

10

Handling anomalous conditions

Despite best efforts, on occasion a condition arises – let’s call it an

A N O M A LY – that a function can’t handle. What to do? In this chap-

ter, we present two approaches. The function can return a value that

indicates the anomaly, thereby handling the anomaly explicitly. Alter-

natively, the function can stop normal execution altogether, throwing

control to some handler of the anomaly. In OCaml, the first approach

involves option types, the second exceptions.

As a concrete example, consider a function to calculate the M E D I A N

number in a list of integer values, that is, the value that has an equal

number of smaller and larger values. The median can be calculated by

sorting all of the values in the list and taking the middle element of the

sorted list. Taking advantage of a few functions from the List module

(sort, length, and nth) and the Stdlib module (compare),1 we can 1 Since we make heavy use of the List
module functions in this chapter, we
will open the module (but preserve
compare as the Stdlib version)

open List ;;

let compare = Stdlib.compare ;;

val compare : 'a -> 'a -> int = <fun>

so as to avoid having to prefix each use
of the functions with the List. module
qualifier. The issue will become clearer
when modules are fully introduced in
Chapter 12.

define

let median (lst: 'a list) : 'a =

nth (sort compare lst) (length lst / 2) ;;

val median : 'a list -> 'a = <fun>

We can test it out on a few lists:

median [1; 5; 9; 7; 3] ;;

- : int = 5

median [1; 2; 3; 4; 3; 2; 1] ;;

- : int = 2

median [1; 1; 1; 1; 1] ;;

- : int = 1

median [7] ;;

- : int = 7

The function works fine most of the time, but there is one anoma-

lous condition to consider, where the median isn’t well defined: What

should the median function do on the empty list?

118 P RO G R A M M I N G W E L L

10.1 A non-solution: Error values

You might have thought to return a special E R RO R VA LU E in the

anomalous case. Perhaps 0 or -1 or MAX_INT come to mind as pos-

sible error values. Augmenting the code to return a globally defined

error value might look like this:

let cERROR = -1 ;;

val cERROR : int = -1

let median (lst: 'a list) : 'a =

if lst = [] then cERROR

else nth (sort compare lst) (length lst / 2) ;;

val median : int list -> int = <fun>

There are two problems. First, the method can lead to gratuitous type

instantiation; second, and more critically, it manifests in-band signal-

ing.

Check the types inferred for the two versions of median above. The

original is appropriately polymorphic, of type ’a list -> ’a. But

because the error value cERROR used in the second version is of type

int, median becomes instantiated to int list -> int. The code

no longer applies outside the type of the error value, restricting its

generality and utility. And there is a deeper problem.

Consider the sad fate of poor Christopher Null, a technology jour-

nalist with a rather inopportune name. Apparently, there is a fair

amount of software that uses the string "null" as an error value for

cases in which no last name was provided. Errors can then be checked

for using code like

if last_name = "null" then ...

You see the problem. Poor Mr. Null reports that

I’ve been embroiled in a cordial email battle with Bank of Amer-

ica, literally for years, over my email address, which is simply

null@nullmedia.com. Using null as a mailbox name simply does not

work at B of A. The system will not accept it, period. (Null, 2015)

These kinds of problems confront poor Mr. Null on a regular basis.

Null has fallen afoul of I N - B A N D S I G N A L I N G of errors, in which an

otherwise valid value is used to indicate an error. The string "null"

is, of course, a valid string that, for all the programmer knows, might

be someone’s name, yet it is used to indicate a failure condition in

which no name was provided. (The solution is not to use a string,

"dpfnzzlwrpf" say,2 that is less likely to be someone’s last name as the 2 In fact, “Dpfnzzlwrpf” is the name
of a fictitious corporation in Jonathan
Caws-Elwitt’s “Letter to a Customer”.
(Conley, 2009) Could it also be a last
name? Why not? For a while, it was my
username on Skype. True story.

error value. That merely postpones the problem.)

Similarly, 0 or -1 or MAX_INT are all possible values for the median

of an integer list. Using one of them as an in-band error value means

https://url.cs51.io/gpw

H A N D L I N G A N O M A L O U S C O N D I T I O N S 119

that users of the median function can’t tell the difference between the

value being the true median or the median being undefined.

Having dismissed the in-band error signaling approach, we turn to

better solutions.

10.2 Option types

The first approach, like the in-band error value approach, still handles

the problem explicitly, right in the return value of the function. How-

ever, rather than returning an in-band value, an int (or whatever the

type of the list elements is), the function will return an out-of-band

None value, that has been added to the int type to form an optional

int, a value of type int option.

