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Polymorphism and generic programming

What happens when the edict of intention runs up against the edict

of irredundancy? The edict of intention calls for expressing clearly the

intended types over which functions operate, so that the language can

provide help by checking that the types are used consistently. We’ve

heeded that edict, for example, in our definition of the higher-order

function map from the previous chapter, repeated here:

# let rec map (f : int -> int) (xs : int list) : int list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map f tl) ;;

val map : (int -> int) -> int list -> int list = <fun>

The map function is tremendously useful for a wide variety of opera-

tions over integer lists. It seems natural to apply the same idea to other

kinds of lists as well. For instance, we may want to define a function to

double all of the elements of a float list or implement the prods

function from Section 7.3.1 to take the products of pairs of integers in a

list of such pairs. Using map we can try

# let double = map (fun x -> 2. *. x) ;;

Line 1, characters 33-34:

1 | let double = map (fun x -> 2. *. x) ;;

^

Error: This expression has type int but an expression was expected

of type

float

# let prods = map (fun (x, y) -> x * y) ;;

Line 1, characters 21-27:

1 | let prods = map (fun (x, y) -> x * y) ;;

^^^^^^

Error: This pattern matches values of type 'a * 'b

but a pattern was expected which matches values of type int

but we run afoul of the typing constraints on map, which can only apply

functions of type int -> int, and not float -> float or int * int

-> int.
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Of course, we can implement a version of map for lists of these types

as well:

# let rec map_float_float (f : float -> float)

# (xs : float list)

# : float list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map_float_float f tl) ;;

val map_float_float : (float -> float) -> float list -> float list

= <fun>

# let rec map_intpair_int (f : int * int -> int)

# (xs : (int * int) list)

# : int list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map_intpair_int f tl) ;;

val map_intpair_int : (int * int -> int) -> (int * int) list -> int

list =

<fun>

This is where we run up against the edict of irredundancy: we’ve writ-

ten the same code three times now, once for each set of argument

types.

What we’d like is a way to map functions over lists generically, while

still obeying the constraint that whatever type the list elements are,

they are appropriate to apply the function to; and whatever type the

function returns, the map returns a list of elements of that type.

9.1 Polymorphism

The solution to this quandary is found in P O LY M O R P H I S M. In a lan-

guage with polymorphism, like OCaml, functions can apply generically

to values from any type, so long as they do so consistently and system-

atically, as the various versions of map above do. Nonetheless, we’d still

like to keep the advantages of strong static typing, so that code can be

checked for this consistency and systematicity. Then what should the

type of a polymorphic version of the map function be?

We can get a hint of the answer by taking advantage of OCaml’s type

inference process, first introduced in Section 4.2.1. The type inference

process combines all of the type constraints implicit in the use of typed

functions together with all of the constraints in explicit typings to

compute the types for all of the expressions in a program. For instance,

in the definition

# let succ x = x + 1 ;;

val succ : int -> int = <fun>
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it follows from the fact that the + function is applied to x that x must

have the same type as the argument type for +, that is, int. Similarly,

since succ x is calculated as the output of the + function, it must have

the same type as +’s output type, again int. Since succ’s argument is of

type int and output is of type int, its type must be int -> int. And

in fact that is the type OCaml reports for it, even though no explicit

typings were provided.

Propagating type information in this way results in a fully instan-

tiated type int -> int for the succ function. But what if there aren’t

enough constraints in the code to yield a fully instantiated type? The

I D E N T I T Y F U N C T I O N id, which just returns its argument unchanged,

is an example:

# let id x = x ;;

val id : 'a -> 'a = <fun>

Since x is never involved in any applications in the definition of id,

there are no type constraints on it. All that we can conclude is that

whatever type x is – call it α – the id function must take values of type

α as argument and return values of type α as output. That is, id must

be of type α -> α.

The id function doesn’t have a fully instantiated type. It is a P O LY-

M O R P H I C F U N C T I O N, with a P O LY M O R P H I C T Y P E. The term poly-

morphic means many forms; the id function can take arguments of

many forms and operate on them similarly.

