

12

Abstract data types and modular programming

The algebraic data types introduced in the last chapter are an expres-

sive tool for defining sophisticated data structures. But with great

power comes great responsibility.

As an example, consider one of the most fundamental of all data

structures, the QU E U E. A queue is a collection of elements that admits

of operations like creating an empty queue, adding elements one by

one (called E N QU E U E I N G), and removing them one-by-one (called

D E QU E U I N G), where crucially the first element enqueued is the first to

be dequeued. The common terminology for this regimen is F I R S T- I N -

F I R S T- O U T or FIFO.

We can provide a concrete implementation of the queue data type

using the list data type, along with functions for enqueueing and de-

queueing. An empty queue will be implemented as the empty list, with

non-empty queues storing elements in order of their enqueueing, so

newly enqueued elements are added at the end of the list.

(* empty_queue -- An empty queue *)

let empty_queue = [] ;;

val empty_queue : 'a list = []

(* enqueue elt q -- Returns a queue resulting from

enqueuing a new elt onto q. *)

let enqueue (elt : 'a) (q : 'a list) : 'a list =

q @ [elt] ;;

val enqueue : 'a -> 'a list -> 'a list = <fun>

(* dequeue q -- Returns a pair of the next element

in q and the queue resulting from dequeueing

that element. *)

let dequeue (q : 'a list) : 'a * 'a list =

match q with

| [] -> raise (Invalid_argument

"dequeue: empty queue")

| hd :: tl -> hd, tl ;;

val dequeue : 'a list -> 'a * 'a list = <fun>

156 P RO G R A M M I N G W E L L

We can use these functions to enqueue and then dequeue a series

of integers. Notice how the first element enqueued (the 1) is the first

element dequeued.

let q = empty_queue

|> enqueue 1 (* enqueue 1, 2, and 4 *)

|> enqueue 2

|> enqueue 4 ;;

val q : int list = [1; 2; 4]

let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 1

val q : int list = [2; 4]

let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : int list = [4]

let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 4

val q : int list = []

Data structures built in this way can be used as intended, as they

were above. (You’ll note the FIFO behavior.) But if used in unexpected

ways, things can go wrong quickly. Here, for instance, we enqueue

some integers, then reverse the queue before dequeuing the elements

in a last-in-first-out (LIFO) order. That’s not supposed to happen.

let q = empty_queue

|> enqueue 1 (* enqueue 1, 2, and 4 *)

|> enqueue 2

|> enqueue 4

|> List.rev ;; (* yikes! *)

val q : int list = [4; 2; 1]

let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 4

val q : int list = [2; 1]

let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : int list = [1]

let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 1

val q : int list = []

Of course, reversing the elements is not an operation that ought to be

possible on a queue. Queues, like other data structures, are defined

by what operations can be performed on them, namely, enqueue

and dequeue. These operations obey an I N VA R I A N T, that the order

in which elements appear when dequeued is the same as the order

in which they were enqueued. Performing inappropriate operations

on data structures is the path to violating such invariants, leading to

software errors. Our implementation of queues as lists allows all sorts

of inappropriate operations, like reversal of the enqueued elements,

or taking the n-th element, or mapping over the elements, or any

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 157

other operation appropriate for lists but not queues. What we need is

the ability to enforce restraint on the operations applicable to a data

structure so as to preserve the invariants.

(a) (b)
Figure 12.1: Two approaches to pre-
serving the invariant that the lights
are off when the room is vacant: (a) an
exhortation documenting the invariant;
(b) a key card switch that disables the
lights when the key is removed.

An analogy: The lights and heating in hotel rooms are intended to

be on when the room is occupied, but they should be lowered when

the room is empty. We can think of this as an invariant: If the room is

unoccupied, the lights and heating are off. One approach to increasing

compliance with this invariant is through documentation, placing a

sign at the door “Please turn off the lights when you leave.” But many

hotels now use a key card switch, a receptacle near the door in which

you insert the key card for the hotel room when you enter, in order

to enable the lights and heating. (See Figure 12.1.) Since you have

to bring your key card with you when you leave the room, thereby

disabling the lights and heating, there is literally no way to violate

the invariant. The state of California estimates that widespread use

of hotel key card switches saves tens of millions of dollars per year

(California Utilities Statewide Codes and Standards Team, 2011, page

6). Preventing violation of an invariant beats documenting it.

We’ve seen this idea of avoiding illegal states before in the edict of

prevention. But in the queue example, type checking doesn’t stop us

from representing a bad state, and simple alternative representations

for queues that prevent inappropriate operations don’t come to mind.

We need a way to implement new data types and operations such that

the values of those types can only be used with the intended opera-

tions. We can’t make the bad queues unrepresentable, but perhaps we

can make them inexpressible, which should be sufficient for gaining

the benefit of the edict of prevention.

The key idea is to provide an A B S T R AC T D ATA T Y P E (ADT), a data

type definition that provides not only a concrete I M P L E M E N TAT I O N

of the data type values and operations on them, but also enforces that

only those operations can be applied, making it impossible to express

the application of other operations. This influential idea, the basis for

modular programming, was pioneered by Barbara Liskov (Figure 12.2)

in her CLU programming language.

The allowed operations are specified in a S I G N AT U R E; no other

aspects of the implementation of the data type can be seen other

than those specified by the signature. Users of the abstract data type

can avail themselves of the functionality specified in the signature,

while remaining oblivious of the particularities of the implementa-

tion. The signature specifies an interface to using the data structure,

which serves as an A B S T R AC T I O N B A R R I E R; only the aspects of the

implementation specified in the signature may be made use of.

Figure 12.2: The idea of abstract data
types – grouping some functionality
over types and hiding the implementa-
tion of that functionality behind a strict
interface – is due to computer scientist
Barbara Liskov, and is first seen in her
influential CLU programming language
from 1974. Her work on data abstraction
and object-oriented programming led
to her being awarded the 2008 Turing
Award, computer science’s highest
honor.

The idea of hiding aspects of the implementation from those who

158 P RO G R A M M I N G W E L L

shouldn’t need access to those aspects is fundamental enough for an

edict of its own, the edict of compartmentalization:

Edict of compartmentalization:

Limit information to those with a need to know.

In the case of the queue abstract data type, all that users of the

implementation have a need to know is the types for the operations

involving queues, viz., the creation of queues and the enqueueing and

dequeueing of elements; that’s all the signature should specify. The im-

plementation may be in terms of lists (or any of a wide variety of other

methods) but the users of the abstract data type should not be able to

avail themselves of the further aspects of the implementation. By pre-

venting them from using aspects of the implementation, the invariants

implicit in the signature can be maintained. A further advantage of

hiding the details of the implementation of a data structure behind the

abstraction barrier (in addition to making illegal operations inexpress-

ible) is that it becomes possible to modify the implementation without

affecting its use. This aspect of abstract data types is tremendously

powerful.

We’ve seen other applications of the edict of compartmentaliza-

tion before, for instance, in the use of helper functions local to (and

therefore only accessible to) a function being defined. The alternative,

defining the helper function globally could lead to unintended use of

and reliance on that function, which had been intended only for its

more focused purpose.

12.1 Modules

In OCaml, abstract data types are implemented using M O D U L E S. Mod-

ules provide a way of packaging together several components – types

and values involving those types, including functions manipulating

values of those types – subject to constraints of a signature. A module

is specified by placing the definitions of its components between the

keywords struct and end:

struct

〈definition1〉
〈definition2〉
〈definition3〉
...

end

Each 〈definition〉 is a definition of a type or value (including functions,

and even exceptions).

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 159

Just as values can be named using the let construct, modules can

be named using the module construct:

module 〈modulename〉 =

〈moduledefinition〉

12.2 A queue module

As a first example of the use of modules to provide for abstract data

types, we return to the queue data type that we started with, which

provides a type for, say, integer queues, int_queue, together with func-

tions enqueue : int -> int_queue -> int_queue and dequeue :

int_queue -> int * int_queue. (Even better would be to general-

ize queues as polymorphically allowing for elements of any base type.

We’ll do so in Section 12.4.)

A module IntQueue1 implementing the queue abstract data type is 1 Module names are required to begin
with an uppercase letter. You’ve seen
examples before in the Stdlib and List

module names.