Option types are another kind of structured type, beyond the lists,

tuples, and records from Chapter 7. The postfix type constructor

option creates an option type from a base type, just as the postfix

type constructor list does. There are two value constructors for op-

tion type values: None (connoting an anomalous value), and the prefix

value constructor Some. The argument to Some is a value of the base

type.

For the median function, we’ll use an int option as the return

value, or, more generically, an ’a option. In the anomalous condition,

we return None, and in the normal condition in which a well-defined

median v can be computed, we return Some v .

let median (lst: 'a list) : 'a option =

if lst = [] then None

else Some (nth (sort compare lst) (length lst / 2)) ;;

val median : 'a list -> 'a option = <fun>

median [1; 2; 3; 4; 42] ;;

- : int option = Some 3

median [] ;;

- : 'a option = None

This version of the median function when applied to an int list

does not return an int, even when the median is well defined. It re-

turns an int option, which is a distinct type altogether. Nonetheless,

a caller of this function might want access to the int wrapped inside

the int option value. As with all structured types, we access the com-

ponent elements of an option value via pattern matching, as in this

example function, which replicates the (deprecated) in-band value so-

lution, returning the median of the list, or the error value if no median

exists:

let median_or_error (lst : int list) : int =

match median lst with

120 P RO G R A M M I N G W E L L

| None -> cERROR

| Some v -> v ;;

val median_or_error : int list -> int = <fun>

In implementing median above, we used the polymorphic function

nth : ’a list -> int -> ’a provided by the List module, which

given a list lst and an integer index returns the element of lst at the

given index (numbered starting with 0).

List.nth [1; 2; 4; 8] 2 ;;

- : int = 4

List.nth [true; false; false] 0 ;;

- : bool = true

Exercise 74

Why do you think nth was designed so as to take its list argument before its index argu-
ment? The designers expected that this would be a more commonly needed abstraction
than a function that returns the n-th element of a list for a particular n.

If we were to reimplement this function, it might look something

like this:

let rec nth (lst : 'a list) (n : int) : 'a =

match lst with

| hd :: tl ->

if n = 0 then hd

else nth tl (n - 1) ;;

Lines 2-5, characters 0-19:

2 | match lst with

3 | | hd :: tl ->

4 | if n = 0 then hd

5 | else nth tl (n - 1)...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

[]

val nth : 'a list -> int -> 'a = <fun>

This definition works, as shown in the following examples:

nth [1; 2; 3] 1 ;;

- : int = 2

nth [0; 1; 2] (nth [1; 2; 3] 1) ;;

- : int = 2

However, OCaml has warned us that the pattern match in the def-

inition of nth is not exhaustive – there are possible values that will

match none of the provided patterns – and helpfully provides the miss-

ing case, the empty list. Of course, if we ask to take the n-th element of

an empty list, there is no element to take; this represents an anomalous

condition.

Leaving the handling of this case implicit violates the edict of inten-

tion; we should clearly express what happens in all cases. Once again,

we can use option types to explicitly mark the condition in the return

value. We do so in a function called nth_opt.3

3 We use the suffix _opt to mark func-
tions that return an optional value, as
is conventional in OCaml library func-
tions. In fact, as noted below, the List
module provides an nth_opt function
in addition to its nth function.

H A N D L I N G A N O M A L O U S C O N D I T I O N S 121

let rec nth_opt (lst : 'a list) (n : int) : 'a option =

match lst with

| [] -> None

| hd :: tl ->

if n = 0 then Some hd

else nth_opt tl (n - 1) ;;

val nth_opt : 'a list -> int -> 'a option = <fun>

nth_opt [1; 2; 3] 1 ;;

- : int option = Some 2

nth_opt [1; 2; 3] 5 ;;

- : int option = None

Exercise 75

Another anomalous condition for nth and nth_opt is the use of a negative index. What
currently is the behavior of nth_opt with negative indices? Revise the definition of
nth_opt to appropriately handle this case as well.

Exercise 76

Define a function last_opt : ’a list -> ’a option that returns the last element in
a list (as an element of the option type) if there is one, and None otherwise.

last_opt [] ;;
- : 'a option = None
last_opt [1; 2; 3; 4; 5] ;;
- : int option = Some 5

Exercise 77

The variance of a sequence of n numbers x1, . . . , xn is given by the following equation:∑n
i=1(xi −m)2

n −1

where n is the number of elements in the sequence, m is the arithmetic mean (or
average) of the elements in the sequence, and xi is the i -th element in the sequence.
The variance is only well defined for sequences with two or more elements. (Do you see
why?)

