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Efficiency, complexity, and recurrences

We say that some agent is efficient if it makes the best use of a scarce

resource to generate a desired output. Furnaces turn the scarce re-

source of fuel into heating, so an efficient furnace is one that generates

the most heat using the least fuel. Similarly, an efficient shooter in

basketball generates the most points using the fewest field goal at-

tempts. Standard measurements of efficiency reflect these notions.

Furnaces are rated for Annual Fuel Utilization Efficiency, NBA players

for Effective Field Goal Percentage.

Computer programs use scarce resources to generate desired out-

puts as well. Most prominently, the resources expended are time and

“space” (the amount of memory required during the computation),

though power is increasingly becoming a resource of interest.

Up to this point, we haven’t worried about the efficiency of the pro-

grams we’ve written. And for good reason. Donald Knuth, Professor

Emeritus of the Art of Computer Programming at Stanford Univer-

sity and Turing-Award–winning algorithmist, warns of P R E M AT U R E

O P T I M I Z AT I O N:

Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs, and

these attempts at efficiency actually have a strong negative impact when

debugging and maintenance are considered. We should forget about

small efficiencies, say about 97% of the time: premature optimization is

the root of all evil. (Knuth, 1974)

Knuth’s point is that programmers’ time is a scarce resource too, and

often the most important one.

Figure 14.1: Donald Knuth (1938–
), Professor Emeritus of the Art of
Computer Programming at Stanford
University. In this photo, he holds a
volume of his seminal work The Art of
Computer Programming.

Nonetheless, sometimes issues of code efficiency become impor-

tant – Knuth’s 3% – and in any case the special ways of thinking and

tools for reasoning about efficiency of computation are important

aspects of computational literacy, most centrally ideas of

• Complexity as the scaling of resource usage,

https://url.cs51.io/bep
https://url.cs51.io/at4
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• Comparison of asymptotic scaling,

• Big-O notation for specifying asymptotic scaling, and

• Recurrences as the means to capture and solve for resource usage.

In this chapter, we describe these important computational notions

in the context of an extended example, the comparison of two sorting

functions.

14.1 The need for an abstract notion of efficiency

With furnaces and basketball players, we can express a notion of ef-

ficiency as a single number – Annual Fuel Utilization Efficiency or

Effective Field Goal Percentage. With computer programs, things are

not so simple. Consider, for example, one of the most fundamental of

all computations, S O RT I N G – ordering the elements of a list according

to a comparison function. Given a particular function to sort lists, we

can’t characterize its efficiency – how long it takes to sort lists – as a

single number. What number would we use? That is, how long does it

take to sort a list of integers using the function? The answer, of course,

is “it depends”; in particular, it depends on

• Which input? How many elements are in the list? What order are

they in? Are there a lot of duplicate items, or very few?

• How computed? Which computer are you using, and which soft-

ware environment? How long does it take to execute the primitive

computations out of which the function is built?

All of these issues affect the running time of a particular sorting func-

tion. To make any progress on comparing the efficiency of functions in

the face of such intricacy, it is clear that we will need to come up with a

more abstract way of characterizing the efficiency of computations.

We address these two issues separately. To handle the question of

“which input”, we might characterize the efficiency of the sorting pro-

gram not as a number (a particular running time), but as a function

from inputs to numbers. However, this doesn’t seem an appealing

option; we want to be able to draw some general conclusions for com-

paring sorting programs, not have to reassess for each possible input.

Nonetheless, the idea of characterizing efficiency in terms of some

function is a useful one. Broadly speaking, algorithms take longer on

bigger problems, so we might use a function that provides the time re-

quired as a function of the size of the input. In the case of sorting lists,

we might take the size of the input to be the number of elements in the

list to be sorted. Unfortunately, for any given input size, the program
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might require quite different amounts of time. What should we take

to be the time required for problems of a given size. There are several

options: We might consider the time required on average for instance.

But we will use the time required in the worst case. When comparing

algorithms, we might well want to plan for the worst case behavior of

a program, just to play it safe. We will refer to the function from input

sizes to worst-case time needed as the W O R S T- C A S E C O M P L E X I T Y of

the algorithm.

We’ve made some progress. Rather than thinking of resource usage

as a single number (too coarse) or a function from problem inputs

to numbers (too fine), we use the programs worst-case complexity, a

function from sizes of inputs to worst-case resource usage on inputs

with those sizes. But even this is not really well defined, because of the

“How computed?” question. One and the same program, running on

different computers, say, may have wildly different running times.

To make further progress, let’s take a concrete example. We’ll exam-

ine two particular sorting algorithms.

14.2 Two sorting functions

A module signature for sorting can be given by

# module type SORT =

# sig

# (* sort lt xs -- Returns the list xs sorted in increasing

# order by the "less than" function lt. *)

# val sort : ('a -> 'a -> bool) -> 'a list -> 'a list

# end ;;

module type SORT =

sig val sort : ('a -> 'a -> bool) -> 'a list -> 'a list end

The sort function takes as its first argument a comparison function,

which specifies when one element should be sorted before another in

the desired ordering. Figure 14.2: An example of the recursive
insertion sort algorithm, sorting the list
[1, 3, 5, 7, 8, 6, 4, 2]. Each
recursive call is marked with a rounded
box, in which the tail is sorted, and the
head then inserted.