(* IntQueue -- An implementation of integer queues as

int lists, where the elements are kept with older

elements closer to the head of the list. *)

module IntQueue =

struct

type int_queue = int list

let empty_queue : int_queue = []

let enqueue (elt : int) (q : int_queue)

: int_queue =

q @ [elt]

let dequeue (q : int_queue) : int * int_queue =

match q with

| [] -> raise (Invalid_argument

"dequeue: empty queue")

| hd :: tl -> hd, tl

end ;;

module IntQueue :

sig

type int_queue = int list

val empty_queue : int_queue

val enqueue : int -> int_queue -> int_queue

val dequeue : int_queue -> int * int_queue

end

Exercise 101

Define a different implementation of integer queues as int lists where the elements
are kept with older elements farther from the head of the list. What are the advantages
and disadvantages of this implementation?

Components of a module are referenced using the already fa-

miliar notation of prefixing the module name and a dot before the

component. We’ve seen this already in examples like List.nth or

Str.split. Similarly, users of the IntQueue module can refer to

IntQueue.empty_queue or IntQueue.enqueue. Let’s use this mod-

ule to perform various queue operations:

160 P RO G R A M M I N G W E L L

let q = IntQueue.empty_queue

|> IntQueue.enqueue 1 (* enqueue 1, 2, and 4 *)

|> IntQueue.enqueue 2

|> IntQueue.enqueue 4 ;;

val q : IntQueue.int_queue = [1; 2; 4]

All of this module prefixing gets cumbersome quickly. We can instead

just “open” the module to gain access to all of its components.2

2 A useful technique to simplify access
to a module without opening it (and
thereby shadowing any existing names)
is to provide a short alternative name for
the module.

module IQ = IntQueue ;;

module IQ = IntQueue

let q = IQ.empty_queue

|> IQ.enqueue 1

|> IQ.enqueue 2

|> IQ.enqueue 4 ;;

val q : IQ.int_queue = [1; 2; 4]

Also of great utility is to open a module
just within a particular local scope.
OCaml provides for this with its L O C A L

O P E N construct:

let q =

let open IntQueue in

empty_queue

|> enqueue 1

|> enqueue 2

|> enqueue 4 ;;

val q : IntQueue.int_queue = [1; 2; 4]

open IntQueue ;;

let q = empty_queue

|> enqueue 1 (* enqueue 1, 2, and 4 *)

|> enqueue 2

|> enqueue 4 ;;

val q : IntQueue.int_queue = [1; 2; 4]

let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 1

val q : IntQueue.int_queue = [2; 4]

let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : IntQueue.int_queue = [4]

let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 4

val q : IntQueue.int_queue = []

Unfortunately, nothing restricts us from using arbitrary aspects of

the module’s implementation, for instance, reversing the elements of

the queue.

let q = empty_queue

|> enqueue 1 (* enqueue 1, 2, and 4 *)

|> enqueue 2

|> enqueue 4

|> List.rev (* this shouldn't be allowed *) ;;

val q : int list = [4; 2; 1]

let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 4

val q : IntQueue.int_queue = [2; 1]

let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : IntQueue.int_queue = [1]

let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 1

val q : IntQueue.int_queue = []

What we need is a signature that restricts the use of the compo-

nents of a module, just as a type restricts use of a value. This signa-

ture/module pairing carefully separates what the caller of code sees

– the module signature, which provides the abstract type structure

of the components, that is, how they are used – from what the imple-

menter or developer sees – the module implementation, including the

concrete types and values for the components, that is, how they are

implemented.

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 161

The notation for specifying signatures is similar to that for modules,

except for the use of sig instead of struct; and naming signatures is

like naming modules with the addition of the evocative type keyword.

module type 〈moduletype〉 =

sig

〈definition1〉
〈definition2〉
〈definition3〉
...

end

We can define a signature INT_QUEUE3 for an integer queue module: 3 Signature names must also begin
with an uppercase letter. We follow
the stylistic convention of using all
uppercase for signature names.

module type INT_QUEUE =

sig

type int_queue

val empty_queue : int_queue

val enqueue : int -> int_queue -> int_queue

val dequeue : int_queue -> int * int_queue

end ;;

module type INT_QUEUE =

sig

type int_queue

val empty_queue : int_queue

val enqueue : int -> int_queue -> int_queue

val dequeue : int_queue -> int * int_queue

end

The signature provides a full listing of all the aspects of a module that

are visible to users of the module. In particular, the module provides a

type called int_queue, but since the concrete implementation of that

type is not provided in the signature, it is unavailable to users of mod-

ules satisfying the signature. The signature states that the module must

provide a value empty_queue but what the concrete implementation of

that value is is again hidden. And so on.

Notice that where the module implementation defines named

values using the let construct, the signature uses the val construct,

which provides a name and a type, but no definition of what is named.

Extending the analogy between signatures and types further, we can

specify that a module satisfies and is constrained by a signature with a

notation almost identical to that constraining a value to a certain type.

module 〈modulename〉 : 〈signature〉 =

〈moduledefinition〉
We could define IntQueue as satisfying the INT_QUEUE signature by

adding this kind of “typing” as in the highlighted addition below:

(* IntQueue -- An implementation of integer queues as

int lists, where the elements are kept with older

162 P RO G R A M M I N G W E L L

elements closer to the head of the list. *)

module IntQueue : INT_QUEUE =

struct

type int_queue = int list

let empty_queue : int_queue = []

let enqueue (elt : int) (q : int_queue)

: int_queue =

q @ [elt]

let dequeue (q : int_queue) : int * int_queue =

match q with

| [] -> raise (Invalid_argument

"dequeue: empty queue")

| hd :: tl -> hd, tl

end ;;

module IntQueue : INT_QUEUE

This module implements integer queues abstractly, allowing access

only as specified by the INT_QUEUE signature. For instance, after build-

ing a queue, we no longer have access to its concrete implementation.

open IntQueue ;;

let q = empty_queue

|> enqueue 1 (* enqueue 1, 2, and 4 *)

|> enqueue 2

|> enqueue 4 ;;

val q : IntQueue.int_queue = <abstr>

The value of q is reported simply as <abstr> connoting an abstract

value hidden behind the abstraction barrier. We can’t “see inside”.

Similarly, application of an operation not sanctioned by the signature,

like list reversal, now fails.

List.rev q ;;

Line 1, characters 9-10:

1 | List.rev q ;;

^

Error: This expression has type IntQueue.int_queue

but an expression was expected of type 'a list

OCaml reports a type error. The function List.rev requires an ar-

gument of type ’a list, but it is being applied to a queue, of type

IntQueue.int_queue. True, the type IntQueue.int_queue is im-

plemented as an ’a list, but that fact is hidden from users of the

module by the signature, hidden behind the abstraction barrier.

12.3 Signatures hide extra components

What happens when a module defines more components than its sig-

nature provides for? As a trivial example, we will define an O R D E R E D

T Y P E as a type that has an associated comparison function that pro-

vides an ordering on elements of the type. The definition of such a

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 163

module provides for these two components: a type, call it t, and a

function that takes two elements x and y of type t and returns an inte-

ger indicating the ordering of the two, -1 if x is smaller, +1 if x is larger,

and 0 if the two are equal in the ordering.4 4 We use this arcane approach for
the compare function to mimic the
Stdlib.compare library function.
Frankly, a better approach would be to
take the result of the comparison to be
a value in an enumerated type defined
as type order = Less | Equal |

Greater.