Define a function variance : float list -> float option that returns None
if the list has fewer than two elements. Otherwise, it should return the variance of the
numbers in its list argument, wrapped appropriately for its return type.4 For example: 4 If you want to compare your output

with an online calculator, make sure you
find one that calculates the (unbiased)
sample variance.

variance [1.0; 2.0; 3.0; 4.0; 5.0] ;;
- : float option = Some 2.5
variance [1.0] ;;
- : float option = None

Remember to use the floating point version of the arithmetic operators when operating
on floats (+., *., etc). The function float can convert (“cast”) an int to a float.

10.2.1 Option poisoning

There is a problem with using option types to handle anomalies, as in

nth_opt. Whenever we want to use the value of an nth_opt element in

a further computation, we need to carefully extract the value from the

option type. We can’t, for instance, merely write

nth_opt [0; 1; 2] (nth_opt [1; 2; 3] 1) ;;

Line 1, characters 18-39:

1 | nth_opt [0; 1; 2] (nth_opt [1; 2; 3] 1) ;;

122 P RO G R A M M I N G W E L L

^^^^^^^^^^^^^^^^^^^^^

Error: This expression has type int option

but an expression was expected of type int

Instead we must work inside out, painstakingly extracting values and

passing on Nones:

match (nth_opt [1; 2; 3] 1) with

| None -> None

| Some v -> nth_opt [0; 1; 2] v ;;

- : int option = Some 2

And if that result is part of a further computation, even something as

simple as adding 1 to it, we have to resort to

match (nth_opt [1; 2; 3] 1) with

| None -> None

| Some v ->

match nth_opt [0; 1; 2] v with

| None -> None

| Some v -> Some (v + 1) ;;

- : int option = Some 3

Much of the elegance of the functional programming paradigm, the

ability to simply embed function applications with other functional

applications, is lost. We call this phenomenon O P T I O N P O I S O N I N G:

The introduction of an option type in an embedded computation

requires verbose extraction of values and reinjecting them into option

types as the computation continues. (Option poisoning is a particular

instance of the dreaded programming phenomenon of the P Y R A M I D

O F D O O M.)

Functions that regularly display anomalous conditions that ought

to be directly handled by the caller are well suited for use of option

types. But where an anomalous condition is rare and isn’t the kind of

thing that the caller should handle, an alternative approach is useful,

to avoid the pyramid of doom. Rather than explicitly marking the

occurrence of an anomaly in the return value, it can be implicitly dealt

with by changing the flow of control of the program entirely. This is the

approach based on exceptions, to which we now turn.5

5 Newer techniques, such as O P T I O N A L

C H A I N I N G in the Swift programming
language, deal with option poisoning
in a more elegant way, providing a
middle ground between the verbose
option handling of OCaml and the use
of exceptions. For the programming-
language-theory-inclined, the M O N A D

concept from category theory, first
imported into programming languages
with Haskell, generalizes the concept.

The lesson here is that continuing
progress is being made in the design of
programming languages to deal with
new and recurring programming issues.

10.3 Exceptions

Instead of modifying the return type of nth to allow for returning a

None marker of an anomaly, we can leave the return type unchanged,

and in case of anomaly, raise an E XC E P T I O N.

When an exception is raised, execution of the function stops. Of

course, if execution stops, the function can’t return a value, which is

appropriate given that the existence of the anomaly means that there’s

no appropriate value to return.

https://url.cs51.io/t59
https://url.cs51.io/t59

H A N D L I N G A N O M A L O U S C O N D I T I O N S 123

What about the function that called the one that raised the excep-

tion? It is expecting a value of a certain type to be returned, but in this

case, no such value is supplied. The calling function thus can’t return

either. It stops too. And so on and so forth.

We can write a version of nth that raises an exception when the

index is too large.

let rec nth (lst : 'a list) (n : int) : 'a =

match lst with

| [] -> raise Exit

| hd :: tl ->

if n = 0 then hd

else nth tl (n - 1) ;;

val nth : 'a list -> int -> 'a = <fun>

nth [1; 2; 3] 1 ;;

- : int = 2

nth [1; 2; 3] 5 ;;

Exception: Stdlib.Exit.