As the type inference process has indicated in the R E P L output, to

express polymorphic types, we need to extend the type expression

language. We use T Y P E VA R I A B L E S to specify that any type can be

used. We write type variables as identifiers with a prefixed quote mark

– ’a, ’b, ’c, and so forth – and conventionally read them as their cor-

responding Greek letter – α (alpha), β (beta), γ (gamma) – as we’ve

done above. Notice that OCaml has reported a polymorphic type for

id, namely, ’a -> ’a (read, “α to α”). This type makes the claim, “for

any type α, if id is applied to an argument of type α it returns a value

of type α.”

9.2 Polymorphic map

Returning to the map function, we wanted a way to map functions over

lists generically. If we just remove the typings in the definition of map,

it would seem that we could have just such a function, a polymorphic

version of map.

# let rec map f xs =

# match xs with

# | [] -> []
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# | hd :: tl -> f hd :: (map f tl) ;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

This function performs the same computation as the previous version

of map, just without any of the explicit type constraints enforced. The

function f is applied to elements of xs and returns elements that

appear in the result list, so the type of the argument of f must be the

type of the elements of xs and the type of the result of f must be the

type of the elements of the returned list simply as a consequence of the

structure of the code.

Figure 9.1: J. Roger Hindley (1939–
), codeveloper with Robin Milner
(Figure 1.7) of the Hindley-Milner
type inference algorithm that OCaml
relies on for inferring the most general
polymorphic types for expressions.

Happily, the type inference process that OCaml uses – developed by

Roger Hindley (Figure 9.1) and Robin Milner (Figure 1.7) – infers these

constraints automatically, concluding that map, like id, has a poly-

morphic type, which the OCaml type inference system has inferred

and reported as (’a -> ’b) -> ’a list -> ’b list. This type ex-

presses the constraint that “for any types α and β, if map is applied to a

function from α values to β values, it will return a function that when

given a list of α values returns a list of β values.”

This polymorphic version of map can be used to implement double

and prods as above. In each case, the types for these functions are

themselves properly inferred by instantiating the type variables of the

polymorphic map type.1 1 Note the use of partial application in
these examples.

# let double = map (fun x -> 2. *. x) ;;

val double : float list -> float list = <fun>

# let prods = map (fun (x, y) -> x * y) ;;

val prods : (int * int) list -> int list = <fun>

As inferred by OCaml, double takes a float list argument and re-

turns a float list, and prods takes an (int * int) list argument

and returns an int list.

9.3 Regaining explicit types

By taking advantage of polymorphism in OCaml, we’ve satisfied the

edict of irredundancy by defining a polymorphic version of map. Unfor-

tunately, we seem to have forgone the edict of intention, since we are

no longer explicitly providing information about the intended type for

map.

But by using the additional expressivity provided by type variables,

we can express the intended typing for map explicitly.

# let rec map (f : 'a -> 'b) (xs : 'a list) : 'b list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map f tl) ;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
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The type variables make clear the intended constraints among f, xs,

and the return value map f xs.

Problem 64

For each of the following types construct an expression for which OCaml would infer
that type. For example, for the type bool * bool, the expression true, true would be
a possible answer. (The idea in this exercise is not that the expressions be practical or
do anything useful; they need only have the requested type. But no cheating by using
explicit typing annotations with the : operator!)

1. bool * bool -> bool

2. ’a list -> bool list

3. (’a * ’b -> ’a) -> ’a -> ’b -> ’a

4. int * ’a * ’b -> ’a list -> ’b list

5. bool -> unit

6. ’a -> (’a -> ’b) -> ’b

7. ’a -> ’a -> ’b

Exercise 65

Define polymorphic versions of fold and filter, providing explicit polymorphic typing
information.

Problem 66

For each of the following definitions of a function f, try to work out by hand its most
general type (as would be inferred by OCaml) or explain briefly why no type exists for the
function.