This specification of what constitutes an ordered type can be cap-

tured in a signature ORDERED_TYPE:

module type ORDERED_TYPE =

sig

type t

val compare : t -> t -> int

end ;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> int

end

A simple implementation of an ordered type is based on the string

type. Notice that we explicitly specify the signature for the module:

module StringOrderedType : ORDERED_TYPE =

struct

type t = string

let compare = Stdlib.compare

end ;;

module StringOrderedType : ORDERED_TYPE

We take advantage of the built in compare function in the Stdlib

module,5 which is a general purpose comparison function that uses 5 Although the Stdlib prefix isn’t
needed – the components of the Stdlib
module are always available – we add it
here for clarity.

the same return value convention of -1, 0, +1 for elements that are less

than, equal, and greater than, respectively. A more interesting example

is an ordered type for points (pairs of floats) where the ordering on

points is based on which is closer to the origin. This time, however, we

don’t specify a signature for the module:

module PointOrderedType =

struct

type t = float * float

let norm (x, y) =

x ** 2. +. y ** 2.

let compare p1 p2 =

Stdlib.compare (norm p1) (norm p2)

end ;;

module PointOrderedType :

sig

type t = float * float

val norm : float * float -> float

val compare : float * float -> float * float -> int

end

We can make use of the module to see how this ordering works on

some examples.

let open PointOrderedType in

compare (1., 1.) (5., 0.),

164 P RO G R A M M I N G W E L L

compare (1., 1.) (-1., -1.),

compare (1., 1.) (0., 1.1) ;;

- : int * int * int = (-1, 0, 1)

Note that the PointOrderedType module contains three compo-

nents: the type t, and functions norm and compare. It goes beyond the

ORDERED_TYPE signature in providing an extra function,

PointOrderedType.norm ;;

- : float * float -> float = <fun>

PointOrderedType.norm (1., 1.) ;;

- : float = 2.

since we did not explicitly restrict it to that signature. If instead we

restrict PointOrderedType to the ORDERED_TYPE signature, only the

components in that signature are made available.

module PointOrderedType : ORDERED_TYPE =

struct

type t = float * float

let norm (x, y) =

x ** 2. +. y ** 2.

let compare p1 p2 =

Stdlib.compare (norm p1) (norm p2)

end ;;

module PointOrderedType : ORDERED_TYPE

The norm function is no longer defined:

PointOrderedType.norm ;;

Line 1, characters 0-21:

1 | PointOrderedType.norm ;;

^^^^^^^^^^^^^^^^^^^^^

Error: Unbound value PointOrderedType.norm

In general, only the aspects of a module consistent with its signature are

visible outside of its implementation to users of the module. All other

aspects are hidden behind the abstraction barrier. In particular, the

norm function is not available, and the identity of the type t is hidden

as well. We can tell, because we no longer can compare two points.

PointOrderedType.compare (1., 1.) (5., 0.) ;;

Line 1, characters 25-33:

1 | PointOrderedType.compare (1., 1.) (5., 0.) ;;

^^^^^^^^

Error: This expression has type 'a * 'b

but an expression was expected of type PointOrderedType.t

The arguments we are providing are expected to be of type t but we

are providing arguments of type float * float. Although the im-

plementation equates these types, outside of the abstraction barrier

their equality isn’t known. (Yes, this is a problem. We’ll address it using

sharing constraints later in Section 12.5.2.)

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 165

A fundamental role of modules and their signatures is to establish

these abstraction barriers so that information about how data types

happen to be implemented can’t leak out and be taken advantage of.

12.4 Modules with polymorphic components

Returning to the queue example, there’s no reason to restrict queues to

integer elements. We can make the components of the module poly-

morphic, using type variables as usual to capture the places where

arbitrary types can appear. We start with a polymorphic queue signa-

ture:

module type QUEUE = sig

type 'a queue

val empty_queue : 'a queue

val enqueue : 'a -> 'a queue -> 'a queue

val dequeue : 'a queue -> 'a * 'a queue

end ;;

module type QUEUE =

sig

type 'a queue

val empty_queue : 'a queue

val enqueue : 'a -> 'a queue -> 'a queue

val dequeue : 'a queue -> 'a * 'a queue

end

and define a queue module satisfying the signature:

(* Queue -- An implementation of polymorphic queues

as lists, where the elements are kept with older

elements closer to the head of the list. *)

module Queue : QUEUE = struct

type 'a queue = 'a list

let empty_queue : 'a queue = []

let enqueue (elt : 'a) (q : 'a queue) : 'a queue =

q @ [elt]

let dequeue (q : 'a queue) : 'a * 'a queue =

match q with

| [] -> raise (Invalid_argument

"dequeue: empty queue")

| hd :: tl -> hd, tl

end ;;

module Queue : QUEUE

Now we can avail ourselves of queues of different types:

open Queue ;;

let intq = empty_queue

|> enqueue 1

|> enqueue 2 ;;

val intq : int Queue.queue = <abstr>

let boolq = empty_queue

|> enqueue true

166 P RO G R A M M I N G W E L L

|> enqueue false ;;

val boolq : bool Queue.queue = <abstr>

dequeue intq ;;

- : int * int Queue.queue = (1, <abstr>)

dequeue boolq ;;

- : bool * bool Queue.queue = (true, <abstr>)

Exercise 102

In Section 11.3, we provided a data type for dictionaries that makes sure that the keys
and values match up properly. We noted, however, that nothing prevents building a
dictionary with multiple occurrences of the same key.

Define a dictionary module signature and implementation that implements dictio-
naries using the type from Section 11.3, and provides a function

add : (’key, ’value) dictionary -> ’key -> ’value ->

(’key, ’value) dictionary

for adding a key and its value to a dictionary, and a function

lookup : (’key, ’value) dictionary -> ’key -> ’value

option

for looking keys up in the dictionary. The add function should raise an appropriate
exception if the key being added already appears in the dictionary. The lookup function
should return None if the key being looked up does not appear in the dictionary. The
signature should hide the implementation of the type and the functions so that the only
access to the dictionary is through these two functions.

Can you express a dictionary built using this module that has duplicate keys?

12.5 Abstract data types and programming for change

One of the primary advantages of using abstract data types (as op-

posed to concrete data structures) is that by hiding the data type im-

plementations, the implementations can be changed without affecting

users of the data types.

Recall the query type from Section 11.2.

type query =

| Word of string

| And of query * query

| Or of query * query ;;

type query = Word of string | And of query * query | Or of query *
query

In that section, a corpus of documents was structured as a list of pairs,

each containing a name and a list of strings, the words in the docu-

ment. Given that we’ll be searching for particular words in documents,

an alternative data structure useful for search is the R E V E R S E I N D E X,

a kind of dictionary with words as the keys and a set of document

identifiers (the title strings, say) as the values.

If we implement this concretely, using a list of pairs for the dictio-

nary and a string list for the set of document titles, we end up with the

following type:

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 167

type index = (string * (string list)) list ;;

type index = (string * string list) list

Using a reverse index, the code for evaluating a query is quite simple:

let rec eval (q : query)

(idx : index)

: string list =

match q with

| Word word ->

let (_key, targets) =

List.find (fun (w, _lst) -> w = word) idx

in targets

| And (q1, q2) ->

intersection (eval q1 idx) (eval q2 idx)

| Or (q1, q2) ->

(eval q1 idx) @ (eval q2 idx) ;;

Line 10, characters 0-12:

10 | intersection (eval q1 idx) (eval q2 idx)

^^^^^^^^^^^^

Error: Unbound value intersection

Of course, we’ll need code for the intersection of two lists. Here’s an

approach, in which the lists are kept sorted to facilitate finding dupli-

cates:

let rec intersection set1 set2 =

match set1, set2 with

| [], _

| _, [] -> []

| h1 :: t1, h2 :: t2 ->

if h1 = h2 then h1 :: intersection t1 t2

else if h1 < h2 then intersection t1 set2

else intersection set1 t2 ;;

val intersection : 'a list -> 'a list -> 'a list = <fun>

Now, we might get lucky and notice a problematic clash of assump-

tions in the eval function. The intersection function assumes the

lists are sorted, but the final match in eval just appends two lists to

form the union of their elements. Nothing guarantees that the result of

the union is sorted. We can fix that up by using a sort function from the

List module.

let rec eval (q : query)

(idx : index)

: string list =

match q with

| Word word ->

let (_, targets) =

List.find (fun (w, _lst) -> w = word) idx

in targets

| And (q1, q2) ->

intersection (eval q1 idx) (eval q2 idx)

| Or (q1, q2) ->

168 P RO G R A M M I N G W E L L

List.sort_uniq compare

((eval q1 idx) @ (eval q2 idx)) ;;

val eval : query -> index -> string list = <fun>

But maybe then we notice that in our application, this List.find

lookup takes too much time. It has to look through the elements of

the list sequentially to find the one for the word we’re looking up. That

takes time proportional to the number of words being indexed. (More

on this kind of issue in Chapter 14.) Maybe you recall from an earlier

course that hash tables allow lookup in constant time, and you think to

use them. Luckily, the Hashtbl library module provides hash tables. To

incorporate hash tables, we have to change the index type:

type index = (string, string list) Hashtbl.t ;;

type index = (string, string list) Hashtbl.t

as well as the word query lookup:

let rec eval (q : query)

(idx : index)

: string list =

match q with

| Word word -> Hashtbl.find idx word

| And (q1, q2) ->

intersection (eval q1 idx) (eval q2 idx)

| Or (q1, q2) ->

List.sort_uniq compare

((eval q1 idx) @ (eval q2 idx)) ;;

val eval : query -> index -> string list = <fun>

There’s a theme here. Every change to the underlying data repre-

sentation requires multiple changes to the code, even though nothing

has changed conceptually in the underlying use of the data. We’re still

searching in the data, taking unions and intersections.