(nth [0; 1; 2] (nth [1; 2; 3] 1)) + 1 ;;

- : int = 3

There are several things to notice here. First, the return type of nth re-

mains ’a, not ’a option. Under normal conditions, it returns the n-th

element itself, not an option-wrapped version thereof. This allows its

use in embedded applications (as in the third example above) without

leading to the dreaded option poisoning. When an error does occur, as

in the second example, execution stops and a message is printed by the

OCaml R E P L (“Exception: Stdlib.Exit.”) describing the exception

that was raised, namely, the Exit exception defined in the Stdlib li-

brary module. No value is returned from the computation at all, so no

value is ever printed by the R E P L.

The code that actually raises the Exit exception is in the third line

of nth: raise Exit. The built-in raise function takes as argument an

expression of type exn, the type for exceptions. As it turns out, Exit is

a value of that type, as can be verified directly:

Exit ;;

- : exn = Stdlib.Exit

The Exit exception is provided in the Stdlib module as a kind of

catch-all exception, but other exceptions are more appropriate to raise

in different circumstances.

• The value constructor Invalid_argument : string -> exn, is

intended for use when an argument to a function is inappropriate.

It would be appropriate to use when the index of nth is negative.

• The value constructor Failure : string -> exn, is intended

for use when a function isn’t well-defined as called. It would be

124 P RO G R A M M I N G W E L L

appropriate to use when the index of nth is too large for the given

list.

Both of these constructors take a string argument, typically used to

provide an explanation of what went wrong. The explanation can be

used when the exception information is handled, for instance, by the

R E P L printing its error message.

Taking advantage of these exceptions, nth can be rewritten as

let rec nth (lst : 'a list) (n : int) : 'a =

if n < 0 then

raise (Invalid_argument "nth: negative index")

else

match lst with

| [] -> raise (Failure "nth: index too large")

| hd :: tl ->

if n = 0 then hd

else nth tl (n - 1) ;;

val nth : 'a list -> int -> 'a = <fun>

nth [1; 2; 4; 8] ~-3 ;;

Exception: Invalid_argument "nth: negative index".

nth [1; 2; 4; 8] 1 ;;

- : int = 2

nth [1; 2; 4; 8] 42 ;;

Exception: Failure "nth: index too large".

We’ve dealt with both of the anomalous conditions by raising appropri-

ate exceptions.

Not coincidentally, the List.nth function (in the List library mod-

ule) works exactly this way, raising Invalid_argument and Failure

exceptions under just these circumstances. But a List.nth_opt func-

tion is also provided, for cases in which the explicit marking of anoma-

lies with an option type is more appropriate.

Returning to the median example above, and repeated here for

reference (but this time using our own implementation of nth),

let median (lst : 'a list) : 'a =

nth (sort compare lst) (length lst / 2) ;;

val median : 'a list -> 'a = <fun>

this code doesn’t use option types and doesn’t use the raise func-

tion to raise any exceptions. What does happen when the anomalous

condition occurs?

median [] ;;

Exception: Failure "nth: index too large".

An exception was raised, not by the median function, but by our nth

function that it calls, which raises a Failure exception when it is called

to take an element of the empty list. The exception propagates from

the nth call to the median call to the top level of the R E P L.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

H A N D L I N G A N O M A L O U S C O N D I T I O N S 125

10.3.1 Handling exceptions

Perhaps you, as the writer of some code, have an idea about how to

handle particular anomalies that might otherwise raise an excep-

tion. Rather than allow the exception to propagate to the top level,

you might want to handle the exception yourself. The try 〈〉 with 〈〉
construct allows for this.

The syntax of the construction is

〈expr〉 ::= try 〈exprvalue〉 with
| 〈exnpattern1〉 -> 〈expr1〉
| 〈exnpattern2〉 -> 〈expr2〉
. . .

where 〈exprvalue〉 is an expression that may raise an exception, and

the 〈exnpatterni〉 are patterns that match against OCaml exception

expressions, rather than the normal algebraic data structures.

If the 〈exprvalue〉 evaluates without exception, its value is returned.

However, if its evaluation raises an exception, that exception is pattern-

matched sequentially against the 〈exnpatterni〉 much as in a match

expression; for the first such pattern that matches, the corresponding

〈expri〉 is evaluated and its value returned from the try.

