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Semantics: The substitution model

We’ve introduced a broad swath of OCaml, describing both the syntax

of different constructions and their use in constructing programs. But

why the expressions of OCaml actually have the meanings they have

has been dealt with only informally.

Semantics is about what expressions mean. As described so far, ask-

ing what an OCaml expression means is tantamount to asking what it

evaluates to, what value it “means the same” as. Before getting into the

details, however, it bears considering why a formal, rigorous, precise

semantics of a programming language is even useful. Why not stick

to the informal discussion of what the constructs of a programming

language do? After all, such informal discussions, written in a natural

language (like English), seem to work just fine for reference manuals

and training videos.

There are three reasons that formalizing a semantics with mathe-

matical rigor is beneficial.

Mental hygiene Programming is used to communicate our com-

putational intentions to others. But what exactly is being com-

municated? Without a precise meaning to the expressions of the

programming language, there is room for miscommunication from

program author to reader.

Interpreters Computers generate computation by interpreting the

expressions of the programming language. Developers of inter-

preters (or compilers) for a programming language implement their

understanding of the meaning of the constructs of the program-

ming language. Without a precise meaning to the expressions of

the programming language, two interpreters might generate differ-

ent computations for the same expression, even though both were

written in good faith efforts to manifest the interpreter developers’

understandings of the language.

Metaprogramming Programs that operate over expressions of the
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programming language – such as programs to verify correctness of a

program or transform it for efficiency or analyze it for errors – must

use a precise notion of the meanings of those expressions.

For these reasons, we introduce in this chapter a technique for giving a

semantics to some small subsets of OCaml. We continue this exercise

in Chapter 19. The final project described in Chapter A – the imple-

mentation of a small subset of OCaml – relies heavily on the discussion

in these two chapters.

As noted, we’ll cash out the meaning of an expression by gener-

ating a simpler expression that “means the same”. In essence, this is

the notion of evaluation that we’ve seen before. In this chapter we’ll

introduce a first method for providing a rigorous semantics of a pro-

gramming language, based on the substitution of subexpressions,

substituting for particular expressions expressions that “mean the

same” but that are simpler.

Figure 13.1: Gottfried Wilhelm Leibniz
(1646–1716), German philosopher, (co-
)inventor of the differential and integral
calculus, and philosopher. His law of
the identity of indiscernibles underlies
substitution semantics.

The underlying conception of substitution as the basis for seman-

tics dates from 1677 in Gottfried Leibniz’s statement of the identity of

indiscernibles:

That A is the same as B signifies that the one can be substituted for the

other, salva veritate, in any proposition whatever.

Salva veritate – preserving the truth. Leibniz claims that substituting

one expression with another that means the same thing preserves the

truth of expressions.

We’ll see later (Chapters 15 and 16) that a naive interpretation of

Leibniz’s law isn’t sustainable. In particular, in the presence of state

and state change, the province of imperative programming, the law

seems to fail. But for the portion of OCaml we’ve seen so far, Leibniz’s

statement works quite well.

Following Leibniz’s view, in this chapter we provide a semantics

for a language that can be viewed as a (simple and untyped) subset

of OCaml, with constructs like arithmetic and boolean operators,

conditionals, functions (including recursive functions), and local

naming.

We provide these semantic notions in two ways: as formal rule

systems that define the evaluation relation, and as computer programs

to evaluate expressions to their values.

The particular method of providing formal semantics that we in-

troduce in this chapter is called large-step operational semantics and

is based on the N AT U R A L S E M A N T I C S method of computer scientist

Gilles Kahn (Figure 13.2).

Figure 13.2: Gilles Kahn (1946–2006),
French computer scientist, developer
of the natural semantics approach to
programming language semantics.
Kahn was president of the French
research institute INRIA, where OCaml
was developed.

The semantics we provide is F O R M A L in the sense that the semantic

rules rely only on manipulations based on the forms of the notations
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we introduce. The semantics we provide is an O P E R AT I O N A L S E M A N -

T I C S because we provide a formal specification of what programs

evaluate to, rather than what they denote.1 The semantics we provide is

1 The primary alternative method
of providing a formal semantics is
D E N OTAT I O N A L S E M A N T I C S, which
addresses exactly this issue of what
expressions denote.

a L A RG E - S T E P semantics because it characterizes directly the relation

between expressions and what they (eventually, after perhaps many

individual small steps) evaluate to, rather than characterizing the rela-

tion between expressions and what they lead to after each individual

small step. (That would be a S M A L L - S T E P S E M A N T I C S.) Notationally,

we characterize this relation between an expression P and the value v

it evaluates to with an evaluation J U D G E M E N T notated P ⇓ v , which

can be read as “the expression P evaluates to the value v”.

13.1 Semantics of arithmetic expressions

Recall the language of arithmetic expressions from Section 11.4. We

start by augmenting that language with a local naming construct, the

let 〈〉 in 〈〉 . We’ll express the abstract syntax of the language using the

following BNF:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉

Exercise 123

For brevity, we left off unary operators. Extend the grammar to add unary operators
(negation, say).