Let’s go back to the original specification of the reverse index: “a

kind of dictionary with words as the keys and a set of document identi-

fiers (the title strings, say) as the values.” This specification talks about

abstract data types like dictionaries and sets, but we’ve been trying to

directly implement them in terms of lists and pairs and hash tables.

By embracing the abstractions, we can hide all of the details from our

indexing code.

Suppose we had modules for string sets and for indexes. The string

set module, call it StringSet, would presumably provide set functions

like union and intersection. The index module, call it Index would

provide a lookup function. The eval function using these modules

then becomes

let rec eval (q : query)

(idx : Index.dict)

: StringSet.set =

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 169

match q with

| Word word -> (match Index.lookup idx word with

| None -> StringSet.empty

| Some v -> v)

| And (q1, q2) -> StringSet.intersection (eval q1 idx)

(eval q2 idx)

| Or (q1, q2) -> StringSet.union (eval q1 idx)

(eval q2 idx) ;;

This is much nicer. It says what the code does at the right level of ab-

straction, in terms of high-level operations like dictionary lookup, or

set intersection and union. It remains silent, as it should, about exactly

how those operations are implemented.

Now we’ll need module definitions for Index and StringSet. We

start with StringSet first, and in particular, its module signature,

since this specifies how the module can be used.

12.5.1 A string set module

A string set module needs to provide some operations for creating and

manipulating the sets. The requirements can be specified in a module

signature. Here’s a first cut:

module type STRING_SET =

sig

(* Type of string sets *)

type set

(* An empty set *)

val empty : set

(* Returns true if set is empty, false otherwise *)

val is_empty : set -> bool

(* Adds string to existing set (if not already a member) *)

val add : string -> set -> set

(* Union of two sets *)

val union : set -> set -> set

(* Intersection of two sets *)

val intersection : set -> set -> set

(* Returns true iff string is in set *)

val member: string -> set -> bool

end ;;

module type STRING_SET =

sig

type set

val empty : set

val is_empty : set -> bool

val add : string -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : string -> set -> bool

end

Any implementation of this signature must provide:

170 P RO G R A M M I N G W E L L

• a type, called set;

• an element of that type called empty;

• a function that maps elements of the type to bool, called is_empty;

• and so forth.

From the point of view of the users (callers) of this abstract data

type, this is all they need to know: The name of the type and the func-

tions that apply to values of that type.

To drive this point home, we’ll make use of an implementation

(StringSet) of this abstract data type before even looking at the im-

plementing code.

let s = StringSet.add "c"

(StringSet.add "b"

(StringSet.add "a" StringSet.empty)) ;;

val s : StringSet.set = <abstr>

Note that the string set we’ve called s is of the abstract type

StringSet.set and the particulars of the value implementing the

set are hidden from us as <abstr>.

The types, values, and functions provided in the signature are nor-

mal OCaml objects that interact with the rest of the language as usual.

We can still avail ourselves of the rest of OCaml. For instance, we can

clean up the definition of s using reverse application and a local open:

let s =

let open StringSet in

empty

|> add "a"

|> add "b"

|> add "c" ;;

val s : StringSet.set = <abstr>

Other operations work as well.

StringSet.member "a" s ;;

- : bool = true

StringSet.member "d" s ;;

- : bool = false

Of course, the ADT must have an actual implementation for it to work.

We’ve just been assuming one, but we can provide a possible imple-

mentation (the one we’ve been using as it turns out), obeying the

specific signature we just defined.6

6 You’ll notice that we don’t bother
adding types to the definitions of the
values in this module implementation.
Since the signature already provided
explicit types (satisfying the edict of
intention), OCaml can verify that the
implementation respects those types.
Nonetheless, it can sometimes be useful
to provide further typing information in
a module implementation.

module StringSet : STRING_SET =

(* Implementation of STRING_SET as list of strings.

Assumes list may be unsorted but with no duplicates. *)

struct

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 171

type set = string list

let empty = []

let is_empty set = (set = [])

let member = List.mem

let add elt set =

if List.mem elt set then set

else elt :: set

let union = List.fold_right add

let rec intersection set1 set2 =

match set1 with

| [] -> []

| hd :: tl -> let tlint = intersection tl set2 in

if member hd set2 then add hd tlint

else tlint

end ;;

In this implementation, sets are implemented as string lists. A com-

ment documents the invariant in the implementation that the lists

have no duplicates, though they might not be sorted. But there’s no

way for a user of this module to know any of that; the signature doesn’t

reveal anything about the implementation type. Even though the sets

are implemented as string lists, if we try to do string-list-like opera-

tions, we’ll be thwarted.

s @ ["b"; "e"] ;;

Line 1, characters 0-1:

1 | s @ ["b"; "e"] ;;

^

Error: This expression has type StringSet.set

but an expression was expected of type 'a list

And it’s a good thing too, because if we could have added the "b"

to the list, suddenly, the list doesn’t obey the invariant required by

the implementation that there be no duplicates. But because of the

abstraction barrier, there’s no way for a user of the module to break the

invariant, so long as the implementation maintains it.

Because the sets are implemented as unsorted lists, when taking the

union of two sets set1 and set2, we must traverse the entirety of the

set2 list once for each element of set1. For small sets, this is not likely

to be problematic, and worrying about this inefficiency may well be a

premature effort at optimization.7 But for a set implementation likely 7 In the introduction to Chapter 14 you’ll
learn that “premature optimization is
the root of all evil.”

to be used widely and on very large sets, it may be useful to address the

issue.

A better alternative from an efficiency point of view is to implement

sets as sorted lists. This requires a bit more work in adding elements

to a set to place them in the right order, but saves effort for union and

intersection. We redefine the StringSet module accordingly, still

satisfying the same STRING_SET signature.

(* Implementation of STRING_SET as list of strings.

172 P RO G R A M M I N G W E L L

Assumes list is *sorted* with no duplicates. *)

module StringSet : STRING_SET =

struct

type set = string list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

| [] -> false

| hd :: tl -> if elt = hd then true

else if elt < hd then false

else member elt tl

let rec add elt s =

match s with

| [] -> [elt]

| hd :: tl -> if elt < hd then elt :: s

else if elt = hd then s

else hd :: add elt tl

let union = List.fold_right add

let rec intersection set1 set2 =

match set1, set2 with

| [], _ -> []

| _, [] -> []

| h1::t1, h2::t2 ->

if h1 = h2 then h1 :: intersection t1 t2

else if h1 < h2 then intersection t1 set2

else intersection set1 t2

end ;;

module StringSet : STRING_SET

Now we can test the revised definition.

let s =

let open StringSet in

empty

|> add "a"

|> add "b"

|> add "c" ;;

val s : StringSet.set = <abstr>

StringSet.member "a" s ;;

- : bool = true

StringSet.member "d" s ;;

- : bool = false

And here’s the payoff. Even though we’ve completely changed the

implementation of string sets, even using a data structure obeying a

different invariant, the code for using string sets changes not at all.