A simple implementation of the signature is the I N S E RT I O N S O RT

algorithm, which operates by inserting the elements of the unsorted

list one by one into an empty list, each in its appropriate place.1

1 Insertion sort could have been imple-
mented more elegantly using a single
fold_left, but we make the recursion
explicit to facilitate the later complexity
analysis.

# module InsertSort : SORT =

# struct

# let rec insert lt xs x =

# match xs with

# | [] -> [x]

# | hd :: tl -> if lt x hd then x :: xs

# else hd :: (insert lt tl x)

#

# let rec sort (lt : 'a -> 'a -> bool)

# (xs : 'a list)

# : 'a list =
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# match xs with

# | [] -> []

# | hd :: tl -> insert lt (sort lt tl) hd

# end ;;

module InsertSort : SORT

We can use insertion sort to sort some integers in increasing order:

# InsertSort.sort (<) [1; 3; 5; 7; 8; 6; 4; 2] ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8]

or some floats in decreasing order:

# InsertSort.sort (>) [2.71828; 1.41421; 3.14159; 1.61803] ;;

- : float list = [3.14159; 2.71828; 1.61803; 1.41421]

An especially elegant implementation of sorting is the M E RG E S O RT

algorithm, first described by John von Neumann in 1945 (according

to Knuth (1970)). It works by dividing the list to be sorted into two

lists of (roughly) equal size. Each of the halves is then sorted, and the

resulting sorted halves are merged together to form the sorted full

list. This recursive process of dividing the list in half can’t continue

indefinitely; at some point the recursion must “bottom out”, or the

process will never terminate. In the implementation below, we bottom

out when the list to be sorted contains at most a single element. The

sort function can be defined then as

let rec sort lt xs =

match xs with

| []

| [_] -> xs

| _ -> let first, second = split xs in

merge lt (sort lt first) (sort lt second) ;;

Figure 14.3: An example of the recursive
mergesort algorithm, sorting the list
[1, 3, 5, 7, 8, 6, 4, 2]. Each
recursive call is marked with a rounded
box, in which the list is split, sorted, and
merged.

The mergesort definition above makes use of functions

split : ’a list -> ’a list * ’a list

and

merge : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a

list .

A call to split lst returns a pair of lists, each containing half of

the elements of lst. (In case, lst has an odd number of elements,

the extra element can go in either list in the returned pair.) A call to

merge lt xs ys returns a list containing all of the elements of xs and

ys sorted according to lt; it assumes that xs and ys are themselves

already sorted.

Exercise 145

Provide implementations of the functions split and merge, and package them together
with the sort function just provided in a module MergeSort satisfying the SORT module
type. You should then have a module that allows for the following interactions:
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# MergeSort.sort (<) [1; 3; 5; 7; 8; 6; 4; 2] ;;
- : int list = [1; 2; 3; 4; 5; 6; 7; 8]
# MergeSort.sort (>) [2.7183; 1.4142; 3.1416; 1.6180] ;;
- : float list = [3.1416; 2.7183; 1.618; 1.4142]

(Another elegant recursive sorting algorithm, quicksort, is explored

further in Section 16.4.)

14.3 Empirical efficiency

How efficient are these algorithms? The time usage of the algorithms

can be compared by timing each of them on the same input. Here,

we make use of a simple timing function call_timed : (’a -> ’b)

-> ’a -> (’b * float). Calling call_timed f x evaluates the

application of the function f to x, returning the result paired with the

number of milliseconds required to perform the computation.

Now we can sort a list using the two sorting algorithms, reporting

the timings as well.2

2 We’re taking advantage of sev-
eral useful functions here. The
map function from the List library
module is familiar from Chapter 8.
The Absbook module, available at
http://url.cs51.io/absbookml provides
some useful functions that we’ll use
throughout the book, for example,
the range function and several timing
functions.

# (* Generate some lists of random integers *)

# let shortlst = List.init 5 (fun _ -> Random.int 1000) ;;

val shortlst : int list = [344; 685; 182; 641; 439]

# let longlst = List.init 500 (fun _ -> Random.int 1000) ;;

val longlst : int list =

[500; 104; 20; 921; 370; 217; 885; 949; 678; 615; ...]

# (* test_repeated count f x -- Apply `f` to `x` `count`
# times, ignoring the results and returning the time

# taken in milliseconds. *)

# let test_repeated sort lst label =

# let _, time = Absbook.call_timed

# (List.init 1000)

# (fun _ -> (sort (<) lst)) in

# Printf.printf "%-20s %10.4f\n" label time ;;

val test_repeated : (('a -> 'a -> bool) -> 'b -> 'c) -> 'b ->

string -> unit =

<fun>

# (* Sort each list two ways *)

# List.iter (fun (sort, lst, label) ->

# test_repeated sort lst label)

# [ InsertSort.sort, shortlst, "insertion short";

# MergeSort.sort, shortlst, "merge short";

# InsertSort.sort, longlst, "insertion long";

# MergeSort.sort, longlst, "merge long" ] ;;

insertion short 0.6180

merge short 1.2631

insertion long 3023.9391

merge long 459.2381

- : unit = ()

Not surprisingly, it appears that sometimes the insertion sort algo-

rithm is faster (as on shortlst) and sometimes mergesort is faster (as

http://url.cs51.io/absbookml
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on longlst). It doesn’t seem possible to give a definitive answer as to

which is faster in general.

Figure 14.4: Run time in seconds for
sorting random lists of lengths varying
from 1,000 to 10,000 elements, gener-
ated by averaging run time over 100
trials. The two lines show performance
for insertion sort and merge sort, with
insertion sort times using the right scale
to allow for comparison.