With this grammar, we can express the abstract syntax of the con-

crete expression

let x = 3 in

let y = 5 in

x * y
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as the tree

〈expr〉

〈expr〉

〈expr〉

〈expr〉

〈expr〉

〈var〉

y

〈binop〉

*

〈expr〉

〈var〉

x

in〈expr〉

〈integer〉

5

=〈var〉

y

let

in〈expr〉

〈integer〉

3

=〈var〉

x

let

What rules shall we use for evaluating the expressions of the lan-

guage? Recall that we write a judgement P ⇓ v to mean that the expres-

sion P evaluates to the value v . The VA LU E S, the results of evaluation,

are those expressions that evaluate to themselves. By convention, we’ll

use italic capitals like P , Q, etc. to stand for arbitrary expressions, and

v (possibly subscripted) to stand for expressions that are values. You

should think of P and v as expressions structured as per the abstract

syntax of the language – it is the abstract, structured expressions that

have well-defined meanings by the rules we’ll provide – though we

notate them using the concrete syntax of OCaml, since we need some

linear notation for specifying them.

Certain cases are especially simple. Numeric literal expressions like

3 or 5 are already as simplified as they can be. They evaluate to them-

selves; they are values. We could enumerate a plethora of judgements

that express this self-evaluation, like

1 ⇓ 1
2 ⇓ 2
3 ⇓ 3
4 ⇓ 4
5 ⇓ 5
· · ·

but we’d need an awful lot of them. Instead, we’ll just use a schematic

rule for capturing permissible judgements:

n ⇓ n (Rint )
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Here, we use a schematic variable n to stand for any integer, and use

the notation n for the OCaml numeral expression that encodes the

number n.

Using this schematic rule notation we can provide general rules for

evaluating other arithmetic expressions. To evaluate an expression of

the form P + Q, where P and Q are two subexpressions, we first need

to know what values P and Q evaluate to; since they will be numeric

values, we can take them to be m and n, respectively. Then the value

that P + Q evaluates to will be m +n. We’ll write the rule as follows:

P + Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ m +n

(R+)

In this rule notation, the first line is intended to indicate that we are

evaluating P + Q, the blank space to the right of the ⇓ indicating that

some further evaluation judgements are required. Those are the two

indented judgements provided to the right of the long vertical bar

between the two occurrences of ⇓. The final line provides the value

that the original expression evaluates to.

Thus, this rule can be glossed as “To evaluate an expression of

the form P + Q, first evaluate P to an integer value m and Q to an

integer value n. The value of the full expression is then the integer

literal representing the sum of m and n.” The two subderivations for

P ⇓ m and Q ⇓ n are derived independently, and not in any particular

order.

Using these two rules, we can now show a particular evaluation, like

that of the expression 3 + 5:2 2 Wait, where did that 8 come from
exactly? Since 3 ≡ 3 and 5 ≡ 5, the rule
Rint gives the result as 3+5 ≡ 8 ≡ 8.3 + 5 ⇓∣∣∣∣∣ 3 ⇓ 3

5 ⇓ 5
⇓ 8

or the evaluation of 3 + 5 + 7:

3 + 5 + 7 ⇓∣∣∣∣∣∣∣∣∣∣∣∣

3 + 5 ⇓∣∣∣∣∣ 3 ⇓ 3
5 ⇓ 5

⇓ 8
7 ⇓ 7

⇓ 15
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Exercise 124

Why is the proof for the value of 3 + 5 + 7 not structured as

3 + 5 + 7 ⇓∣∣∣∣∣∣∣∣∣∣∣

3 ⇓ 3
5 + 7 ⇓∣∣∣∣ 5 ⇓ 5

7 ⇓ 7
⇓ 12

⇓ 15 ?

We should have similar rules for other arithmetic operators. Here’s a

possible rule for division:

P / Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ ⌊m/n⌋

(R/)

In this rule, we’ve used some standard mathematical notation in the

final result: / for numeric division and ⌊ ⌋ for truncating a real number

to an integer.

These rules for addition and division may look trivial, but they are

not. The division rule specifies that the / operator in OCaml when

applied to two numerals specifies the integer portion of their ratio. The

language being specified might have been otherwise.3 The language

3 What may be mind-boggling here is
the role of the mathematical notation
used in the result part of the rule. How
is it that we can make use of notations
like ⌊m/n⌋ in defining the semantics of
the / operator? Doesn’t appeal to that
kind of mathematical notation beg the
question? Or at least call for its own
semantics? Yes, it does, but since we
have to write down the semantics of
constructs somehow or other, we use
commonly accepted mathematical
notation applied in the context of
natural language (in the case at hand,
English). You may think that this merely
postpones the problem of giving OCaml
semantics by reducing it to the problem
of giving semantics for mathematical
notation and English. You would
be right, and the problem is further
exacerbated when the semantics makes
use of mathematical notation that is not
so familiar, for instance, the substitution
notation to be introduced shortly. But
we have to start somewhere.

might have used a different operator (like //) for integer division,

P // Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ ⌊m/n⌋
(as happens to be used in Python 3 for instance). The example should

make clear the distinction between the O B J E C T L A N G UAG E whose

semantics is being defined and the M E TA L A N G UAG E being used to

define it.