For example, we can implement nth_opt in terms of nth by embed-

ding the call to nth within a try 〈〉 with 〈〉 :6 6 We’ve taken advantage of the ability
to use the same result expression for
multiple patterns, as described in
Section 7.2.1.

let nth_opt (lst : 'a list) (index : int) : 'a option =

try

Some (nth lst index)

with

| Failure _

| Invalid_argument _ -> None ;;

val nth_opt : 'a list -> int -> 'a option = <fun>

nth_opt [1; 2; 3] 0 ;;

- : int option = Some 1

nth_opt [1; 2; 3] (-1) ;;

- : int option = None

nth_opt [1; 2; 3] 4 ;;

- : int option = None

This implementation of nth_opt attempts to evaluate Some (nth lst

index). Under normal conditions, the call to nth returns a value v , in

which case Some v is the result of the try and of the function itself.

But if an exception is raised in the evaluation of the try – presumably

by an anomalous condition in the call to nth – the exception raised

will be matched against the two patterns and the result of that pattern

match will be used. If nth raises either a Failure exception or an

Invalid_argument exception, the result of the try...with will be

126 P RO G R A M M I N G W E L L

None (as is appropriate for an implementation of nth_opt). If any

other exception is raised, no pattern will match and the exception will

continue to propagate.

10.3.2 Zipping lists

As another example of handling anomalous conditions, we consider

a function for “zipping” lists. The result of zipping two lists together

is a list of corresponding pairs of elements of the original lists. A zip

function in OCaml ought to have the following behavior:

zip ['a'; 'b'; 'c']

[1 ; 2 ; 3] ;;

- : (char * int) list = [('a', 1); ('b', 2); ('c', 3)]

Let’s try to define the function, starting with its type. The zip func-

tion takes two lists, with types, say, ’a list and ’b list, and returns

a list of pairs each of which has an element from the first list (of type

’a) and an element from the second (of type ’b). The pairs are thus of

type ’a * ’b and the return value of type (’a * ’b) list. The type

of the whole function, then, is ’a list -> ’b list -> (’a * ’b)

list. From this, the header follows directly.

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

...

We’ll need the first elements of each of the lists, so we match on

both lists (as a pair) to extract their parts

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

match xs, ys with

| [], [] -> ...

| xhd :: xtl, yhd :: ytl -> ...

If the lists are empty, the list of pairs of their elements is empty too.

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

match xs, ys with

| [], [] -> []

| xhd :: xtl, yhd :: ytl -> ...

Otherwise, the zip of the non-empty lists starts with the two heads

paired. The remaining elements are the zip of the tails.

let rec zip (xs : 'a list)

(ys : 'b list)

H A N D L I N G A N O M A L O U S C O N D I T I O N S 127

: ('a * 'b) list =

match xs, ys with

| [], [] -> []

| xhd :: xtl, yhd :: ytl ->

(xhd, yhd) :: (zip xtl ytl) ;;

You’ll notice that there’s an issue. And if you don’t notice, the inter-

preter will, as soon as we enter this definition:

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

match xs, ys with

| [], [] -> []

| xhd :: xtl, yhd :: ytl ->

(xhd, yhd) :: (zip xtl ytl) ;;

Lines 4-7, characters 0-27:

4 | match xs, ys with

5 | | [], [] -> []

6 | | xhd :: xtl, yhd :: ytl ->

7 | (xhd, yhd) :: (zip xtl ytl)...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

([], _::_)

val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

There are missing match cases, in particular, when one of the lists is

empty and the other isn’t. This can arise whenever the two lists are of

different lengths. In such a case, the zip of two lists is not well defined.

As usual, we have two approaches to addressing the anomaly, with

options and with exceptions. We’ll pursue them in order.

We can make explicit the possibility of error values by returning an

option type.

let rec zip_opt (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list option = ...

The normal match cases can return their corresponding option type

value using the Some constructor.

let rec zip_opt (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list option =

match xs, ys with

| [], [] -> Some []

| xhd :: xtl, yhd :: ytl ->

Some ((xhd, yhd) :: (zip_opt xtl ytl)) ;;

Finally, we can add a wild-card match pattern for the remaining cases.

let rec zip_opt (xs : 'a list)

(ys : 'b list)

128 P RO G R A M M I N G W E L L

: ('a * 'b) list option =

match xs, ys with

| [], [] -> Some []

| xhd :: xtl, yhd :: ytl ->

Some ((xhd, yhd) :: (zip_opt xtl ytl))

| _, _ -> None ;;

Line 7, characters 20-37:

7 | Some ((xhd, yhd) :: (zip_opt xtl ytl))