If we examine the performance of the algorithm for a broader range

of cases, however, a pattern emerges. For short lists, insertion sort is

somewhat faster, but as the lists grow in length, the time needed to

sort them grows faster for insertion sort than for mergesort, so that

eventually mergesort shows a consistent performance advantage.

The pattern is quite clear from the graph in Figure 14.4. The key to

comparing the algorithms, then, is not their comparative efficiency on

any particular list, but rather the character of their efficiency as their

inputs grow in size. As we argued in Section 14.1, thinking about the

time required as a function of the size of the inputs looks like a good

idea.

However, as also noted above, a problem with analyzing algorithms,

as we have just done, by running them with particular implementa-

tions on particular computers on particular lists, is that the results may

apply only for those particulars. Instead, we’d like a way of character-

izing the algorithms’ relative performance whatever the particulars.

Measuring running times empirically is subject to idiosyncrasies of the

measurement exercise: the relative time required for different prim-

itive operations on the particular computer being used and with the

particular software tools, what other operations were happening on

the computer at the same time, imprecision in the computer’s clock,

whether the operating system is slowing down or speeding up the CPU
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for energy-saving purposes, and on and on. The particularities also

may not be predictive of the future as computers change over time,

with processing and memory retrieval and disk accesses becoming

faster – and faster at varying rates. The empirical approach doesn’t get

at the intrinsic properties of the algorithms.

The approach we will take, then, is to analyze the algorithms in

terms of the intrinsic growth rate of their performance as the size of

their inputs grow, their worst-case complexity. Detailed measure-

ment and analysis can be saved for later, once the more fundamental

complexity issues are considered. We thus take an abstract view of

performance, rather than a concrete one. This emphasis on abstrac-

tion, as usual, comes from thinking like a computer scientist, and not a

computer programmer.

The time complexity of the two sorting algorithms can be thought

of as functions (!) from the size of the input to the amount of time

needed to sort inputs of that size. As it turns out – and as we will show

in Sections 14.5.5 and 14.5.9 – for insertion sort on a list of size n, the

time required to sort the list grows as the function

Ti s (n) = a ·n2 +b

whereas for mergesort, the time required to sort the list grows as the

function

Tms (n) = c ·n logn +d

where a, b, c, and d are some constants. For a given n, which is larger?

That depends on these constants of course. But regardless of the con-

stants, as n increases Ti s grows “faster” than Tms in a way that we will

make precise shortly.

In order to make good on this idea of comparing algorithms by

comparing their growth functions, then, we must pay on two promis-

sory notes:

1. How to figure out the growth function for a given algorithm, and

2. How to determine which growth functions are growing faster.

In the remainder of this chapter, we will address the first of these with

a technique of recurrence equations, and the second with the idea of

asymptotic complexity and “big-O” notation.

14.4 Big-O notation

Which is better, an algorithm (like insertion sort) with a complexity

that grows as a ·n2 +b or an algorithm (like mergesort) with a complex-

ity that grows as c ·n logn +d? The answer “it depends on the values
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of the constants” seems unsatisfactory, since intuitively, a function

that grows quadratically (as the square of the size) like the former will

eventually outstrip a function that grows like the latter. Figure 14.5

shows this graphically. The gray lines all grow as c ·n logn for increas-

ing values of c. But regardless of c, the red line, displaying quadratic

growth, eventually outpaces all of the gray lines. In a sense, then, we’d

eventually like to use the n logn algorithm regardless of the constants.

It is this A S Y M P TOT I C (that is, long term or eventual) sense that we’d

like to be able to characterize.

Figure 14.5: A graph of functions with
different growth rates. The highlighted
line grows as n2. The three gray lines
grow as c ·n logn, where c is, from
bottom to top, 1, 2, and 4.

To address the question of how fast a function grows asymptotically,

independent of the annoying constants, we introduce a generic way of

expressing the growth rate of a function – B I G -O N OTAT I O N.

We’ll assume that problem sizes are non-negative integers and that

times are non-negative as well. Given a function f from non-negative

integers to non-negative numbers, O( f ) is the set of functions that

grow no faster than f , in the following precise sense:3 We define O( f )

3 Since it takes a function as its argu-
ment and returns sets of functions as
its output, O is itself a higher-order
function!

to be the set of all functions g such that for all “large enough” n (that is,

n larger than some value n0), g (n) ≤ c · f (n).

The roles of the two constants n0 and c are exactly to move beyond

the details of constants like the a, b, c, and d in the sorting algorithm

growth functions. In deciding whether a function grows no faster than

f , we don’t want to be misled by a few input values here and there

where g (n) may happen to be larger than f (n), so we allow exempting

values smaller than some fixed value n0. The point is that as the inputs

grow in size, eventually we’ll get past the few input sizes n where g (n)

is larger than f (n). Similarly, if the value of g (n) is always, say, twice

the value of f (n), the two aren’t growing at qualitatively different rates.

Perhaps that factor of 2 is based on just the kinds of idiosyncrasies that

can change as computers change. We want to ignore such constant

multiplicative factors. For that reason, we don’t require that g (n) be

less than f (n); instead we require that g (n) be less than some constant

multiple c of f (n).

As an example of big-O notation, consider two simple polynomial

functions. It will be convenient to use Church’s elegant lambda nota-

tion (see Section B.1.4) to specify these functions directly: λn.10n2 +3

and λn.n2.