Similarly, the rule could have defined the result differently, say

P / Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n ,

⇓ ⌈m/n⌉
which specifies that the result of the division is the integer resulting

from rounding up, rather than down.

Nonetheless, there is not too much work being done by these rules,

and if that were all there were to defining a semantics, there would be
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little reason to go to the trouble. Things get more interesting, however,

when additional constructs such as local naming are considered,

which we turn to next.

Exercise 125

Write evaluation rules for the other binary operators and the unary operators you added
in Exercise 123.

13.2 Semantics of local naming

The 〈expr〉 language defined in the grammar above includes a lo-

cal naming construct, whose concrete syntax is expressed with

let 〈〉 in 〈〉 . What is the semantics of such an expression? It is here

that substitution starts to play a critical role. We will take the meaning

of this local naming construct to work by substituting the value of the

definition for occurrences of the variable in the body. More precisely, we

use the following evaluation rule:

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD ] ⇓ vB

⇓ vB

(Rlet )

We’ve introduced a new notation – Q[x 7→ P ] – for substituting the

expression P for occurrences of the variable x in the expression Q. For

instance,

(x * x)[x 7→ 5] = 5 * 5

that is, substituting 5 for x in the expression x * x yields 5 * 5. (It

doesn’t yield 25 though. That would require a further evaluation, which

is what the part of the rule B [x 7→ vD ] ⇓ vB does.)

The evaluation rule Rlet can be glossed as follows: “To evaluate an

expression of the form let x = D in B , first evaluate the expres-

sion D to a value vD and evaluate the result of substituting vD for

occurrences of x in the expression B to a value vB . The value of the full

expression is then vB .”

Using this rule (and the others), we can now show

let x = 5 in x * x ⇓ 25
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as per the following derivation:

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣∣∣ 5 ⇓ 5

5 ⇓ 5
⇓ 25

⇓ 25

Let’s put this first derivation together step by step so the steps are

clear. We want a derivation that demonstrates what let x = 5 in x

* x evaluates to. It will be of the form

let x = 5 in x * x ⇓∣∣∣ ...

⇓ ·· ·

This pattern matches rule Rlet , where x plays the role of the schematic

variable x, 5 plays the role of the schematic expression D , and x *
x plays the role of B . We will plug these into the two subderivations

required. First is the subderivation evaluating D (that is, 5):

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣

5 ⇓∣∣∣ ...

⇓ ·· ·
· · ·

⇓ · · ·

This subderivation can be completed using the Rint rule, which re-

quires no subderivations itself.

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣
5 ⇓
|
⇓ 5

· · ·
⇓ · · ·

Thus, the result of this subderivation, vD is 5.

Second is the subderivation for evaluating B [x 7→ vD ] to its value vB .
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Now

B [x 7→ vD ] = (x * x)[x 7→ 5]

= x[x 7→ 5] * x[x 7→ 5]

= 5 * 5

(We’ll define this substitution operation carefully in Section 13.3.) So

the second subderivation must evaluate the expression 5 * 5:

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣ ...

⇓ ·· ·
⇓ · · ·

This second subderivation matches a rule R∗ analogous to R+. (You

would have written it in Exercise 125.) Here, 5 plays the role of both P

and Q:

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣∣∣ 5 ⇓ m

5 ⇓ n

⇓ m ·n

⇓ ·· ·

Now, the subderivations of the 5 * 5 subderivation both evaluate to

5. We use the Rint rule twice, with 5 for both m and n, so m and n are

both 5, and m ·n is 25. The result for the original expression as a whole

is therefore also 25.

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣∣∣ 5 ⇓ 5

5 ⇓ 5
⇓ 25

⇓ 25

Exercise 126

Carry out derivations for the following expressions:

1. let x = 3 in let y = 5 in x * y
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2. let x = 3 in let y = x in x * y

3. let x = 3 in let x = 5 in x * y

4. let x = 3 in let x = x in x * x

5. let x = 3 in let x = y in x * x

Are the values for these expressions according to the semantics consistent with how
OCaml evaluates them?

13.3 Defining substitution

Because of the central place of substitution in providing the semantics

of the language, this approach to semantics is referred to as a S U B S T I -

T U T I O N S E M A N T I C S.

Some care is needed in precisely defining this substitution opera-

tion. A start (which we’ll see in Section 13.3.2 isn’t fully correct) is given

by the following recursive equational definition:4 4 The ≡ operator here is intended to
indicate syntactic identity, that is, that
its arguments are the same (syntactic)
expression. Thus, x ̸≡ y specifies that
the two variables notated x and y
are not two occurrences of the same
variable.

m[x 7→Q] = m

x[x 7→Q] =Q

y[x 7→Q] = y where x ̸≡ y

(P + R)[x 7→Q] = P [x 7→Q] + R[x 7→Q]

and similarly for other binary operators

(let y = D in B)[x 7→Q] = let y = D[x 7→Q] in B [x 7→Q]

Exercise 127

Verify using this definition for substitution the derivation above showing that
(x * x)[x 7→ 5] = 5 * 5.

