

As an example, we’ll use the (partial) credit card number from the

card in Figure 8.1:

4275 3156 0372 549 x

Here, the odd-numbered digits (4, 7, 3, 5, 0, 7, 5, and 9) have been

underlined. We double them and cast out nines to get 8, 5, 6, 1, 0, 5,

1, and 9.

2. Add all of the even position digits and the doubled odd position

digits together. For the example above, the sum would be

(2+5+1+6+3+2+4)+ (8+5+6+1+0+5+1+9) = 23+35 = 58 .

3. The checksum is then the digit that when added to this sum makes

it a multiple of ten. In the example above the checksum would be

2, since adding 2 to 58 generates 60, which is a multiple of 10. Thus,

the sequence 4275 3156 0372 5492 is a valid credit card number, but

changing the last digit to any other makes it invalid. (In particular,

the final 3 in the card in Figure 8.1 is not the correct checksum!)

Problem 60

Define a function odds_evens that takes a list if integers and returns a pair of int lists,
the list at the odd indices and the list at the even indices, respectively.

let cc = [4; 2; 7; 5; 3; 1; 5; 6; 0; 3; 7; 2; 5; 4; 9] ;;
val cc : int list = [4; 2; 7; 5; 3; 1; 5; 6; 0; 3; 7; 2; 5; 4; 9]
odds cc ;;
- : int list = [4; 2; 7; 5; 3; 1; 5; 6; 0; 3; 7; 2; 5; 4; 9]

Exercise 61

What is the type of the odds_evens function?

The process of doubling a number and “casting out nines” is easy to

implement as well. Here is some code to do that:

let doublemod9 (n : int) : int =

(n * 2 - 1) mod 9 + 1 ;;

val doublemod9 : int -> int = <fun>

Finally, it will be useful to have a function to sum a list of integers.
Problem 62

Implement the function sum using the List module function fold_left.

All the parts are now in place to implement the Luhn check algo-

rithm.
Problem 63

Implement a function luhn that takes a list of integers and returns the check digit for
that digit sequence. (You can assume that it is called with a list of 15 integers.) For
instance, for the example above

luhn cc ;;
- : int = 2

You should feel free to use the functions oods_evens, doublemod9, sum, and any other
OCaml library functions that you find useful and idiomatic.

H I G H E R- O R D E R F U N C T I O N S A N D F U N C T I O N A L P RO G R A M M I N G 105

❧

We’ve used the same technique three times in this chapter – notic-

ing redundancies in code and carving out the differing bits to find the

underlying commonality. The result is a set of higher-order functions –

map, fold_left, fold_right, and filter – that are broadly useful.

Determining the best place to carve up code into separate factors to

take advantage of the commonalities and maximizing the utility of the

factors is an important skill, the basis for R E F AC TO R I N G of code, the

name given to exactly this practice. And it turns out to match Socrates’s

second principle in Phaedrus:

P H A E D RU S : And what is the other principle, Socrates?

S O C R AT E S : That of dividing things again by classes, where the natural

joints are, and not trying to break any part after the manner of a bad

carver. (Plato, 1927)

This principle deserves its own name:

Edict of decomposition:

Carve software at its joints.

The edict of decomposition arises throughout programming prac-

tice, but plays an especial role in Chapter 18, where it motivates the

programming paradigm of object-oriented programming. For now,

however, we continue in the next chapter our pursuit of mechanisms

for capturing more abstractions, by allowing generic programs that

operate over various types, a technique called polymorphism.

8.6 Supplementary material

• Lab 2: Simple data structures and higher-order functions

• Problem set A.2: Higher-order functional programming

http://url.cs51.io/lab2

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