Is the function λn.10n2 + 3 an element of the set O(λn.n2)? To

demonstrate that it is, we need to find constants c and n0 such that for

all n > n0, 10n2 +3 ≤ c ·n2. It turns out that the values n0 = 0 and c = 13

do the trick, that is, for all n > 0, 10n2 + 3 ≤ 13n2. We can prove this

as follows: Since n ≥ 1, it follows that n2 ≥ 1 and thus 3 ≤ 3n2. Thus

10n2 +3 ≤ 10n2 +3n2 = 13n2. We conclude, then, that

λn.10n2 +3 ∈O(λn.n2) .
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Of course, the converse is also true:

λn.n2 ∈O(λn.10n2 +3) .

We can just take n0 again to be 0 and c to be 1, since n2 < 10n2 +3 for

all n.

14.4.1 Informal function notation

It is conventional, when using big-O notation, to stealthily move be-

tween talk of functions (like λn.n2) to the corresponding body ex-

pression (like n2), leaving silent the particular variable (in this case

n) that represents the input of the function. Typically, the variable is

clear from context (and indeed is frequently the variable n itself). For

instance, we might say

10n2 +3 ∈O(n2) ,

rather than the more complex formulation above.

Continuing this abuse of notation, we sometimes write variables

for functions, like f or g , not only to stand for a function, but also the

corresponding body expression. This allows us to write things like k · f

(where k is a constant) to mean the function whose body expression

is the product of k and the body expression of f . (This turns out to be

equivalent to the rather more cumbersome λn.k · f (n).) Suppose f is

the function λn.n2. Then we write k · f to mean, not k ·λn.n2 (which is

an incoherent formula), but rather k ·n2, which, again by convention,

glosses λn.k ·n2.

This convention of sliding between functions and their body expres-

sions may seem complicated, but it soon becomes quite natural. And

it allows us to formulate important properties of big-O notation very

simply, as we do in the next section.

Of course, there are problems with playing fast and loose with no-

tation in this way. First, writing O(n2) makes it look like O is a function

that takes integers as input, since n2 looks like it specifies an integer.

But O is a function from functions, not from integers. Second, what

are we to make of something like O(m ·n2)? Does this specify the set

of functions that grow no faster than the function from m to m ·n2,

that is, O(λm.m ·n2)? Or does it specify the set of functions that grow

no faster than the function from n to m ·n2, that is, O(λn.m ·n2)? The

notation doesn’t make clear which variable is the one representing the

input to the function – which variable the growth is relative to. In cases

such as this, computer scientists rely on context to make clear what the

notation is supposed to mean.

We’ll stick to this informal notation since it is universally used.
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But you’ll want to always remember that O maps functions to sets of

functions.

14.4.2 Useful properties of O

In general, it’s tedious to prove particular cases of big-O membership

like the example in Section 14.4. Instead, you’ll want to acquire a

general understanding of these big-O sets of functions, and reason

on the basis of that understanding.

The big-O notation brings together whole classes of functions

whose growth rates are similar. These classes of functions have cer-

tain properties that make them especially useful.4 First of all, every 4 The mathematically inclined might
want to take a stab at proving these
properties of big-O.

function grows no faster than itself:

f ∈O( f )

Adding a constant to a function doesn’t change its big-O classification:

If g ∈O( f ), then5 5 Here’s our first instance of the informal
function notation in the wild.

g +k ∈O( f ) .

We can reason immediately, then, that 2n2 + 3 ∈ O(2n2) (or, more

pedantically, λn.2n2 +3 ∈O(λn.2n2)), without going through a specific

proof.

Similarly, multiplying by a constant (k) doesn’t affect the class ei-

ther. If g ∈O( f ), then

k · g ∈O( f ) .

Thus, 2n2 ∈ O(n2). Together with the results above, we can conclude

that 2n2 +3 ∈O(n2).

In fact, adding in any lower degree terms doesn’t matter. If f ∈O(nk )

and g ∈O(nc ), where k > c:

f + g ∈O(nk )

The upshot of all this is that in determining the big-O growth rate

of a polynomial function, we can always just drop lower degree terms

and multiplicative constants. In thinking about the growth rate of a

complicated function like 4n3 +142n +3, we can simply ignore all but

the largest degree term (4n3) and even the multiplicative constant 4,

and conclude that

4n3 +142n +3 ∈O(n3)

Exercise 146

Which of these claims about the growth rates of various functions hold?
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1. 3n +5 ∈O(n)

2. n ∈O(3n +5)

3. n +n2 ∈O(n)

4. n3 +n2 ∈O(n3 +2n)

5. n2 ∈O(n3)

6. n3 ∈O(n2)

7. 32n3 ∈O(n2 +n +k)

Finally, the sum or product of functions grows no faster than the

sum or product, respectively, of their respective growth rates. If f ′ ∈
O( f ) and g ′ ∈O(g ), then

f ′+ g ′ ∈O( f + g )

f ′ · g ′ ∈O( f · g )

We can thus conclude that

(5n3 +n2) · (3logn +7) ∈O(n3 · logn)

14.4.3 Big-O as the metric of relative growth

We are interested in the big-O classification of functions in particular

because we can use it to compare functions as to which asymptotically

grows faster. In particular, if f ∈ O(g ) but g ̸∈ O( f ), then g grows faster

than f , which we notate g ≫ f .