13.3.1 A problem with variable scope

You may have noticed in Exercise 126 that some care must be taken

when substituting. Consider the following case:

let x = 3 in let x = 5 in x

Intuitively, given the scope rules of OCaml described informally in Sec-

tion 5.5, this expression should evaluate to 5, since the final occurrence

of x is bound by the inner let (defined to be 5), not the outer one.
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However, if we’re not careful, we’ll get a derivation like this:

let x = 3 in let x = 5 in x

⇓∣∣∣∣∣∣∣∣∣∣∣∣

3 ⇓ 3
let x = 5 in 3 ⇓∣∣∣∣∣ 5 ⇓ 5

3 ⇓ 3
⇓ 3

⇓ 3

The highlighted expression is supposed to be the result of replacing x

with its value 3 in the body of the definition let x = 5 in x, that is,

(let x = 5 in x)[x 7→ 3] .

Using the equational definition given above, we have

(let x = 5 in x)[x 7→ 3]

= let x = 5[x 7→ 3] in x[x 7→ 3]

= let x = 5 in x[x 7→ 3]

= let x = 5 in 3 .

13.3.2 Free and bound occurrences of variables

It appears we must be very careful in how we define this substitution

operation P [x 7→ Q]. In particular, we don’t want to replace every

occurrence of the token x in P , only the free occurrences. The variable

being introduced in a let should definitely not be replaced, nor should

any occurrences of x within the body of a let that also introduces x.

A binding construct (a let or a fun) is said to B I N D the variable

that it introduces. A variable occurrence is said to be B O U N D if it falls

within the scope of a construct that binds that variable. Thus, in the

expressions fun x -> x + y or let x = 3 in x + y, the high-

lighted occurrences of x are bound occurrences, bound by the fun or

let, respectively, in the expressions.

A variable occurrence is said to be F R E E if it is not bound. Thus,

in the expressions fun x -> x + y or let x = 3 in x + y , the

occurrences of y are free occurrences.

Exercise 128

In the following expressions, draw a line connecting each bound variable to the binding
construct that binds it. Then circle all of the free occurrences of variables.

1. x

2. x + y
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3. let x = 3 in x

4. let f = f 3 in x + y

5. (fun x -> x + x) x

6. fun x -> let x = y in x + 3

We can define the set5 of F R E E VA R I A B L E S in an expression P , no- 5 For a review of the set notations that
we use, see Section B.5.tated FV (P ), through the recursive definition in Figure 13.3. By way

of example, the definition says that the free variables in the expres-

sion fun y -> f (x + y) are just f and x, as shown in the following

derivation:

FV (fun y -> f (x + y)) = FV (f (x + y))− {y}

= FV (f)∪FV (x + y)− {y}

= {f}∪FV (x)∪FV (y)− {y}

= {f}∪ {x}∪ {y}− {y}

= {f,x,y}− {y}

= {f,x}

Exercise 129

Use the definition of FV to derive the set of free variables in the expressions below.
Circle all of the free occurrences of the variables.

1. let x = 3 in let y = x in f x y

2. let x = x in let y = x in f x y

3. let x = y in let y = x in f x y

4. let x = fun y -> x in x

Exercise 130

The definition of FV in Figure 13.3 is incomplete, in that it doesn’t specify the free
variables in a let rec expression. Add appropriate rules for this construct of the
language, being careful to note that in an expression like let rec x = fun y -> x in

x, the variable x is not free. (Compare with Exercise 129(4).)

13.3.3 Handling variable scope properly

Now that we have formalized the idea of free and bound variables,

it may be clearer what is going wrong in the previous substitution

example. The substitution rule for substituting into a let expression

(let y = D in B)[x 7→Q] = let y = D[x 7→Q] in B [x 7→Q]

shouldn’t apply when x and y are the same variable. In such a case, the

occurrences of x in D or B are not free occurrences, but are bound by

the let. We modify the definition of substitution accordingly:
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m[x 7→Q] = m

x[x 7→Q] =Q

y[x 7→Q] = y where x ̸≡ y

(P + R)[x 7→Q] = P [x 7→Q] + R[x 7→Q] and similarly for other binary operators

(let y = D in B)[x 7→Q] = let y = D[x 7→Q] in B [x 7→Q] where x ̸≡ y

(let x = D in B)[x 7→Q] = let x = D[x 7→Q] in B

Exercise 131

Use the definition of the substitution operation above to give the expressions (in con-
crete syntax) specified by the following substitutions:

1. (x + x)[x 7→ 3]

2. (x + x)[y 7→ 3]

3. (x * x)[x 7→ 3 + 4]

4. (let x = y in y + x)[y 7→ z]

5. (let x = y in y + x)[x 7→ z]

Exercise 132

Use the semantic rules developed so far (see Figure 13.5) to reduce the following expres-
sions to their values. Show the derivations.

1. let x = 3 * 4 in
x + x

2. let y = let x = 5
in x + 1

in y + 2

13.4 Implementing a substitution semantics

Given a grammar and appropriate semantic evaluation rules and def-

initions for substitution, it turns out to be quite simple to implement

the corresponding semantics, as a function that evaluates expressions

to their values.