^^^^^^^^^^^^^^^^^

Error: This expression has type ('c * 'd) list option

but an expression was expected of type ('a * 'b) list

The interpreter tells us that there’s a type problem. The recursive

call zip_opt xtl ytl is of type (’c * ’d) list option but the

cons requires an (’a * ’b) list. What we have here is a bad case

of option poisoning. We’ll have to decompose the return value of the

recursive call to extract the list within, handling the None case at the

same time.

let rec zip_opt (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list option =

match xs, ys with

| [], [] -> Some []

| xhd :: xtl, yhd :: ytl ->

match zip_opt xtl ytl with

| None -> None

| Some ztl -> Some ((xhd, yhd) :: ztl)

| _, _ -> None ;;

Line 10, characters 2-6:

10 | | _, _ -> None ;;

^^^^

Error: This pattern matches values of type 'a * 'b

but a pattern was expected which matches values of type

('c * 'd) list option

Now what!? The interpreter complains of another type mismatch, this

time in the final pattern, which is of type ’a * ’b, but which, for

some reason, the interpreter thinks should be of type (’c * ’d) list

option. This kind of error is one of the most confusing for beginning

OCaml programmers.

Exercise 78

Try to see if you can diagnose the problem before reading on.

The indentation of this code notwithstanding, the final pattern

match is associated with the inner match, not the outer one. The inner

match is, indeed, for list options. The intention was that only the lines

beginning | None... and | Some ... be part of that match, but the

next line has been caught up in it as well.

One simple solution is to use parentheses to make explicit the

intended structure of the code.

H A N D L I N G A N O M A L O U S C O N D I T I O N S 129

let rec zip_opt (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list option =

match xs, ys with

| [], [] -> Some []

| xhd :: xtl, yhd :: ytl ->

(match zip_opt xtl ytl with

| None -> None

| Some ztl -> Some ((xhd, yhd) :: ztl))

| _, _ -> None ;;

val zip_opt : 'a list -> 'b list -> ('a * 'b) list option = <fun>

Better yet is to make explicit the patterns that fall under the wildcard

allowing them to move up in the ordering.

let rec zip_opt (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list option =

match xs, ys with

| [], [] -> Some []

| [], _

| _, [] -> None

| xhd :: xtl, yhd :: ytl ->

match zip_opt xtl ytl with

| None -> None

| Some ztl -> Some ((xhd, yhd) :: ztl) ;;

val zip_opt : 'a list -> 'b list -> ('a * 'b) list option = <fun>

Exercise 79

Why is it necessary to make the patterns explicit before moving them up in the ordering?
What goes wrong if we leave the pattern as _, _?

As an alternative, we can implement zip to raise an exception on

lists of unequal length. Doing so simplifies the matches, since there’s

no issue of option poisoning.

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

match xs, ys with

| [], [] -> []

| [], _

| _, [] -> raise (Invalid_argument

"zip: unequal length lists")

| xhd :: xtl, yhd :: ytl ->

(xhd, yhd) :: (zip xtl ytl) ;;

val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

Exercise 80

Define a function zip_safe that returns the zip of two equal-length lists, returning the
empty list if the arguments are of unequal length. The implementation should call zip.

zip_safe [1; 2; 3] [3; 2; 1] ;;
- : (int * int) list = [(1, 3); (2, 2); (3, 1)]
zip_safe [1; 2; 3] [3; 2] ;;
- : (int * int) list = []

What problems do you see in this function?

130 P RO G R A M M I N G W E L L

10.3.3 Declaring new exceptions

Exceptions are first-class values, of the type exn. Like lists and options,

exceptions have multiple value constructors. We’ve seen some already:

Exit, Failure, Invalid_argument. (It’s for that reason that we can

pattern match against them in the try...with construct.)

Exceptions are exceptional in that new value constructors can be

added dynamically. Here we define a new exception value constructor:

exception Timeout ;;

exception Timeout

It turns out that this exception will be used in Chapter 17.

Exception constructors can take arguments. We define an

UnboundVariable constructor that takes a string argument, used in

Chapter 13, as

exception UnboundVariable of string ;;

exception UnboundVariable of string

Exercise 81

In Section 6.6, we noted a problem with the definition of fact for computing the
factorial function; it fails on negative inputs. Modify the definition of fact to raise an
exception to make that limitation explicit.

Exercise 82

What are the types of the following expressions (or the values they define)?