For example,

n2 ∈O(n3) ,

but the converse doesn’t hold:

n3 ̸∈O(n2) .

We can conclude, then that

n3 ≫ n2 ,

that is, n3 grows faster than n2.

More generally,

• Functions with bigger exponents grow faster:

nk ≫ nc when k > c

• Linear functions grow faster than logarithmic functions:

n ≫ logn
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• Exponentials grow faster than polynomials:

2n ≫ nk

• The exponential base matters; exponentials with larger base grow

faster:

3n ≫ 2n

We can think of big-O as defining classes of functions that grow

at similar rates, up to multiplicative constants. Thus, O(n) is the set

of functions whose growth rate is (at most) linear, O(n2) the set of

functions whose growth rate is (at most) quadratic, O(n3) the set of

cubic functions, O(2n) the set of base-two exponential functions. We

can then place these classes in an ordering (≫) as to which classes

grow faster inherently (and not just because of the values of some

contingent constants).

From the properties above, we can conclude that n2 ≫ n logn, and

therefore, since Ti s ∈ O(n2) and Tms ∈ O(n logn), that Ti s ≫ Tms .6 6 Strictly speaking, we’d have to further
show that Ti s ̸∈ O(n logn), but we’ll
ignore this nicety in general here and in
the following discussion.

Mergesort has lower complexity – is asymptotically more efficient –

than insertion sort. This conclusion is independent of which comput-

ers we time the algorithms on, or other particularities that affect the

constants.

Of course, this reasoning relies on knowing the functions for how

each algorithm’s performance scales. (In the discussion above, we

merely asserted the growth rate functions for the two sorting algo-

rithms.) Only then can we use big-O to determine which algorithm

scales better, which is more efficient in a deeper sense than just test-

ing a particular instance or two. We still need a way to determine for a

particular algorithm the particular resource-usage function. This is the

second promissory note, and the one that we now address.
Problem 147

Two friends who work at EuclidCo tell you that they’re looking for a fast algorithm
to solve a problem they’re working on. So far, they’ve each developed an algorithm:
algorithm A has time complexity O(n3) and algorithm B is O(2n ). They prefer algorithm
A, and use three different arguments to convince you of their preference. For each
argument, evaluate the truth of the bolded statement, and justify your answer.

1. “We’re all about speed at EuclidCo, and A will always be faster than B.”

2. “In a high stakes industry like ours, we can’t afford to have more than a finite number
of inputs that run slower than polynomial time, and we can avoid this if we go with
A.”

3. “We work with big data at EuclidCo. For suitably large inputs, A will be faster on
average than B.”

14.5 Recurrence equations

Given an algorithm, how are we to determine how much time it needs

as a function of the size of its input? In this section, we introduce one
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method, based on the solving of recurrence equations, to address this

question.

We start with a simple example, the append function to append two

lists, defined as

# let rec append xs ys =

# match xs with

# | [] -> ys

# | hd :: tl -> hd :: (append tl ys) ;;

val append : 'a list -> 'a list -> 'a list = <fun>

An appropriate measure for the size of the input to the function is the

sizes of the two lists it is to append. Let’s use Tappend(n,m) for the time

required to run the append function on lists with n and m elements

respectively. What do we know about this Tappend?

When the first argument, xs, is the empty list (so n = 0), the function

performs just a few simple actions, pattern-matching the input against

the empty list pattern, and then returning ys. If we say that the time for

the pattern match is some constant cmatch and the time for the return

is some constant creturnys, then we have that

Tappend(0,m) = cmatch + creturnys .

Since the sum of the two constants is itself a constant, we can simplify

by treating the whole as a new constant c:

Tappend(0,m) = c

When the first argument is nonempty, the computation performed

again has a few parts: the match against the first pattern (which fails),

the match against the second pattern (which succeeds), the recursive

call to append, the cons of h and the result of the recursive call. Each

of these (except for the recursive call) takes some constant time, so we

can characterize the amount of time as

Tappend(n +1,m) = cmatchcons +Tappend(n,m) .

Here, we use n +1 as the length of the first list, as we know it is at least

one element long. The recursive call is appending the tail of xs, a list of

length n, to ys, a list of length m, and thus (by hypothesis) takes time

Tappend(n,m).

Merging and renaming constants, we thus have the following two

R E C U R R E N C E E QUAT I O N S that characterize the running time of the

append function in terms of the size of its arguments:

Tappend(0,m) = c

Tappend(n +1,m) = k +Tappend(n,m)
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14.5.1 Solving recurrences by unfolding

Because the recurrence equations defining Tappend use Tappend itself,

recursively, in the definition (hence the term “recurrence”), they don’t

provide a C L O S E D - F O R M (nonrecursive) solution to the question of

characterizing the running time of the function. To get a solution in

closed form, we will use a method called U N F O L D I N G to solve the

recurrence equations.

Consider the general case of Tappend(n,m) and assume that n > 0. By

the second recurrence equation,

Tappend(n,m) = k +Tappend(n −1,m) .

Now Tappend(n −1,m) itself can be unfolded as per the second recur-

rence equation, so

Tappend(n,m) = k +k +Tappend(n −2,m) .

Continuing in this vein, we can continue to unfold until the first argu-

ment to Tappend becomes 0:

Tappend(n,m) = k +Tappend(n −1,m)

= k +k +Tappend(n −2,m)

= k +k +k +Tappend(n −3,m)

= ·· ·
= k +k +k +·· ·+k +Tappend(0,m)

How many unfoldings are required until the first argument reaches 0?