The grammar defining the abstract syntax of the language (repeated

here for reference)

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉

can be implemented, as we have done before (Section 11.4), with an

algebraic type definition
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# type binop = Plus | Divide ;;

type binop = Plus | Divide

# type varspec = string ;;

type varspec = string

# type expr =

# | Int of int

# | Var of varspec

# | Binop of binop * expr * expr

# | Let of varspec * expr * expr ;;

type expr =

Int of int

| Var of varspec

| Binop of binop * expr * expr

| Let of varspec * expr * expr

The varspec type specifies strings as a means to differentiate distinct

variables. The binop type enumerates the various binary operators.

(For brevity, in this example, we’ve only included two binary operators,

for addition and division.) The expr type provides the alternative

methods for building expressions recursively.

Then, the abstract syntax for the concrete expression

let x = 3 in

let y = 5 in

x / y

is captured by the OCaml expression

# Let ("x", Int 3,

# Let ("y", Int 5,

# Binop (Divide, Var "x", Var "y"))) ;;

- : expr =

Let ("x", Int 3, Let ("y", Int 5, Binop (Divide, Var "x", Var

"y")))

Exercise 133

Augment the type definitions to allow for other binary operations (subtraction and
multiplication, say) and for unary operations (negation).

13.4.1 Implementing substitution

With a representation of expressions in hand, we can proceed to im-

plement various useful functions over the expressions. Rather than

provide implementations, we leave them as exercises.

Exercise 134

Write a function subst : expr -> varspec -> expr -> expr that performs substi-
tution, that is, subst p x q returns the expression that is the result of substituting q for
the variable x in the expression p. For example,
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# subst (Binop (Plus, Var "x", Var "y")) "x" (Int 3) ;;
- : expr = Binop (Plus, Int 3, Var "y")
# subst (Binop (Plus, Var "x", Var "y")) "y" (Int 3) ;;
- : expr = Binop (Plus, Var "x", Int 3)
# subst (Binop (Plus, Var "x", Var "y")) "z" (Int 3) ;;
- : expr = Binop (Plus, Var "x", Var "y")

13.4.2 Implementing evaluation

Now the semantics of the language – the evaluation of expressions

to their values – can be implemented as a recursive function eval :

expr -> expr, which follows the evaluation rules just introduced. The

type of the function indicates that the header line should be

let rec eval (exp : expr) : expr = ...

The computation proceeds based on the structure of exp, which might

be any of the structures introducing the semantic rules. Consequently,

we match on these structures:

let rec eval (exp : expr) : expr =

match exp with

| Int n -> ...

| Var x -> ...

| Binop (Plus, e1, e2) -> ...

| Binop (Divide, e1, e2) -> ...

| Let (var, def, body) -> ...

The computation for each of the cases mimics the computations in the

evaluation rules exactly. Integers, for instance, are self-evaluating.

let rec eval (exp : expr) : expr =

match exp with

| Int n -> Int n

| Var x -> ...

| Binop (Plus, e1, e2) -> ...

| Binop (Divide, e1, e2) -> ...

| Let (var, def, body) -> ...

The second pattern concerns what should be done for evaluating free

variables in expressions. (Presumably, any bound variables were sub-

stituted away by virtue of the final pattern-match.) We have provided

no evaluation rule for free variables, and for good reason. Expressions

with free variables, called O P E N E X P R E S S I O N S, don’t have a value in

and of themselves. Consequently, we can simply report an error upon

evaluation of a free variable. We introduce an exception for this pur-

pose.

let rec eval (exp : expr) : expr =

match exp with

| Int n -> Int n

| Var x -> raise (UnboundVariable x)

| Binop (Plus, e1, e2) -> ...

| Binop (Divide, e1, e2) -> ...

| Let (var, def, body) -> ...
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The binary operator rules work by recursively evaluating the operands

and applying an appropriate computation to the results.

let rec eval (exp : expr) : expr =

match exp with

| Int n -> Int n

| Var x -> raise (UnboundVariable x)

| Binop (Plus, e1, e2) ->

let Int m = eval e1 in

let Int n = eval e2 in

Int (m + n)

| Binop (Divide, e1, e2) ->

let Int m = eval e1 in

let Int n = eval e2 in

Int (m / n)

| Let (var, def, body) -> ...

Finally, the naming rule Rlet performs substitution of the value of

the definition in the body, and evaluates the result. We appeal to the

function subst from Exercise 134.

# exception UnboundVariable of string ;;

exception UnboundVariable of string

# let rec eval (exp : expr) : expr =

# match exp with

# | Int n -> Int n (* R_int *)

# | Var x -> raise (UnboundVariable x)

# | Binop (Plus, e1, e2) -> (* R_+ *)

# let Int m = eval e1 in

# let Int n = eval e2 in

# Int (m + n)

# | Binop (Divide, e1, e2) -> (* R_/ *)

# let Int m = eval e1 in

# let Int n = eval e2 in

# Int (m / n)

# | Let (var, def, body) -> (* R_let *)

# let def' = eval def in

# eval (subst body var def') ;;

Lines 7-8, characters 0-11:

7 | let Int n = eval e2 in

8 | Int (m + n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

Lines 6-8, characters 0-11:

6 | let Int m = eval e1 in

7 | let Int n = eval e2 in

8 | Int (m + n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

Lines 11-12, characters 0-11:

11 | let Int n = eval e2 in
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12 | Int (m / n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

Lines 10-12, characters 0-11:

10 | let Int m = eval e1 in

11 | let Int n = eval e2 in

12 | Int (m / n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

val eval : expr -> expr = <fun>

Two problems jump out: First, violating the edict of intention,

we’ve not provided information about what to do in cases where the

arguments to an integer operator evaluate to something other than in-

tegers. These show up as “pattern-matching not exhaustive” warnings.