1. let f x =
x +. 42. ;;

2. let f g x =
g (x + 1) ;;

3. let f x =
match x with
| [] -> x
| h :: t -> h ;;

4. let rec f x a =
match x with
| [] -> a
| h :: t -> h (f t a) ;;

5. let f x y =
match x with
| (w, z) -> if w then y z else w ;;

6. let f x y =
x y y ;;

7. let f x y =
x (y y) ;;

8. let rec f x =
match x with
| None
| Some 0 -> None
| Some y -> f (Some (y - 1)) ;;

9. let f x y =
if x then [x]
else [not x; y] ;;
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9.4 The List library

One way, perhaps the best, for satisfying the edict of irredundancy is

to avoid writing the same code twice by not writing the code even once,

instead taking advantage of code that someone else has already writ-

ten. OCaml, like many modern languages, comes with a large set of

libraries (packaged as modules, which we’ll cover in Chapter 12) that

provide a wide range of functionality. The List module in particular

provides exactly the higher-order list processing functions presented

in this and the previous chapter as polymorphic functions. The docu-

mentation for the List module gives typings and descriptions for lots

of useful list processing functions. For instance, the module provides

the map, fold, and filter abstractions of Chapter 8, described in the

documentation as

• map : (’a -> ’b) -> ’a list -> ’b list

map f [a1; ...; an] applies function f to a1, . . . , an, and builds

the list [f a1; ...; f an] with the results returned by f. Not

tail-recursive.2 2 We’ll come back to the issue of tail
recursion in Section 16.2.2.

• fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2)

...) bn.

• fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b)

...)). Not tail-recursive.

• filter : (’a -> bool) -> ’a list -> ’a list

filter p l returns all the elements of the list l that satisfy the

predicate p. The order of the elements in the input list is preserved.

They can be invoked as List.map, List.fold_left, and so forth. The

library provides many other useful functions, including

• append : ’a list -> ’a list -> ’a list

Concatenate two lists. Same as the infix operator @.. . .

• partition : (’a -> bool) -> ’a list -> ’a list * ’a

list

partition p l returns a pair of lists (l1, l2), where l1 is the

list of all the elements of l that satisfy the predicate p, and l2 is the

list of all the elements of l that do not satisfy p. The order of the

elements in the input list is preserved.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
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The List library has further functions for sorting, combining, and

transforming lists in all kinds of ways.

Although these functions are built into OCaml through the List

library, it’s still useful to have seen how they are implemented and

why they have the types they have. In particular, it makes clear that

the power of list processing via higher-order functional programming

doesn’t require special language constructs; they arise from the in-

teractions of simple language primitives like first-class functions and

structured data types.
Problem 67

Provide an implementation of the List.map function over a list using only a call to
List.fold_right over the same list, or provide an argument for why it’s not possible to
do so.

Problem 68

Provide an implementation of the List.fold_right function using only a call to
List.map over the same list, or provide an argument for why it’s not possible to do so.

Problem 69

In the list module, OCaml provides a function partition : (’a -> bool) -> ’a

list -> ’a list * ’a list. According to the OCaml documentation, “partition p

l returns a pair of lists (l1, l2), where l1 is the list of all the elements of 1 that satisfy
the predicate p, and 12 is the list of all the elements of l that do not satisfy p. The order of
the elements in the input list is preserved.”

For example, we can use this to divide a list into two new ones, one containing the
even numbers and one containing the odd numbers:

# List.partition (fun n -> n mod 2 = 0)
# [1; 2; 3; 4; 5; 6; 7] ;;
- : int list * int list = ([2; 4; 6], [1; 3; 5; 7])

As described above, the List module provides the partition function of type (’a ->

bool) -> ’a list -> ’a list * ’a list. Give your own definition of partition,
implemented directly without the use of any library functions except for those in the
Stdlib module.