We’ll have had to unfold n times. There will therefore be n instances of

k being summed in the unfolded equation. Completing the derivation,

then, using the first recurrence equation,

Tappend(n,m) = k ·n +Tappend(0,m)

= k ·n + c

We now have the closed-form solution

Tappend(n,m) = k ·n + c

Notice that the time required is independent of m, the size of the

second argument. That makes sense because the code for append

never looks inside the structure of the second argument; the computa-

tion therefore doesn’t depend on its size.

Now, the function k ·n + c ∈ O(n). Thus the time complexity of

append is O(n) or linear in the length of its first argument. This is

typical of algorithms that operate by recursively marching down a list

one element at a time.
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In order to apply the same kinds of techniques to determine the

time complexity of the two sorting algorithms, we’ll work through a

series of examples.

14.5.2 Complexity of reversing a list

There are multiple ways of implementing list reversal. We show that

they can have quite different time complexities. We start with a naive

implementation, which works by reversing the tail of the list and ap-

pending the head on the end:

# let rec rev xs =

# match xs with

# | [] -> []

# | hd :: tl -> append (rev tl) [hd] ;;

val rev : 'a list -> 'a list = <fun>

We define recurrence equations for the time Tr ev (n) to reverse a

list of length n using this implementation. If the list is empty, we have

(similarly to the case of append, and introducing constants as needed):

Trev(0) = cmatch + creturn = q

For nonempty lists, we must perform the appropriate match, reverse

the tail, cons the head onto the empty list, and perform the append:

Trev(n +1) = cmatch + ccons +Trev(n)+Tappend(n,1)

= r +Trev(n)+Tappend(n,1)

= r +Trev(n)+k ·n + c

= k ·n + s +Trev(n)

The closed form solution for append from the previous section be-

comes useful here. And again, notice our free introduction of new

constants to simplify things. We take the sum of cmatch and ccons to be

r , then for r + c we introduce s. Summarizing, the reverse implemen-

tation above yields the recurrence equations

Trev(0) = q

Trev(n +1) = k ·n + s +Trev(n)

which we must now solve to find a closed form.
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We again unfold Trev(n):

Trev(n) = k · (n −1)+ s +Trev(n −1)

= k · (n −1)+ s +k · (n −2)+ s +Trev(n −2)

= k · (n −1)+ s +k · (n −2)+ s

+k · (n −3)+ s +Trev(n −3)

= ·· ·

= k ·
n−1∑
i=1

(n − i )+ s ·n +Tr ev (0)

= k ·
n−1∑
i=1

(n − i )+ s ·n +q

= k ·
n−1∑
i=1

i + s ·n +q

= k ·
n∑

i=1
i −k ·n + s ·n +q

= k ·
n∑

i=1
i + (s −k) ·n +q

To make further progres on achieving a simple closed form for the

recurrence, it would be ideal to simplify the summation
∑n

i=1 i of the

integers from 1 to n. Famously (if apocryphally), the seven-year-old

mathematical prodigy Carl Friedrich Gauss (1777–1855) solved this

problem in his head. Gauss was asked by his teacher, so the story goes,

to sum all of the integers from 1 to 100. That’ll keep him quiet for a bit,

the teacher presumably thought. But Gauss came up with the answer –

5050 – immediately, by taking advantage of the simple identity

n∑
i=1

i = n · (n +1)

2

For a graphical “proof” that the identity holds, see Figure 14.6. A more

traditional proof is provided in Section B.2. Figure 14.6: A graphical proof that

n∑
i=1

i = n · (n +1)

2
.

Two triangles, each formed by piling up
squares with rows from 1 to n can be
combined to form a rectangle of area
n · (n +1). Each triangle is half that area,
that is, n·(n+1)

2 . A more algebraic proof
is given in Section B.2.

Making use of this identity,

Tr ev (n) = k ·
n∑

i=1
i + (s −k) ·n +q

= k · n · (n +1)

2
+ (s −k) ·n +q

= k

2
n2 + k

2
n + (s −k) ·n +q

= k

2
n2 + (s − k

2
) ·n +q

∈O(n2)

concluding that the function has quadratic (O(n2)) complexity. The

last step really shows the power of big-O notation, allowing to strip
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away all of the constants and lower order terms to get at the essence of

the growth rate.

Problem 148

Recall that the Stdlib.compare function compares two values, returning an int based
on their relative magnitude: compare x y returns 0 if x is equal to y, -1 if x is less than y,
and +1 if x is greater than y.

A function compare_lengths : ’a list -> ’b list -> int that compares
the lengths of two lists can be implemented using compare by taking advantage of the
length function7 from the List module:

7 For reference, this built-in length

function is, unsurprisingly, linear in the
length of its argument.

let compare_lengths xs ys =
compare (List.length xs) (List.length ys) ;;

For instance,

# compare_lengths [1] [2; 3; 4] ;;
- : int = -1
# compare_lengths [1; 2; 3] [4] ;;
- : int = 1
# compare_lengths [1; 2] [3; 4] ;;
- : int = 0

However, this implementation of compare_lengths does a little extra work than it needs
to. Its complexity is O(n) where n is the length of the longer of the two lists.

Why does compare_lengths have this big-O complexity? In particular, why does
the length of the shorter list not play a part in the complexity? We’re looking for a brief
informal argument here, not a full derivation of its complexity.