Second, violating the edict of irredundancy, the code for binary op-

erators is quite redundant. We’ll solve both problems simultaneously

by factoring out the redundancy into a function for evaluating binary

operator expressions. We’ll introduce another exception for reporting

ill-formed expressions.

# exception UnboundVariable of string ;;

exception UnboundVariable of string

# exception IllFormed of string ;;

exception IllFormed of string

# let binopeval (op : binop) (v1 : expr) (v2 : expr)

# : expr =

# match op, v1, v2 with

# | Plus, Int x1, Int x2 -> Int (x1 + x2)

# | Plus, _, _ ->

# raise (IllFormed "can't add non-integers")

# | Divide, Int x1, Int x2 -> Int (x1 / x2)

# | Divide, _, _ ->

# raise (IllFormed "can't divide non-integers") ;;

val binopeval : binop -> expr -> expr -> expr = <fun>

# let rec eval (e : expr) : expr =

# match e with

# | Int _ -> e

# | Var x -> raise (UnboundVariable x)

# | Binop (op, e1, e2) ->

# binopeval op (eval e1) (eval e2)

# | Let (x, def, body) ->

# eval (subst body x (eval def)) ;;

val eval : expr -> expr = <fun>

This function allows evaluating expressions in the language reflecting

the semantics of those expressions.

# eval (Binop (Plus, Int 5, Int 10)) ;;

- : expr = Int 15
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# eval (Let ("x", Int 3,

# Let ("y", Int 5,

# Binop (Divide, Var "x", Var "y")))) ;;

- : expr = Int 0

13.5 Problem section: Semantics of booleans and condi-

tionals

Exercise 135

Augment the abstract syntax of the language to introduce boolean literals true and
false. Add substitution semantics rules for the new constructs. Adjust the definitions of
subst and eval to handle these new literals.

Exercise 136

Augment the abstract syntax of the language to add conditional expressions (if 〈〉
then 〈〉 else 〈〉 ). Add substitution semantics rules for the new construct. Adjust the
definitions of subst and eval to handle conditionals.

13.6 Semantics of function application

We can extend our language further, by introducing (anonymous)

functions and their application. We augment the language with two

rules for function expressions and function applications as follows:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉
| fun 〈var〉 -> 〈exprbody〉
| 〈exprfun〉 〈exprarg〉

To complete the semantics for this language, we simply have to add

rules for the evaluation of functions and applications.

The case of functions is especially simple. Functions are pending

computations; they don’t take effect until they are applied. So we can

take functions to be values, that is, they self-evaluate.

fun x -> B ⇓ fun x -> B (Rfun)

All the work happens upon application. To evaluate an application,

we must evaluate the function part to get the function to be applied

and evaluate the argument part to get the argument’s value, and then

evaluate the body of the function, after substituting in the argument
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for the variable bound by the function.

P Q ⇓∣∣∣∣∣∣∣
P ⇓ fun x -> B

Q ⇓ vQ

B [x 7→ vQ ] ⇓ vB

⇓ vB

(Rapp)

Exercise 137

Give glosses for these two rules Rfun and Rapp, as was done for the previous rules R+ and
Rlet .

Let’s try an example:

(fun x -> x + x) (3 * 4)

Intuitively, this should evaluate to 24. The derivation proceeds as

follows:

(fun x -> x + x) (3 * 4)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(fun x -> x + x) ⇓ (fun x -> x + x)

3 * 4 ⇓∣∣∣∣∣ 3 ⇓ 3
4 ⇓ 4

⇓ 12
12 + 12 ⇓∣∣∣∣∣ 12 ⇓ 12

12 ⇓ 12
⇓ 24

⇓ 24

The combination of local naming and anonymous functions gives

us the ability to give names to functions:

let double = fun x -> 2 * x in

double (double 3)
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The derivations start getting a bit complicated:

let double = fun x -> 2 * x in double (double 3)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> 2 * x ⇓ fun x -> 2 * x

(fun x -> 2 * x) ((fun x -> 2 * x) 3)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> 2 * x ⇓ fun x -> 2 * x

(fun x -> 2 * x) 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> 2 * x ⇓ fun x -> 2 * x

3 ⇓ 3
2 * 3 ⇓∣∣∣∣∣ 2 ⇓ 2

3 ⇓ 3
⇓ 6

⇓ 6
2 * 6 ⇓ 12

⇓ 12
⇓ 12

Exercise 138

Carry out similar derivations for the following expressions:

1. (fun x -> x + 2) 3

2. let f = fun x -> x in
f (f 5)