12.5.2 A generic set signature

For document querying, we needed a string set module. For other

purposes we may need sets of other element types. We could generate

similar modules for, say, integer sets, with an appropriate signature:

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 173

module type INT_SET =

sig

(* Type of integer sets *)

type set

(* The empty set *)

val empty : set

(* Returns true if set is empty; false otherwise *)

val is_empty : set -> bool

(* Adds integer to existing set (if not already a member) *)

val add : int -> set -> set

(* Union of two sets *)

val union : set -> set -> set

(* Intersection of two sets *)

val intersection : set -> set -> set

(* Returns true iff integer is in set *)

val member: int -> set -> bool

end ;;

module type INT_SET =

sig

type set

val empty : set

val is_empty : set -> bool

val add : int -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : int -> set -> bool

end

but we’d be violating the edict of irredundancy. Rather, we’d prefer

a generic signature for set modules that provides a set type for any

element type.

Here is such a signature. We’ve added a new type to the module, the

type element for elements of the set, and we use it in the types of the

various functions.

module type SET =

sig

(* Type of sets *)

type set

(* and their elements *)

type element

(* The empty set *)

val empty : set

(* Returns true if set is empty; false otherwise *)

val is_empty : set -> bool

(* Adds element to existing set (if not already a member) *)

val add : element -> set -> set

(* Union of two sets *)

val union : set -> set -> set

(* Intersection of two sets *)

val intersection : set -> set -> set

(* Returns true iff element is in set *)

val member: element -> set -> bool

174 P RO G R A M M I N G W E L L

end ;;

module type SET =

sig

type set

type element

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

A string set implementation satisfying this signature defines the

element type as string:

module StringSet : SET =

struct

type element = string

type set = element list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

| [] -> false

| hd :: tl -> if elt = hd then true

else if elt < hd then false

else member elt tl

let rec add elt s =

match s with

| [] -> [elt]

| hd :: tl -> if elt < hd then elt :: s

else if elt = hd then s

else hd :: add elt tl

let union = List.fold_right add

let rec intersection set1 set2 =

match set1, set2 with

| [], _ -> []

| _, [] -> []

| h1::t1, h2::t2 ->

if h1 = h2 then h1 :: intersection t1 t2

else if h1 < h2 then intersection t1 set2

else intersection set1 t2

end ;;

module StringSet : SET

We can use this StringSet to, for instance, generate an empty

string set:

StringSet.empty ;;

- : StringSet.set = <abstr>

We run into a major problem, though, in the simple act of checking if a

string is a member of the set.

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 175

StringSet.member "a" StringSet.empty ;;

Line 1, characters 17-20:

1 | StringSet.member "a" StringSet.empty ;;

^^^

Error: This expression has type string but an expression was

expected of type

StringSet.element

What’s the problem? It turns out that the abstraction barrier provided

by the SET signature is doing exactly what it should. The implementa-

tion promises to deliver something that satisfies and reveals SET. And

that’s all. The SET signature reveals types set and element, not string

list and string. Viewed from within the implementation, the types

element and string are the same. But from outside the module im-

plementation, only element is available, leading to the type mismatch

with string.

This is a case in which the abstraction barrier is too strict. (We

saw this before in Section 12.3.) We do want to allow the user of the

module to have access to the implementation of the element type, if

only so that module users can provide elements of that type. Rather

than using the too abstract SET signature, we can define slightly less

abstract signatures using S H A R I N G C O N S T R A I N T S, which augment

a signature with one or more type equalities across the abstraction

barrier, identifying abstract types within the signature (element) with

implementations of those types accessible outside the implementation

(string).8 8 Notice how in printing out the result
of defining the new STRING_SET signa-
ture, OCaml specifies that the type of
elements is string. Compare this with
the version above without the sharing
constraint.

This example requires only a single
sharing constraint, but multiple con-
straints can be useful as well. They are
combined with the and keyword, for
example, the pair of sharing constraints
with type key = D.key and type

value = D.value used in the definition
of the MakeOrderedDict module in
Section 12.6.

module type STRING_SET = SET with type element = string ;;

module type STRING_SET =

sig

type set

type element = string

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

Now we can declare the implementation as satisfying this relaxed

signature.

module StringSet : STRING_SET =

struct

type element = string

type set = element list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

176 P RO G R A M M I N G W E L L

| [] -> false

| hd :: tl -> if elt = hd then true

else if elt < hd then false

else member elt tl

let rec add elt s =

match s with

| [] -> [elt]

| hd :: tl -> if elt < hd then elt :: s

else if elt = hd then s

else hd :: add elt tl

let union = List.fold_right add

let rec intersection set1 set2 =

match set1, set2 with

| [], _ -> []

| _, [] -> []

| h1::t1, h2::t2 ->

if h1 = h2 then h1 :: intersection t1 t2

else if h1 < h2 then intersection t1 set2

else intersection set1 t2

end ;;

module StringSet : STRING_SET

This implementation now allows us to perform operations involving

particular strings.

StringSet.empty ;;

- : StringSet.set = <abstr>

StringSet.member "a" StringSet.empty ;;

- : bool = false

let s =

let open StringSet in

empty

|> add "first"

|> add "second"

|> add "third" ;;

val s : StringSet.set = <abstr>

StringSet.union s s ;;

- : StringSet.set = <abstr>

StringSet.member "a" s ;;

- : bool = false

12.5.3 A generic set implementation

Sharing constraints solve the problem of duplicative signatures, be-

cause we can define different signatures by adding different sharing

constraints to the generic SET signature:

module type STRING_SET =

SET with type element = string ;;

module type INT_SET =

SET with type element = int ;;

module type INTBOOL_SET =

SET with type element = int * bool ;;

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 177

Unfortunately, they do nothing for the problem of duplicative imple-

mentations. To implement a module satisfying the INT_SET signature,

we’d need to build the whole module from scratch, like this:

module IntSet : INT_SET =

struct

type element = int

type set = element list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

| [] -> false

| hd :: tl -> if elt = hd then true

else if elt < hd then false

else member elt tl

let rec add elt s =

match s with

| [] -> [elt]

| hd :: tl -> if elt < hd then elt :: s

else if elt = hd then s

else hd :: add elt tl

let union = List.fold_right add

let rec intersection set1 set2 =

match set1, set2 with

| [], _ -> []

| _, [] -> []

| h1::t1, h2::t2 ->

if h1 = h2 then h1 :: intersection t1 t2

else if h1 < h2 then intersection t1 set2

else intersection set1 t2

end ;;

The redundancy is massive; the only differences from the StringSet

implementation are those highlighted in red. To solve this violation of

the edict of irredundancy requires more powerful tools.

What we need is a way of generating implementations that depend

on some stuff. In the case at hand, the stuff is just the implementation

of the element type, and perhaps some functionality involving that

type. For instance, in the implementations of the StringSet and

IntSet modules, we availed ourselves of comparing elements using

the < operator. Any type we build a set from using this implementation

approach needs some way of performing such comparisons, but the

< operator may not always be appropriate for that purpose. More

generally, the implementations may depend not only on a type but on

some values of that type or functions over the type, or even multiple

types.

If only we had a way of packaging up some types and related values

and functions. But we do have such a way: the module system itself. In

effect, what we need is something akin to a function that takes as ar-

178 P RO G R A M M I N G W E L L

gument a module defining the parameters of the implementation and

returns the desired module. We call these “functions” from modules to

modules F U N C TO R S.

We can use the StringSet and IntSet implementations as the

basis for a functor MakeOrderedSet, which takes a module as argu-

ment to provide the element type and returns a module satisfying the

SET signature. As described above, the argument module should have

a type (call it t) and a way of comparing elements of the type (call it

compare). We’ll have the compare function take two elements of type

t and return an integer specifying whether the first integer is less than

(-1), equal to (0), or greater than (1) the second integer.

You may recognize this signature. It’s the ORDERED_TYPE signature

from Section 12.3, repeated here for reference.

module type ORDERED_TYPE =

sig

type t

val compare : t -> t -> int

end ;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> int

end

The argument to the functor should satisfy this signature.