Provide an alternative implementation of compare_lengths whose complexity is
O(n) where n is the length of the shorter of the two lists, not the longer.

14.5.3 Complexity of reversing a list with accumulator

An alternative method of reversing a list uses an accumulator. As

each element in the list is processed, it is consed on the front of the

accumulating list. The process begins with the empty accumulator.

# let rec revappend xs accum =

# match xs with

# | [] -> accum

# | hd :: tl -> revappend tl (hd :: accum) ;;

val revappend : 'a list -> 'a list -> 'a list = <fun>

# let rev xs = revappend xs [] ;;

val rev : 'a list -> 'a list = <fun>

As before, we can set up recurrence equations for this version of rev

and its auxiliary function revappend.

Trev(n) = q +Trevapp(n,0)

Trevapp(0,m) = c

Trevapp(n +1,m) = k +Trevapp(n,m +1)
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By an unfolding argument similar to that for append, we can solve

these recurrence equations to closed form:

Trevapp(n,m) = k ·n + c

∈O(n)

so that

Trev(n) = q +Trevapp(n,0)

= q +k ·n + c

∈O(n)

Unlike the quadratic simple reverse, the revappend approach

is linear. The difference is born out empirically as well, as shown in

Figure 14.7.

Figure 14.7: Time in microseconds
to reverse lists of lengths 100 to 1000
using the naive (square) and revappend
(circle, highlighted) implementations.
The left graph places both lines on
the same (left) vertical scale. The right
graph places the revappend line on
the right vertical scale (equivalent to
multiplying all of the revappend times
by 50) to emphasize the difference in
growth rate of the functions. Despite the
change in constants, the naive reverse
still eventually overtakes the revappend.

14.5.4 Complexity of inserting in a sorted list

The insertion sort algorithm uses a function insert to insert an ele-

ment in its place in a sorted list:

# let rec insert xs x =

# match xs with

# | [] -> [x]

# | hd :: tl -> if x > hd then hd :: (insert tl x)

# else x :: xs ;;

val insert : 'a list -> 'a -> 'a list = <fun>
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As usual, we construct appropriate recurrence equations for Tinsert(n)

where n is the length of the list being inserted into. (We ignore the ele-

ment argument, as its size is irrelevant to the time required.) Inserting

into the empty list takes constant time.

Tinsert(0) = c

Inserting into a nonempty list (of size n +1) is more subtle. The time

required depends on whether the element should come at the start of

the list (the else clause of the conditional) or not (the then clause). In

the former case, the cons operation takes constant time, say k2; in the

latter case, it involves a recursive call to insert (Tinsert(n)) plus some

further constant overhead (k1). Since we don’t know which way the

computation will branch, we have to make the worst-case assump-

tion: whichever is bigger. Which of the two is bigger depends on the

constants, but we can be sure, in any case, that the time required is

certainly less than the sum of the two.

Tinsert(n +1) = max(k1 +Tinsert(n),k2)

≤ k1 +Tinsert(n)+k2

= k +Tinsert(n)

Unfolding these proceeds as usual:

Tinsert(n) = k +Tinsert(n −1)

= k +k +Tinsert(n −2)

= ·· ·
= k ·n +Tinsert(0)

= k ·n + c

∈O(n)

Insertion is thus linear in the size of the list to be inserted into.

14.5.5 Complexity of insertion sort

Recall the implementation of insertion sort:

let rec sort (lt : 'a -> 'a -> bool)

(xs : 'a list)

: 'a list =

match xs with

| [] -> []

| hd :: tl -> insert lt (sort lt tl) hd ;;

Using similar arguments as above, the recurrence equations can be

determined to be

Tisort(0) = c

Tisort(n +1) = k +Tisort(n)+Tinsert(n)
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Solving the recurrence equations:

Tisort(n) = k +Tisort(n −1)+O(n −1)

= k +k +Tisort(n −2)+O(n −1)+O(n −2)

= k ·n +Tisort(0)+O(n −1)+O(n −2)+·· ·+O(0)

= k ·n + c +
n∑

i=1
O(i )

∈O(n2)

We conclude that insertion sort is quadratic in its run time.

14.5.6 Complexity of merging lists

Continuing our exploration of the time complexity of sorting algo-

rithms, we turn to the components of mergesort. The merge function,

defined by

let rec merge lt xs ys =

match xs, ys with

| [], _ -> ys

| _, [] -> xs

| x :: xst, y :: yst ->

if lt x y

then x :: (merge lt xst ys)

else y :: (merge lt xs yst) ;;

takes two list arguments; their sizes will be two of the arguments of the

complexity function Tmerge. Each recursive call of merge reduces the

total number of items in the two lists. We will for that reason use the

sum of the sizes of the two lists as the argument to Tmerge.

If the total number of elements in the two lists is 1, then one of the

two lists must be empty, and we have

Tmerge(1) = c

In the worst case, neither element will become empty until the to-

tal number of elements in the lists is 2. Thus, for n ≥ 2, we have the

“normal” case, when the lists are nonempty, which involves (in ad-

dition to some constant overhead) a recursive call to merge with one

fewer element in the lists. In the worst case, both elements will still be

nonempty.

