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Mutable state and imperative programming

The range of programming abstractions presented so far – first-order

and higher-order functions; strong, static typing; polymorphism;

algebraic data types; modules and functors – all fall squarely within a

view of functional programming that we might term P U R E, in which

computation is identified solely with the evaluation of expressions.

Pure programming has to do with what expressions are, not what they

do. Pure programs have values rather than effects. Indeed, the slightly

pejorative term S I D E E F F E C T is used in the functional programming

literature for effects that impure programs manifest while they are

being evaluated beyond their values themselves.

In a pure functional programming language, there are no side ef-

fects. Computation can be thought of as simplifying expressions to

their values by repeated substitution of equals for equals. Because this

notion of program meaning is so straightforward, functional programs

are easier to reason about. Hopefully, the preceding chapters have

shown that the functional paradigm is also more powerful than you

might have thought.

Strictly speaking, however, pure functional programming is point-

less. We write code to have an effect on the world. It might be pretty

to think that “side effects” aren’t the main point. But they’re the main

point.

Take this simple computation of the twentieth Fibonacci number:

# let rec fib n =

# if n <= 1 then 1

# else fib (n - 1) + fib (n - 2) ;;

val fib : int -> int = <fun>

# fib 20 ;;

- : int = 10946

The computation of fib 20 proceeds purely functionally – at least

until that very last step where the OCaml R E P L prints out the com-

puted value. Printing is the quintessential side effect. It’s a thing that
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a program does, not a value that a program has. Without that one side

effect, the fib computation would be useless. We’d gain no informa-

tion from it.

So we need at least a little impurity in any programming system. But

there are some algorithms that actually require impurity, in the form of

side effects that change state. For instance, we’ve seen implementation

of a dictionary data type in Chapter 12. That implementation allowed

for linear time insertion and linear time lookup. More efficient imple-

mentations allow for constant time insertion and linear lookup (or vice

versa) or for logarithmic insertion and lookup. But by taking advantage

of side effects that change state, we can implement mutable dictionar-

ies that achieve constant time insertion and constant time lookup, for

instance, with hash tables. (In fact, we do so in Section 15.6.)

In this chapter and the next, we introduce I M P E R AT I V E P RO G R A M -

M I N G, a programming paradigm based on side effects and state

change. We start with mutable data structures, moving on to imper-

ative control structures in the next chapter.

In the pure part of OCaml, we don’t change the state of the compu-

tation, as encoded in the computer’s memory. In languages that have

mutable state, variables name blocks of memory whose contents can

change. Assigning a new value to such a variable mutates the memory,

changing its state by replacing the original value with the new one.

OCaml variables, by contrast, aren’t mutable. They name values, and

once having named a value, the value named doesn’t change.

You might think that OCaml does allow changing the value of a

variable. What about, for instance, a global renaming of a variable?

# let x = 42 ;;

val x : int = 42

# x ;; (* x is 42 *)

- : int = 42

# let x = 21 ;;

val x : int = 21

# x ;; (* ...but now it's 21 *)

- : int = 21

Hasn’t the value of x changed from 42 to 21?

No, it hasn’t. Rather, there are two separate variables that happen to

both have the same name, x. In the second expression, we are referring

to the first x variable. In the fourth expression, we are referring to the

second x variable, which shadows the first one. But the first x is still

there. We can tell by the following experiment:

# let x = 42 ;; (* establishing first x... *)

val x : int = 42

# x ;; (* ...whose value is 42 *)

- : int = 42
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# let f () = x ;; (* f returns value in first x *)

val f : unit -> int = <fun>

# let x = 21 ;; (* establishing second x... *)

val x : int = 21

# x ;; (* ...with a different value *)

- : int = 21

# f () ;; (* but f still references first x *)

- : int = 42

The definition of the function f makes use of the first variable x, simply

by returning its value when called. Even if we add a new x naming a

different value, the application f () still returns 42, the value that the

first variable x names, thereby showing that the first x is still available.

The let naming constructs of OCaml thus don’t provide for mutable

state. If we want to make use of mutable state, for instance for the pur-

pose of building mutable data structures, we’ll need new constructs.

OCaml provides references for this purpose.

15.1 References

The OCaml language provides an abstract notion of R E F E R E N C E to a

block of mutable memory with its R E F E R E N C E T Y P E S. To maintain

the type discipline of the language, we want to keep track of the type

of thing stored in the block; although the particular value stored there

may change, we don’t want its type to vary. Thus, we have separate

types for references to integers, references to strings, references to

functions from booleans to integers, and so forth. The postfix type

constructor ref is used to construct reference types: int ref, string

ref, (bool -> int) ref, and the like.

To create a value of some reference type, OCaml provides the prefix

value constructor ref.1 The supplied expression must be of the type 1 Yes, the same symbol, ref, is used at
the type level for the type constructor
and at the value level for the value
constructor. And to make matters
more confusing, the type constructor
is postfix while the value constructor is
prefix. Learning the concrete syntax of a
new programming language sure can be
frustrating.

appropriate for the reference type, and the value of that expression is

stored as the initial value in the block of memory that the reference ref-

erences. Here, for instance, we create a reference to a block of memory

storing the integer value 42:

# let r : int ref = ref 42 ;;

val r : int ref = {contents = 42}

As with all variables, r is an immutable name, but it is a name for

a block of memory that is itself mutable. (The value is printed as

{contents = 42} for reasons that we allude to in Section 15.2.1.)