1. Some 42

2. [Some 42; None]

3. [None]

4. Exit

5. Failure "nth"

6. raise (Failure "nth")

7. raise

8. fun _ -> raise Exit

9. let failwith s =
raise (Failure s)

10. let sample x =
failwith "not implemented"

11. let sample (x : int) (b : bool) : int list option =
failwith "not implemented"

Problem 83

As in Problem 64, for each of the following OCaml function types define a function f

(with no explicit typing annotations, that is, no uses of the : operator) for which OCaml
would infer that type. (The functions need not be practical or do anything useful; they
need only have the requested type.)

1. int -> int -> int option

2. (int -> int) -> int option

3. ’a -> (’a -> ’b) -> ’b

4. ’a option list -> ’b option list -> (’a * ’b) list

H A N D L I N G A N O M A L O U S C O N D I T I O N S 131

Problem 84

As in Problem 66, for each of the following function definitions of a function f, give
a typing for the function that provides its most general type (as would be inferred by
OCaml) or explain briefly why no type exists for the function.

1. let rec f x =
match x with
| [] -> f
| h :: t -> raise Exit ;;

2. let f x =
if x then (x, true)
else (true, not x) ;;

Problem 85

Provide a more succinct definition of the function f from Problem 84(2), with the same
type and behavior.

10.4 Options or exceptions?

Which should you use when writing code to handle anomalous con-

ditions? Options or exceptions? This is a design decision. There is no

universal right answer.

Anomalous conditions when running code cover a range of cases.

One class of anomalies are conditions that should never occur, follow-

ing from true bugs in code. For instance, when a function is applied to

a set of arguments for which it was explicitly not defined – for example,

applying the median function to an empty list, where the implementer

of the median function has specified that it is not defined in that case –

this constitutes a bug. The programmer who used the median function

in that way has made a mistake. Unfortunately, the bug appears only

at run time, when it is “too late”. The best we can do in such cases is

to abort the computation, returning control to some higher level for

which recovery from the bug is possible (if such a higher level even

exists), and providing as much information about the bug as possible.

Some programming languages provide specific tools for such cases. In

OCaml, exceptions are the right tool, raising an informative exception

and hoping that a higher level can recover. And proper programming

practice indicates doing just that.

For cases that are not simply bugs of this sort, that is, cases that

are anomalous from the usual course yet expected to be handled, the

choice between options and exceptions is governed by the properties

of the two approaches.

Options are explicit: The type gives an indication that an anomaly

might occur, and the compiler can make sure that such anomalies are

handled. Exceptions are implicit: You (and the compiler) can’t tell if an

exception might be raised while executing a function. But exceptions

are therefore more concise. The error handling doesn’t impinge on the

data and so doesn’t poison every downstream use of the data. Code to

132 P RO G R A M M I N G W E L L

handle the anomaly doesn’t have to exist everywhere between where

the problem occurs and where it’s dealt with.

Which is more important, explicitness or concision? It depends.

• If the anomaly is a standard part of the computation, a frequent

occurrence, that argues for making it explicit in an option type.

• If the anomaly is a rare occurrence, that argues for hiding it implic-

itly in the code.

• If the anomaly is localized to a small part of the code within which it

can be handled, it makes sense to use an option type in that region.

• If the anomaly is ubiquitous, with the possibility of occurring any-

where in the code, the overhead of explicitly handling it everywhere

in the code with an option type is likely too cumbersome. For ex-

ample, a computation may run out of memory at more or less any

point. It makes no sense to have a function return an option type,

with None reserved for the case where the computation happened to

run out of memory in the function. Rather, running out of memory

is a natural use for an exception (and in fact, OCaml raises excep-

tions when it runs out of memory).

Is the anomalous occurrence a frequent case? Use options. A rare

event? Use exceptions. Is the anomalous occurrence intrinsic to the

conception? Use options. Extrinsic? Use exceptions.

Design decisions like this are ubiquitous. They are the bread and

butter of the programming process. The precursor to making these

decisions is possessing the tools that allow the alternative designs, the

understanding of what the ramifications are, and the judgement to

make a reasonable choice. The importance of having the choice is why,

for instance, the List module provides both nth and nth_opt.

10.5 Unit testing with exceptions

In Section 6.7, we called for unit testing of functions to verify their

correctness on representative inputs. Using the methodology of that

section, we might write a unit testing function for nth, call it nth_test:

let nth_test () =

unit_test (nth [5] 0 = 5) "nth singleton";

unit_test (nth [1; 2; 3] 0 = 1) "nth start";

unit_test (nth [1; 2; 3] 1 = 2) "nth middle" ;;

val nth_test : unit -> unit = <fun>

We run the tests by calling the function:

H A N D L I N G A N O M A L O U S C O N D I T I O N S 133

nth_test () ;;

nth singleton passed

nth start passed

nth middle passed

- : unit = ()

The test function provides a report of the performance on all of the

tests, showing that all tests are passed.