A functor that takes a module with this signature and delivers a SET

implementation can be constructed just by factoring out the type and

the comparison from our previous implementations of IntSet and

StringSet.

module MakeOrderedSet (Elements : ORDERED_TYPE) : SET =

struct

type element = Elements.t

type set = element list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

| [] -> false

| hd :: tl ->

(match Elements.compare elt hd with

| 0 (* equal *) -> true

| -1 (* less *) -> false

| _ (* greater *) -> member elt tl)

let rec add elt s =

match s with

| [] -> [elt]

| hd :: tl ->

(match Elements.compare elt hd with

| 0 (* equal *) -> s

| -1 (* less *) -> elt :: s

| _ (* greater *) -> hd :: add elt tl)

let union = List.fold_right add

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 179

let rec intersection set1 set2 =

match set1, set2 with

| [], _ -> []

| _, [] -> []

| h1::t1, h2::t2 ->

(match Elements.compare h1 h2 with

| 0 (* equal *) -> h1 :: intersection t1 t2

| -1 (* less *) -> intersection t1 set2

| _ (* greater *) -> intersection set1 t2)

end ;;

module MakeOrderedSet : functor (Elements : ORDERED_TYPE) -> SET

But this won’t do. The returned module satisfies SET, but we’ve

already seen how this is too strong a requirement. The solution is the

same as before, use sharing constraints to allow access to the element

type.

module MakeOrderedSet (Elements : ORDERED_TYPE)

: (SET with type element = Elements.t) =

struct

type element = Elements.t

type set = element list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

| [] -> false

| hd :: tl ->

(match Elements.compare elt hd with

| 0 (* equal *) -> true

| -1 (* less *) -> false

| _ (* greater *) -> member elt tl)

let rec add elt s =

match s with

| [] -> [elt]

| hd :: tl ->

(match Elements.compare elt hd with

| 0 (* equal *) -> s

| -1 (* less *) -> elt :: s

| _ (* greater *) -> hd :: add elt tl)

let union = List.fold_right add

let rec intersection set1 set2 =

match set1, set2 with

| [], _ -> []

| _, [] -> []

| h1::t1, h2::t2 ->

(match Elements.compare h1 h2 with

| 0 (* equal *) -> h1 :: intersection t1 t2

| -1 (* less *) -> intersection t1 set2

| _ (* greater *) -> intersection set1 t2)

end ;;

module MakeOrderedSet :

functor (Elements : ORDERED_TYPE) ->

sig

180 P RO G R A M M I N G W E L L

type set

type element = Elements.t

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

Here we finally have a functor that can generate a set module for any

type. Let’s generate a few, starting with a string set module, which we

can generate by applying the MakeOrderedSet functor to a module

satisfying ORDERED_TYPE linking the string type to an appropriate

ordering function (here, the default Stdlib.compare function).

module StringSet = MakeOrderedSet

(struct

type t = string

let compare = compare

end) ;;

module StringSet :

sig

type set

type element = string

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

It works as expected:

let s =

let open StringSet in

empty

|> add "first"

|> add "second"

|> add "third" ;;

val s : StringSet.set = <abstr>

StringSet.union s s ;;

- : StringSet.set = <abstr>

StringSet.member "a" s ;;

- : bool = false

How about an integer set module? Again, a couple of lines of code

suffice.

module IntSet = MakeOrderedSet

(struct

type t = int

let compare = compare

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 181

end) ;;

module IntSet :

sig

type set

type element = int

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

let s =

let open IntSet in

empty

|> add 1

|> add 2

|> add 3 ;;

val s : IntSet.set = <abstr>

IntSet.union s s ;;

- : IntSet.set = <abstr>

IntSet.member 4 s ;;

- : bool = false

12.6 A dictionary module

The query evaluation application we’ve been working on (remember

that?) required not only an implementation of a set ADT, but also a

dictionary ADT. Dictionaries are data structures that associate keys to

values, and allow for insertion and deletion of key-value associations,

and looking up of the value associated with a given key (if one exists).

We now have all the tools to build that as well. An appropriate

signature for a dictionary is

module type DICT =

sig

type key

type value

type dict

#

(* empty -- An empty dictionary *)

val empty : dict

(* lookup dict key -- Returns as an option the value

associated with the provided key. If the key is

not in the dictionary, returns None. *)

val lookup : dict -> key -> value option

(* member dict key -- Returns true if and only if the

key is in the dictionary. *)

val member : dict -> key -> bool

(* insert dict key value -- Inserts a key-value pair into

dict. If the key is already present, updates the key to

have the new value. *)

182 P RO G R A M M I N G W E L L

val insert : dict -> key -> value -> dict

(* remove dict key -- Removes the key and its value from the

dictionary, if present. If the key is not present,

returns the original dictionary. *)

val remove : dict -> key -> dict

end ;;

module type DICT =

sig

type key

type value

type dict

val empty : dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> dict

val remove : dict -> key -> dict

end

We’ll want a functor that builds dictionaries for all kinds of keys

and values. In order to make sure we can compare the keys properly,

including ordering them, we’ll need a comparison function for keys as

well. While we’re at it, we might as well use a nicer convention for the

comparison function, which will return a value of type

type order = Less | Equal | Greater ;;

The argument to the functor should thus satisfy the following signa-

ture:

module type DICT_ARG =

sig

type key

type value

(* We need to reveal the order type so users of the

module can match against it to implement compare *)

type order = Less | Equal | Greater

(* Comparison function on keys compares two elements

and returns their order *)

val compare : key -> key -> order

end ;;

module type DICT_ARG =

sig

type key

type value

type order = Less | Equal | Greater

val compare : key -> key -> order

end

An implementation of such a functor is given here. It takes a module

D satisfying DICT_ARG, providing all the needed information about the

key and value types and the ordering of keys. It allows access to the key

and value types via sharing constraints, so users of modules generated

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 183

by the functor can provide values of those types. This particular imple-

mentation of dictionaries is a simple list of key-value pairs, sorted by

unique keys.

module MakeOrderedDict (D : DICT_ARG)

: (DICT with type key = D.key

and type value = D.value) =

struct

type key = D.key

type value = D.value

#

(* Invariant: sorted by key, no duplicate keys *)

type dict = (key * value) list

#

let empty = []

#

let rec lookup d k =

match d with

| [] -> None

| (k1, v1) :: d1 ->

let open D in

match compare k k1 with

| Equal -> Some v1

| Greater -> lookup d1 k

| Less -> None

#

let member d k =

match lookup d k with

| None -> false

| Some _ -> true

#

let rec insert d k v =

match d with

| [] -> [k, v]

| (k1, v1) :: d1 ->

let open D in

match compare k k1 with

| Less -> (k, v) :: d

| Equal -> (k, v) :: d1

| Greater -> (k1, v1) :: (insert d1 k v)

#

let rec remove d k =

match d with

| [] -> []

| (k1, v1) :: d1 ->

let open D in

match compare k k1 with

| Equal -> d1

| Greater -> (k1, v1) :: (remove d1 k)

| Less -> d

end ;;

module MakeOrderedDict :

functor (D : DICT_ARG) ->

sig

184 P RO G R A M M I N G W E L L

type key = D.key

type value = D.value

type dict

val empty : dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> dict

val remove : dict -> key -> dict

end

A reverse index, recall, is just a dictionary for mapping string

keys to string set values. (The latter we’ve already built as the type

StringSet.set.) Let’s build one using the MakeOrderedDict functor.

The argument to the functor should specify the key and value types

and the ordering on keys:

module StringStringSetDictArg

: (DICT_ARG with type key = string

and type value = StringSet.set) =

struct

type key = string

type value = StringSet.set

type order = Less | Equal | Greater

let compare x y = if x < y then Less

else if x = y then Equal

else Greater

end ;;

module StringStringSetDictArg :

sig

type key = string

type value = StringSet.set

type order = Less | Equal | Greater

val compare : key -> key -> order

end

Now to generate an index module requires only a single line.

module Index = MakeOrderedDict (StringStringSetDictArg) ;;

module Index :

sig

type key = StringStringSetDictArg.key

type value = StringStringSetDictArg.value

type dict = MakeOrderedDict(StringStringSetDictArg).dict

val empty : dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> dict

val remove : dict -> key -> dict

end

By making use of these generic constructs for sets and dictionaries,

we can build a reverse index type easily, and implement query evalu-

ation in a manner that is oblivious to, hence robust to any changes in,

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 185

the implementation of the sets and dictionaries. The code for eval can

be as specified before, and repeated here.

let rec eval (q : query)

(idx : Index.dict)

: StringSet.set =

match q with

| Word word -> (match Index.lookup idx word with

| None -> StringSet.empty

| Some v -> v)

| And (q1, q2) -> StringSet.intersection (eval q1 idx)

(eval q2 idx)

| Or (q1, q2) -> StringSet.union (eval q1 idx)

(eval q2 idx) ;;

val eval : query -> Index.dict -> StringSet.set = <fun>

More generally, modules allow separating an interface from its

implementation, the key premise of abstract data types and modular

programming, and OCaml’s functors provide for constructing modules

that operate generically.