Exercise 70

Define a function permutations : ’a list -> ’a list list, which takes a list of
values and returns a list containing every permutation of the original list. For example,

# permutations [1; 2; 3] ;;
- : int list list =
[[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]]

It doesn’t matter what order the permutations appear in the returned list. Note that if
the input list is of length n, then the answer should be of length n! (that is, the factorial
of n). Hint: One way to do this is to write an auxiliary function, interleave : int ->

int list -> int list list, that yields all interleavings of its first argument into its
second. For example:

# interleave 1 [2; 3] ;;
- : int list list = [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]]

9.5 Problem section: Function composition

The C O M P O S I T I O N of two unary functions f and g is the function that

applies f to the result of applying g to its argument.

For example, suppose you’re given a list of pairs of integers, where

we think of each pair as containing a number and a corresponding
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weight. We’d like to compute the W E I G H T E D S U M of the numbers, that

is, the sum of the numbers where each has been weighted according

to (that is, multiplied by) its weight. Recall the sum function from

Exercise 44 and the prods function from Section 7.3.1. The weighted

average of a pair-list can be computed by applying the sum function to

the result of applying the prods function to the list. Thus, weighted_-

sum is just the composition of sum and prods.

Problem 71

Provide an OCaml definition for a higher-order function @+ that takes two functions
as arguments and returns their composition. The function should have the following
behavior:

# let weighted_sum = sum @+ prods ;;
val weighted_sum : (int * int) list -> int = <fun>
# weighted_sum [(1, 3); (2, 4); (3, 5)] ;;
- : int = 26

Notice that by naming the function @+, it is used as an infix, right-associative operator.
See the operator table in the OCaml documentation for further information about the
syntactic properties of operators. When defining the function itself, though, you’ll want
to use it as a prefix operator by wrapping it in parentheses, as (@+).

Problem 72

What is the type of the @+ function?

9.6 Weak type variables

The List module provides polymorphic hd and tl functions for ex-

tracting the head and tail of a list.

Exercise 73

What are the types of the hd and tl functions? See if you can determine them without
looking them up.

These can be composed to allow, for instance, extracting the head of

the tail of a list, that is, the list’s second item.

# let second = List.hd @+ List.tl ;;

val second : '_weak1 list -> '_weak1 = <fun>

This definition works,

# second [1; 2; 3] ;;

- : int = 2

but why did the typing of second have those oddly named type vari-

ables?

Type variables like ’_weak1 (with the initial underscore) are W E A K

T Y P E VA R I A B L E S, not true type variables. They maintain their poly-

morphism only temporarily, until the first time they are applied. Weak

type variables arise because in certain situations OCaml’s type infer-

ence can’t figure out how to express the most general types and must

resort to this fallback approach.

http://caml.inria.fr/pub/docs/manual-ocaml/expr.html
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When a function with these weak type variables is applied to argu-

ments with a specific type, the polymorphism of the function disap-

pears. Having applied second to an int list, OCaml further instanti-

ates the type of second to only apply to int list arguments, losing its

polymorphism. We can see this in two ways, first by checking its type

directly,

# second ;;

- : int list -> int = <fun>

and second by attempting to apply it to a list of another type,

# second [1.0; 2.1; 3.2] ;;

Line 1, characters 8-11:

1 | second [1.0; 2.1; 3.2] ;;

^^^

Error: This expression has type float but an expression was

expected of type

int

To correct the problem, you can of course add in specific typing

information

# let second : float list -> float =

# List.hd @+ List.tl ;;

val second : float list -> float = <fun>

but this provides no polymorphism. Alternatively, you can provide a

full specification of the call pattern in the definition rather than the

partial application that was used above:

# let second x = (List.hd @+ List.tl) x ;;

val second : 'a list -> 'a = <fun>

which gives OCaml sufficient hints to infer types more generally. Of

course, in this case, the composition operator isn’t really helping. We

might as well have defined second more directly as

# let second x = List.hd (List.tl x) ;;

val second : 'a list -> 'a = <fun>

For the curious, if you want to see what’s going on in detail, you can

check out the discussion in the section “A function obtained through

partial application is not polymorphic enough” in the OCaml FAQ.

9.7 Supplementary material

• Lab 3: Polymorphism and record types

https://url.cs51.io/qv9
https://url.cs51.io/qv9
http://url.cs51.io/lab3
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