As mentioned in Section 6.7, we’ll want to unit test nth as com-

pletely as is practicable, trying examples representing as wide a range

of cases as possible. For instance, we might be interested in whether

nth works in selecting the first, a middle, and the last element of a list.

We’ve checked the first two of these conditions, but not the third. We

can adjust the testing function accordingly:

let nth_test () =

unit_test (nth [5] 0 = 5) "nth singleton";

unit_test (nth [1; 2; 3] 0 = 1) "nth start";

unit_test (nth [1; 2; 3] 1 = 2) "nth middle";

unit_test (nth [1; 2; 3] 2 = 3) "nth last" ;;

val nth_test : unit -> unit = <fun>

What about selecting at an index that is too large, as in the example

nth [1; 2; 3] 4? We should make sure that nth works properly in

this case as well. But what does “works properly” mean? According

to the specification in the List module, nth should raise a Failure

exception in this case. So we’ll need a boolean expression that is true

just in case evaluating the expression nth [1; 2; 3] 4 raises the

proper exception. We can achieve this by using a try 〈〉 with 〈〉 to trap

any exception raised and verifying that it is the correct one. We might

start with

try nth [1; 2; 3] 4

with

| Failure _ -> true

| _ -> false ;;

Line 3, characters 15-19:

3 | | Failure _ -> true

^^^^

Error: This expression has type bool but an expression was expected

of type

int

but this fails to type-check, since the type of the nth expression is int

(since it was applied to an int list), whereas the with clauses return

a bool. We’ll need to return a bool in the try as well. In fact, we should

return false; if nth [1; 2; 3] 4 manages to return a value and not

raise an exception, that’s a sign that nth has a bug! We revise the test

condition to be

https://url.cs51.io/toc

134 P RO G R A M M I N G W E L L

try let _ = nth [1; 2; 3] 4 in

false

with

| Failure _ -> true

| _ -> false ;;

- : bool = true

Adding this unit test to the unit testing function gives us

let nth_test () =

unit_test (nth [5] 0 = 5) "nth singleton";

unit_test (nth [1; 2; 3] 0 = 1) "nth start";

unit_test (nth [1; 2; 3] 1 = 2) "nth middle";

unit_test (nth [1; 2; 3] 2 = 3) "nth last";

unit_test (try let _ = nth [1; 2; 3] 4 in

false

with

| Failure _ -> true

| _ -> false) "nth index too big";;

val nth_test : unit -> unit = <fun>

nth_test () ;;

nth singleton passed

nth start passed

nth middle passed

nth last passed

nth index too big passed

- : unit = ()

We’ll later see more elegant ways to put together unit tests (Sec-

tion 17.6).

Exercise 86

Augment nth_test to verify that nth works properly under additional conditions: on the
empty list, with negative indexes, with lists other than integer lists, and so forth.

❧

With options and exceptions and their corresponding types, we’ve

completed the introduction of the major compound data types that are

built into the OCaml language. Table 10.1 provides a full list of these

compound types, with their type constructors and value constructors.

The advantages of compound types shouldn’t be limited to built-ins

though. In the next chapter, we’ll extend the type system to allow user-

defined compound types.

10.6 Supplementary material

• Lab 4: Error handling, options, and exceptions

http://url.cs51.io/lab4

H A N D L I N G A N O M A L O U S C O N D I T I O N S 135

Type Type constructor Value constructors

functions 〈〉 -> 〈〉 fun 〈〉 -> 〈〉
tuples 〈〉 * 〈〉 〈〉 , 〈〉

〈〉 * 〈〉 * 〈〉 〈〉 , 〈〉 , 〈〉
· · ·

lists 〈〉 list []

〈〉 :: 〈〉
[〈〉 ; 〈〉 ; ...]

records { 〈〉 : 〈〉 ; 〈〉 : 〈〉 ; ...} { 〈〉 = 〈〉 ; 〈〉 = 〈〉 ; ...}

options 〈〉 option None

Some 〈〉
exceptions exn Exit

Failure 〈〉
· · ·

user-defined See Chapter 11

Table 10.1: Built-in compound data
types.

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