12.7 Alternative methods for defining signatures and mod-

ules

We’ve already seen two ways to define a module subject to a particular

signature. First is to name the signature explicitly using module type,

and use that name in defining the module itself.

module type SIG_NAME =

sig

...component declarations...

end ;;

module ModuleName : SIG_NAME =

struct

...component implementations...

end ;;

Second is to place an unnamed signature directly constraining the

module definition

module ModuleName : sig

...component declarations...

end =

struct

...component implementations...

end ;;

useful on occasions where the signature is quite short and will only be

used once, so retaining a name for it isn’t needed.

There is a third method, widely used within OCaml’s own imple-

mentation of library modules. All of the components defined in a .ml

186 P RO G R A M M I N G W E L L

file automatically constitute a module, whose name is generated by

converting the first letter of the filename to uppercase. For example, if

we have a file named queue.ml whose contents is

type 'a queue = 'a list

let empty_queue : 'a queue = []

let enqueue (elt : 'a) (q : 'a queue) : 'a queue =

q @ [elt]

let dequeue (q : 'a queue) : 'a * 'a queue =

match q with

| [] -> raise (Invalid_argument

"dequeue: empty queue")

| hd :: tl -> hd, tl

then we can refer in other files to Queue.queue to gain access to the

type defined in that file, to Queue.enqueue to access the enqueueing

function, and so forth. We can even place an open Queue at the top

of another file to have unprefixed access to the components of the

module.

How to define a signature for such a module though? OCaml looks

for a file with the same prefix but the extension .mli (the i is for “in-

terface”), which holds the component declarations for the signature.

Thus, we should place in a file queue.mli these declarations:

type 'a queue

val empty_queue : 'a queue

val enqueue : 'a -> 'a queue -> 'a queue

val dequeue : 'a queue -> 'a * 'a queue

The Queue module will then be constrained by this signature, simply by

virtue of the matching filenames.

12.7.1 Set and dictionary modules

The facilities for generating set modules – including the SET signature

and MakeOrderedSet functor – might well be packaged up into a single

module themselves. A file set.ml providing such a module might look

like the following:

(* A Set Module *)

(*...

Set interface

*)

module type SET =

sig

type element (* elements of the set *)

type set (* sets formed from the elements *)

(* The empty set *)

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 187

val empty : set

(* Returns true if set is empty; false otherwise *)

val is_empty : set -> bool

(* Adds element to existing set (if not already a member) *)

val add : element -> set -> set

(* Union of two sets *)

val union : set -> set -> set

(* Intersection of two sets *)

val intersection : set -> set -> set

(* Returns true iff element is in set *)

val member : element -> set -> bool

end ;;

(*...

An implementation for elements of ordered type

*)

(* Module for types with a comparison function *)

module type COMPARABLE =

sig

(* The type of comparable elements *)

type t

(* We need to reveal the order type so users of the

module can match against it *)

type order = Less | Equal | Greater

(* Comparison function compares two elements of the

type and returns their order *)

val compare : t -> t -> order

end

(* Functor that generates sets for any comparable type *)

module MakeOrderedSet (Elements : COMPARABLE)

: (SET with type element = Elements.t) =

(* Implementation of SET as list of elements. Assumes

list is sorted with no duplicates. *)

struct

type element = Elements.t

type set = element list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

| [] -> false

| hd :: tl ->

let open Elements in

(* so that Elements.compare, Elements.Less,

etc. are in scope *)

match compare elt hd with

| Equal -> true

| Less -> false

| Greater -> member elt tl

188 P RO G R A M M I N G W E L L

let rec add elt s =

(* add the elt in the proper place in the

ordered list *)

match s with

| [] -> [elt]

| hd :: tl ->

let open Elements in

match compare elt hd with

| Less -> elt :: s

| Equal -> s

| Greater -> hd :: add elt tl

let union s1 s2 = List.fold_right add s1 s2

let rec intersection xs ys =

match xs, ys with

| [], _ -> []

| _, [] -> []

| xh :: xt, yh :: yt ->

let open Elements in

match compare xh yh with

| Equal -> xh :: intersection xt yt

| Less -> intersection xt ys

| Greater -> intersection xs yt

end ;;

This file defines a module called set that enables usage like the

following, to define and use a StringSet module:

module StringSet =

let open Set in

MakeOrderedSet

(struct

type t = string

type order = Less | Equal | Greater

let compare s t = if s < t then Less

else if s = t then Equal

else Greater

end) ;;

let s = StringSet.create

|> StringSet.add "a"

|> StringSet.add "b"

|> StringSet.add "a" ;;

12.8 Library Modules

Data structures like sets and dictionaries are so generally useful that

you might think the language ought to provide them so that each indi-

vidual programmer doesn’t need to implement them. In fact, OCaml

does provide these and many other data structures – as L I B R A RY M O D -

U L E S.

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 189

In particular, the Set library module provides functionality much

like the Set module in the previous section, and the Map library mod-

ule provides functionality much like our dictionary module and its

MakeOrderedDict functor.

In later chapters, we’ll happily avail ourselves of these built-in li-

braries. Nonetheless, it’s still important to see how such simple and

general abstract data structures can be provided as modules, for sev-

eral reasons: to demystify what’s going on in the library-provided

modules, to instantiate the idea that the language itself is sufficient for

implementing these ideas, and as examples to inspire ways to imple-

ment other, more application-specific abstract data structures.

12.9 Problem section: Image manipulation

We define here a signature for modules that deal with images and their

manipulation.

module type IMAGING =

sig

(* types for images, which are composed of pixels *)

type image

type pixel

(* an image size is a pair of ints giving number of

rows and columns *)

type size = int * int

(* converting between integers and pixels *)

val to_pixel : int -> pixel

val from_pixel : pixel -> int

(* apply an image filter, a function over pixels,

to every pixel in an image *)

val filter : (pixel -> pixel) -> image -> image

(* apply an image filter to two images, combining

the images pixel by pixel *)

val filter2 : (pixel -> pixel -> pixel)

-> image -> image -> image

(* return a "constant" image of the specified size

where every pixel has the same value *)

val const : pixel -> size -> image

(* display the image in a graphics window *)

val depict : image -> unit

end ;;

The pixels that make up an image are specified by the following signa-

ture:

module type PIXEL =

sig

type t

val to_pixel : int -> t

val from_pixel : t -> int

end

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.html

190 P RO G R A M M I N G W E L L

Problem 103

We’d like to implement a functor named MakeImaging for generating implementations
of the IMAGING signature based on modules satisfying the PIXEL signature. How should
such a functor start? Give the header line of such beginning with the keyword module

and ending with the = struct....

Here is a module implementing the PIXEL signature for integer

pixels.

module IntPixel : (PIXEL with type t = int) =

struct

type t = int

let to_pixel x = x

let from_pixel x = x

end ;;

Problem 104

Write code that uses the IntPixel module to define an imaging module called
IntImaging.

Problem 105

Write code to use the IntImaging module that you defined in Problem 104 to display a
100 by 100 pixel image where all of the pixels have the constant integer value 5000.

12.10 Problem section: An abstract data type for intervals

A good candidate for an abstract data type is the I N T E RVA L. Abstractly

speaking, an interval is a region between two points, where all that is

required of points is that we be able to compare them as an ordering

(so that we have a well-defined notion of “between”). That is, points

ought to obey the following signature, which may look familiar, as

you’ve seen it in other contexts:

module type COMPARABLE =

sig

type t

type order = Less | Equal | Greater

val compare : t -> t -> order

end ;;

Intervals come up in many different contexts. As an informal ex-

ample, calendars need to associate events with time intervals, such as

3-4pm or 11:30am-3:30pm; the endpoints in this case would be times.