3. let square = fun x -> x * x in
let y = 3 in
square y

4. let id = fun x -> x in
let square = fun x -> x * x in
let y = 3 in
id square y

13.6.1 More on capturing free variables

There is still a problem in our definition of substitution. Consider the

following expression: let f = fun x -> y in (fun y -> f 3)

1. Intuitively speaking, this expression seems ill-formed; it defines a

function f that makes use of an unbound variable y in its body. But

using the definitions that we have given so far, we would have the
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following derivation:

let f = fun x -> y in (fun y -> f 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> y ⇓ fun x -> y

(fun y -> (fun x -> y) 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(fun y -> (fun x -> y) 3) ⇓ (fun y -> (fun x -> y) 3)

1 ⇓ 1
(fun x -> 1) 3 ⇓∣∣∣∣∣∣∣

fun x -> 1 ⇓ fun x -> 1

1 ⇓ 1
1 ⇓ 1

⇓ 1
⇓ 1

⇓ 1
The problem happens in the highlighted expression, where according

to the Rlet rule we should be evaluating ((fun y -> f 3) 1)[f 7→
fun x -> y], which according to our current understanding of sub-

stitution should be the highlighted (fun y -> (fun x -> y) 3)

1.

We’re sneaking the y in fun x -> y inside the scope of the fun y.

That’s not kosher. And the OCaml interpreter seems to agree:

# let f = fun x -> y in (fun y -> f 3) 1 ;;

Line 1, characters 17-18:

1 | let f = fun x -> y in (fun y -> f 3) 1 ;;

^

Error: Unbound value y

We need to change the definition of substitution to make sure that

such VA R I A B L E C A P T U R E doesn’t occur. The following rules for sub-

stituting inside a function work by replacing the bound variable y with

a new freshly minted variable, say z, that doesn’t occur elsewhere,

renaming all occurrences of y accordingly.

(fun x -> P)[x 7→Q] = fun x -> P

(fun y -> P)[x 7→Q] = fun y -> P [x 7→Q]

where x ̸≡ y and y ̸∈ FV (Q)

(fun y -> P)[x 7→Q] = fun z -> P [y 7→ z][x 7→Q]

where x ̸≡ y and y ∈ FV (Q) and z is a fresh variable
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Exercise 139

Carry out the derivation for

let f = fun x -> y in (fun y -> f 3) 1

as above but with this updated definition of substitution. What happens at the step
highlighted above?

Exercise 140

What should the corresponding rule or rules defining substitution on let · · · in · · ·
expressions be? That is, how should the following rule be completed? You’ll want to think
about how this construct reduces to function application in determining your answer.

(let y = Q in R)[x 7→ P ] = ·· ·

Try to work out your answer before checking it with the full definition of substitution in
Figure 13.4.

Exercise 141

Use the definition of the substitution operation above to determine the results of the
following substitutions:

1. (fun x -> x + x)[x 7→ 3]

2. (fun x -> y + x)[x 7→ 3]

3. (let x = y * y in x + x)[x 7→ 3]

4. (let x = y * y in x + x)[y 7→ 3]

The implementation of substitution should be updated to han-

dle this issue of avoiding the capture of free variables. The next two

exercises do so.

Exercise 142

Write a function free_vars : expr -> varspec Set.t that returns a set of varspecs
corresponding to the free variables in the expression as per Figure 13.3. (Recall the
discussion of the OCaml library module Set in Section 12.8.)

Exercise 143

Revise the definition of the function subst from Section 13.4.1 to eliminate the problem
of variable capture by implementing the set of rules given in Figure 13.4.

FV (m) =∅ (integers) (13.1)

FV (x) = {x} (variables) (13.2)

FV (P + Q) = FV (P )∪FV (Q) (and similarly for other binary operators) (13.3)

FV (P Q) = FV (P )∪FV (Q) (applications) (13.4)

FV (fun x -> P ) = FV (P )− {x} (functions) (13.5)

FV (let x = P in Q) = (FV (Q)− {x})∪FV (P ) (binding) (13.6)

Figure 13.3: Definition of FV , the set
of free variables in expressions for a
functional language with naming and
arithmetic.



S E M A N T I C S : T H E S U B S T I T U T I O N M O D E L 217

m[x 7→ P ] = m (13.7)

x[x 7→ P ] = P (13.8)

y[x 7→ P ] = y where x ̸≡ y (13.9)

(Q + R)[x 7→ P ] =Q[x 7→ P ] + R[x 7→ P ] (13.10)

and similarly for other binary operators

Q R[x 7→ P ] =Q[x 7→ P ]R[x 7→ P ] (13.11)

(fun x -> Q)[x 7→ P ] = fun x -> Q (13.12)

(fun y -> Q)[x 7→ P ] = fun y -> Q[x 7→ P ] (13.13)

where x ̸≡ y and y ̸∈ FV (P )

(fun y -> Q)[x 7→ P ] = fun z -> Q[y 7→ z][x 7→ P ] (13.14)

where x ̸≡ y and y ∈ FV (P ) and z is a fresh variable

(let x = Q in R)[x 7→ P ] = let x = Q[x 7→ P ] in R (13.15)