Tmerge(n +1) = k +Tmerge(n)
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Solving these recurrence equations:

Tmerge(n) = k +Tmerge(n −1)

= k +k +Tmerge(n −2)

= ·· ·
= k ·n +Tmerge(1)

= k ·n + c

∈O(n)

14.5.7 Complexity of splitting lists

We leave as an exercise to show that the split function defined by

let rec split lst =

match lst with

| []

| [_] -> lst, []

| first :: second :: rest ->

let first', second' = split rest in

first :: first', second :: second' ;;

has linear time complexity.

Exercise 149

Show that split has time complexity linear in the size of its first list argument.

14.5.8 Complexity of divide and conquer algorithms

Before continuing to the analysis of mergesort, we look more generally

at algorithms that (like mergesort) attack problems by dividing them

into equal parts, recursively solving them, and putting the subsolutions

back together to solve the full problem – D I V I D E - A N D - C O N QU E R

algorithms.

The recurrences of such algorithms are typically structured with a

base case requiring constant time

T (1) = c

and a recursive case that involves two recursive calls on some prob-

lems each of half the size. At first, we’ll assume that the time to break

apart and put together the two parts takes constant time k.

T (n) = k +2 ·T (n/2)

For simplicity in solving these recurrence equations, we assume that
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n is a power of 2. Then unfolding a few times:

T (n) = k +2 ·T (n/2)

= k +k +4 ·T (n/4)

= k +k +k +8 ·T (n/8)

= ·· ·

How many times can we unfold? The denominator keeps doubling. We

can keep doubling, then, m times until 2m = n, that is, m = logn:

T (n) = k +2 ·T (n/2)

= k +k +4 ·T (n/4)

= k +k +k +8 ·T (n/8)

= ·· ·
= k · logn +n ·T (n/n)


logn times

= k · logn + c ·n

∈O(n)

More realistically, however, the time required to divide the problem

up and to merge the subsolutions together may take time linear in the

size of the problem. In that case, the recurrence would be something

like

T (n) = k ·n +2 ·T (n/2)

and the closed form is derived as

T (n) = k ·n +2 ·T (n/2)

= k ·n +k ·n +4 ·T (n/4)

= k ·n +k ·n +k ·n +8 ·T (n/8)

= ·· ·
= k ·n · logn +n ·T (n/n)


logn times

= k ·n · logn + c ·n

∈O(n logn)

The O(n logn) complexity is the hallmark of divide-and-conquer

algorithms. Since logn grows extremely slowly, such algorithms are

almost linear in their complexity, thus very efficient.

14.5.9 Complexity of mergesort

Having determined the time complexity for the components of merge-

sort, we put them together to determine the complexity of the merge-

sort function itself:
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let rec msort xs =

match xs with

| [] -> xs

| [_] -> xs

| _ -> let fst, snd = split xs in

merge (msort fst) (msort snd) ;;

Tmsort(0) = Tmsort(1) = c1

Tmsort(n) = c2 +Tsplit(n)+2 ·Tmsort(n/2)+Tmerge(n)

Since both Tsplit and Tmerge are linear, we can write

Tmsort(n) = k ·n + c +2 ·Tmsort(n/2)

These recurrence equations are just of the divide-and-conquer sort, so

we know immediately that the complexity of mergesort is O(n logn).

And since

n2 ≫ n logn

mergesort is shown to be asymptotically more efficient than insertion

sort.

Consistent with this analysis of the sorting algorithms is their

empirical performance, as shown in Figure 14.4. The figure depicts

well the almost linear behavior of mergesort and the much steeper

quadratic growth of insertion sort.

14.5.10 Basic Recurrence patterns

Table 14.1 summarizes some of the basic types of recurrence equations

and their closed-form solution in terms of big-O.

T (n) = c +T (n −1) T (n) ∈O(n)

T (n) = c +k ·n +T (n −1) T (n) ∈O(n2)

T (n) = c +k ·nd +T (n −1) T (n) ∈O(nd+1)

T (n) = c +2 ·T (n/2) T (n) ∈O(n)

T (n) = c +T (n/2) T (n) ∈O(logn)

T (n) = c +k ·n +2 ·T (n/2) T (n) ∈O(n · logn)

Table 14.1: Some common recurrence
patterns and their closed-form solution
in terms of big-O.
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14.6 Problem section: Complexity of the Luhn check

Recall the Luhn check algorithm from Section 8.5, and its various

component functions: evens, odds, doublemod9, sum.
Problem 150

What is an appropriate recurrence equation for defining the time complexity of the odds
function from Problem 60 in terms of the length of its list argument?

Problem 151

What is the time complexity of the odds function from Problem 60 (in big-O notation)?

Problem 152

If the function f (n) is the time complexity of odds on a list of n elements, which of the
following is true?

• f ∈O(1)

• f ∈O(logn)

• f ∈O(logn/c) for all c > 0

• f ∈O(c · logn) for all c > 0

• f ∈O(n)

• f ∈O(n/c) for all c > 0

• f ∈O(c ·n) for all c > 0

• f ∈O(n2)

• f ∈O(n2/c) for all c > 0

• f ∈O(c ·n2) for all c > 0

• f ∈O(2n )

• f ∈O(2n /c) for all c > 0

• f ∈O(c ·2n ) for all c > 0

Problem 153

What is the time complexity of the luhn function implemented in Problem 63 in terms of
the length n of its list argument? Use big-O notation. Explain why your implementation
has that complexity.

14.7 Supplementary material

• Lab 10: Time complexity, big-O, and recurrence equations

• Problem set A.6: The search for intelligent solutions

http://url.cs51.io/lab10
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