Natural operations over intervals include: the construction of an inter-

val between two points, the extraction of the endpoints of an interval,

taking the union of two intervals (the smallest interval containing

both) or their intersection, and determining the relation between two

intervals (whether they are disjoint, overlapping, or one contains the

other). Here is a signature that provides for this functionality.

module type INTERVAL =

sig

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 191

type point

type interval

type relation = Disjoint | Overlaps | Contains

(* Returns the interval between two points *)

val interval : point -> point -> interval

(* Returns the endpoints of an interval as a pair

with the first point less than the second. *)

val endpoints : interval -> point * point

(* Returns the union of two intervals *)

val union : interval -> interval -> interval

(* Returns the relation holding between two intervals *)

val relation : interval -> interval -> relation

end ;;

The possible relations between two intervals are depicted in Fig-

ure 12.3. (For the interval arithmetic cognoscenti, we’ve left out

many details, such as whether intervals are open or closed; more

fine-grained relations; and many other useful operations on intervals.

These issues are beyond the scope of this problem.)

Overlaps

Contains

Disjoint

Figure 12.3: A diagrammatic depiction
of the possible relations holding be-
tween two intervals. In the diagram, the
gray intervals in the three groups below
the black interval are in the “overlaps”
(top 2), “contains” (next 5), and “dis-
joint” (bottom 3) relations, respectively,
with the black interval at top. The verti-
cal dotted lines depict the endpoints of
the black interval.

Problem 106

We’d like to have a functor named MakeInterval for generating implementations of the
INTERVAL signature based on modules satisfying the COMPARABLE signature. How should
such a functor start? Give the header line of such a functor definition beginning with the
keyword module and ending with the = struct....

Problem 107

An appropriate module satisfying COMPARABLE for the purpose of generating discrete
time intervals would be one where the type is int, with an appropriate comparison
function. Define a module named DiscreteTime satisfying COMPARABLE where the type
is int. Make sure the type is accessible outside the module.

Problem 108

Now use the functor MakeInterval to define a module DiscreteTimeInterval
that provides interval functionality over discrete times as defined by the module
DiscreteTime above.

Problem 109

The intersection of two intervals is only well-defined if the intervals are not disjoint. As-
sume that the DiscreteTimeInterval module has been opened, allowing you to make
use of everything in its signature. Now, define a function intersection : interval

-> interval -> interval option that takes two intervals and returns None if they are
disjoint and otherwise returns their intersection (embedded appropriately in the option
type).

Problem 110

Provide three different unit tests that would be useful in testing the correctness of the
DiscreteTimeInterval module.

12.11 Problem section: Mobiles

The artist Alexander Calder (1898-1976) is well known for his distinc-

tive mobiles, sculptures with different shaped objects hung from a

cascade of connecting metal bars. An example is given in Figure 12.4.

Figure 12.4: Alexander Calder’s
L’empennage (1953).

His mobiles are made with varying shapes at the ends of the con-

nectors – circles, ovals, fins. The exquisite balance of the mobiles

192 P RO G R A M M I N G W E L L

depends on the weights of the various components. In the next few

exercises of this problem, you will model the structure of mobiles as

binary trees such that one can determine if a Calder-like mobile design

is balanced or not. Let’s start with the objects at the ends of the con-

nectors. For our purposes, the important properties of an object will be

its shape and its weight (in arbitrary units; you can interpret them as

pounds).
Problem 111

Define a weight type consisting of a single floating point weight.

Problem 112

Define a shape type, a variant type that allows for three different shapes: circles, ovals,
and fins.

Problem 113

Define an object type that will be used to store information about the objects at the
ends of the connectors, in particular, their weight and their shape.

A mobile can be modeled as a kind of binary tree, where the leaves

of the tree, representing the objects, are elements of type obj, and

the internal nodes, representing the connectors, have a weight, and

each internal node (connector) connects two submobiles. Rather than

directly writing code for a mobile type, though, we’ll digress to build a

more general binary tree module, and then model mobiles using that.

An appropriate signature BINTREE for a simple binary tree module

might be the following:

module type BINTREE =

sig

type leaft (* the type for the leaves of the tree *)

type nodet (* the type for the internal nodes of the tree *)

type tree (* the type for the trees themselves *)

val make_leaf : leaft -> tree

val make_node : nodet -> tree -> tree -> tree

val walk : (leaft -> 'a)

-> (nodet -> 'a -> 'a -> 'a) -> tree -> 'a

end ;;

This module signature specifies separate types for the leaves of trees

and the internal nodes of trees, along with a type for the trees them-

selves; functions for constructing leaf and node trees; and a single

function to "walk" the tree. (We’ll come back to the walk function

later.) In addition to the signature for binary tree modules, we would

need a way of generating implementations of modules satisfying the

BINTREE signature, which we’ll do with a functor MakeBintree. The

MakeBinTree functor takes an argument module of type BINTREE_ARG

that packages up the particular types for the leaves and nodes, that is,

the types to use for leaft and nodet. The following module signature

will work:

A B S T R AC T D ATA T Y P E S A N D M O D U L A R P RO G R A M M I N G 193

module type BINTREE_ARG =

sig

type leaft

type nodet

end ;;

Problem 114

Write down the header of a definition of a functor named MakeBintree taking a
BINTREE_ARG argument, which generates modules satisfying the BINTREE signature.
Keep in mind the need for users of the functor-generated modules to access appropriate
aspects of the generated trees. (You don’t need to fill in the actual implementation of the
functor.)

Using the MakeBintree functor described above, you can now

generate a Mobile module, which has objs at the leaves and weights

at the interior nodes.
Problem 115

Define a module Mobile using the functor MakeBintree.

Problem 116

You’ve just used the MakeBintree functor without ever seeing its implementation. Why
is this possible?

Figure 12.5: A simple Calder-style
mobile. The depicted mobile has two
connectors and three objects (an oval
and two fins). The connectors each
weigh 1.0, and the objects’ weights are
as given in the figure.

You can now build a representation of a mobile using the functions

that the Mobile module makes available.
Problem 117

Define a value mobile1 of type Mobile.tree that represents a mobile structured as the
one depicted in Figure 12.5.

The walk function, of type (leaft -> ’a) -> (nodet -> ’a

-> ’a -> ’a) -> tree -> ’a, is of special interest, since it is the

sole method for performing computations over these binary trees.

The function is a kind of fold that works over trees instead of lists. It

takes two functions – one for leaves and one for nodes – and applies

these functions to a tree to generate a single value. The leaf function

takes a leaft and returns some value of type ’a. The node function

takes a nodet, as well as the two ’a values recursively returned by

walking its two subtrees, and computes the value for the node itself.

For example, we can use walk to define a function size that counts

how many objects there are in a mobile. The function uses the fact that

leaves are of size 1 and the size of a non-leaf is the sum of the sizes of

its subtrees.

let size mobile =

Mobile.walk (fun _leaf -> 1)

(fun _node left_size right_size ->

left_size + right_size)

mobile ;;

Problem 118

What is the type of size?

Problem 119

Use the fact that the walk function is curried to give a slightly more concise definition for
size.

194 P RO G R A M M I N G W E L L

Problem 120

Use the walk function to implement a function shape_count : shape ->

Mobile.tree -> int that takes a shape and a mobile (in that order), and returns
the number of objects in the mobile that have that particular shape.

A mobile is said to be balanced if every connector has the property

that the total weight of all components (that is, objects and connec-

tors) of its left submobile is the same as the total weight of all com-

ponents of its right submobile. (In actuality, we’d have to worry about

other things like the relative lengths of the arms of the connectors, but

we’ll ignore all that.)
Problem 121

Is the mobile shown balanced? Why or why not?

Problem 122

Implement a function balance : Mobile.tree -> weight option that takes a
mobile, and returns None if the argument mobile is not balanced, and Some w if the
mobile is balanced, where w is the total weight of the mobile.

12.12 Supplementary material

• Lab 7: Modules and abstract data types

• Lab 8: Functors

• Problem set A.5: Ordered collections

http://url.cs51.io/lab7
http://url.cs51.io/lab8

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