(let y = Q in R)[x 7→ P ] = let y = Q[x 7→ P ] in R[x 7→ P ] (13.16)

where x ̸≡ y and y ̸∈ FV (P )

(let y = Q in R)[x 7→ P ] = let z = Q[x 7→ P ] in R[y 7→ z][x 7→ P ] (13.17)

where x ̸≡ y and y ∈ FV (P ) and z is a fresh variable

Figure 13.4: Definition of substitution of
expressions for variables in expressions
for a functional language with naming
and arithmetic.
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13.7 Substitution semantics of recursion

You may observe that the rule for evaluating let 〈〉 in 〈〉 expressions

doesn’t allow for recursion. For instance, the Fibonacci example pro-

ceeds as follows:

let f = fun n -> if n = 0 then 1 else n * f (n - 1) in f 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun n -> if n = 0 then 1 else n * f (n - 1) ⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

(fun n -> if n = 0 then 1 else n * f (n - 1)) 2

⇓∣∣∣∣∣∣∣
fun n -> if n = 0 then 1 else n * f (n - 1) ⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

2 ⇓ 2
if 2 = 0 then 1 else 2 * f (2 - 1) ⇓ ???

⇓ ???

⇓ ???

The highlighted expression, if 2 = 0 then 1 else 2 * f (2 - 1),

eventually leads to an attempt to apply the unbound variable f to its

argument 1.

Occurrences of the name definiendum in the body are properly

replaced with the definiens, but occurrences in the definiens itself are

not. But what should those recursive occurrences of f be replaced by?

It doesn’t suffice simply to replace them with the definiens, as that

still has a free occurrence of the definiendum. Rather, we’ll replace

them with their own recursive let construction, thereby allowing

later occurrences to be handled as well. In the factorial example, we’ll

replace the free occurrence of f in the definiens by let rec f = fun

n -> if n = 0 then 1 else n * f (n - 1) in f, that is, an

expression that evaluates to whatever f evaluates to in the context of

the recursive definition itself.

Thus the substitution semantics rule for let rec, subtly different

from the let rule, will be as follows:

let rec x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD [x 7→ let rec x = vD in x]] ⇓ vB

⇓ vB

(Rletrec)

Continuing the factorial example above, we would substitute for f in

the third line the expression let rec f = fun n -> if n = 0 then

1 else n * f (n - 1) in f, forming

https://en.wiktionary.org/wiki/definiendum
https://en.wiktionary.org/wiki/definiens
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(fun n -> if n = 0 then 1
else n * (let rec f = fun n -> if n = 0 then 1

else n * f (n-1) in f) (n-1)) 2

Proceeding further, the final line becomes

if 2 = 0 then 1
else 2 * (let rec f = fun n -> if n = 0 then 1

else n * f (n-1) in f) (2-1))

which will (eventually) evaluate to 2.

Exercise 144

Thanklessly continue this derivation until it converges on the final result for the factorial
of 2, viz., 2. Then thank your lucky stars that we have computers to do this kind of rote
repetitive task for us.

We’ll provide an alternative approach to semantics of recursion

when we introduce environment semantics in Chapter 19.

❧

We defined a set of formal rules providing the meanings of OCaml

expressions via simplifying substitutions of equals for equals, resulting

finally in the values that most simply encapsulate the meanings of

complex expressions.

An interpreter for a programming language (the object language)

written in the same programming language (as metalanguage) – a

M E TAC I RC U L A R I N T E R P R E T E R – provides another way of getting at the

semantics of a language. In fact, the first semantics for the program-

ming language L I S P was given as a metacircular interpreter.

In both cases, we see the advantage of having a language with a

small core, sprinkled liberally with syntactic sugar, since only the core

need be given the formal treatment through rules or metacircular

interpretation. The syntactic sugar can be translated out. For instance,

although the metacircular interpreter that we started developing here

does not handle the more compact function definition notation seen

in

let f x = x + 1

this expression can be taken as syntactic sugar for (that is, a variant

concrete syntax for the abstract syntax of) the expression

let f = fun x -> x + 1

which we already have defined formal rules to handle. In the case of a

metacircular interpreter, we can imagine that the parser for the former

expression will simply provide the abstract syntax of the latter.

Our exploration of rigorous semantics for programs will continue

once the substitution approach starts to falter in the presence of state

change and imperative programming.
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n ⇓ n (Rint )

fun x -> B ⇓ fun x -> B (Rfun)

P + Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ m +n

(R+)

P / Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ ⌊m/n⌋

(R/)

P Q ⇓∣∣∣∣∣∣∣
P ⇓ fun x -> B

Q ⇓ vQ

B [x 7→ vQ ] ⇓ vB

⇓ vB

(Rapp)

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD ] ⇓ vB

⇓ vB

(Rlet )

let rec x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD [x 7→ let rec x = vD in x]] ⇓ vB

⇓ vB

(Rletrec)

Figure 13.5: Substitution semantics
rules for evaluating expressions, for a
functional language with naming and
arithmetic.



S E M A N T I C S : T H E S U B S T I T U T I O N M O D E L 221

13.8 Supplementary material

• Lab 9: Substitution semantics

http://url.cs51.io/lab9
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