The natural operations to perform on a reference value are two:

first, D E R E F E R E N C E, that is, retrieve the value stored in the referenced

block; and second, U P D AT E, modify the value stored in the referenced

block (with a value of the same type, of course). Dereferencing is done

with the prefix ! operator, and updating with the infix := operator.
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# !r ;;

- : int = 42

# r := 21 ;;

- : unit = ()

# !r ;;

- : int = 21

Here, we’ve dereferenced the same variable r twice (in the two high-

lighted expressions), getting two different values – first 42, then 21.

This is quite different from the example with two x variables. Here,

there is only one variable r, and yet a single expression !r involving r

whose value has changed!2 2 But like all variables, r has not itself
changed its value. It still points to the
same block of memory.

This example puts in sharp relief the difference between the pure

language and the impure. In the pure language, an expression in a

given lexical context (that is, the set of variable names that are avail-

able) always evaluates to the same value. But in this example, two

instances of the expression !r evaluate to two different values, even

though the same r is used in both instances of the expression. The

assignment has the side effect of changing what value is stored in the

block that r references, so that reevaluating !r to retrieve the stored

value finds a different integer.

The expression causing the side effect here was easy to spot. But

in general, these side effects could happen as the result of a series of

function calls quite obscure from the code that manifests the side

effect. This property of side effects can make it difficult to reason about

what value an expression has.

In particular, the substitution semantics of Chapter 13 has Leibniz’s

law as a consequence. Substitution of equals for equals doesn’t change

the value of an expression. But here, we have a clear counterexample.

The first evaluation implies that !r and 42 are equal. Yet if we substi-

tute 42 for !r in the third expression, we get 42 instead of 21. Once we

add mutable state to the language, we need to extend the semantics

from one based purely on substitution. We do so in Chapter 19, where

we introduce environment semantics.

15.1.1 Reference operator types

The reference system is specifically designed so as to retain OCaml’s

strong typing regimen. Each of the operators, for instance, can be seen

as a well-typed function. The dereference operator !, for instance,

takes an argument of type ’a ref and returns the ’a referenced. It is

thus typed as (!) : ’a ref -> ’a. The reference value constructor

ref works in the opposite direction, taking an ’a and returning an ’a

ref, so it types as (ref) : ’a -> ’a ref.

Finally, the assignment operator := takes two arguments, a refer-
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ence to update, of type ’a ref, and the new ’a value to store there.

But what should the assignment operator return? Assignment is per-

formed entirely for its side effect – the update in the state of memory

– rather than for its return value. Given that there is no information

in the return value, it makes sense to use a type that conveys no in-

formation. This is a natural use for the unit type (Section 4.3). Since

unit has only one value (namely, the value ()), that value conveys no

information. The hallmark of a function that is used only for its side

effects (which we might call a P RO C E D U R E) is the unit return type.

The typing for assignment is appropriately then (:=) : ’a ref ->

’a -> unit.

These typings can be verified in OCaml itself:

# (!) ;;

- : 'a ref -> 'a = <fun>

# (ref) ;;

- : 'a -> 'a ref = <fun>

# (:=) ;;

- : 'a ref -> 'a -> unit = <fun>

15.1.2 Boxes and arrows

It can be helpful to visualize references using B OX A N D A R ROW D I A -

G R A M S. When establishing a reference,

# let r = ref 42 ;;

val r : int ref = {contents = 42}

Figure 15.1: Box and arrow diagrams
for the state of memory as various
references are created and updated.

we draw a box (standing for a block of memory) named r with an arrow

pointing to another box (block of memory) containing the integer 42

(Figure 15.1(a)). Adding another reference with

# let s = ref 42 ;;

val s : int ref = {contents = 42}

generates a new named box and its referent (Figure 15.1(b)), which

happens to store the same value. But we can tell that the referents are

distinct, since assigning to r changes !r but not !s (Figure 15.1(c)).

# r := 21 ;;

- : unit = ()

# !r, !s ;;

- : int * int = (21, 42)

To have s refer to the value that r does, we need to assign to it as well

(Figure 15.1(d)).

# s := !r ;;

- : unit = ()

We can have a reference s that points to the same block of memory

as r does (Figure 15.1(e)).
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# let s = r ;;

val s : int ref = {contents = 21}

Now s and r have the same value (that is, refer to the same block of

memory). We say that s is an A L I A S of r. (The old s is shadowed by the

new one, as depicted by showing it in gray. Since we no longer have

access to it and whatever it references, the gray blocks of memory are

garbage. See the discussion in Section 15.1.3.)

Changing the value stored in a block of memory changes the value

of all its aliases as well. Here, updating the block referred to by r (Fig-

ure 15.1(f)) changes the value for s:

# r := 7 ;;

- : unit = ()

# !r, !s ;;

- : int * int = (7, 7)

In a language with references and aliases, we are confronted with

two different notions of equality. S T RU C T U R A L E QUA L I T Y holds when

two values have the same structure, regardless of where they are stored

in memory, such as r and s in Figure 15.1(d). PH Y S I C A L E QUA L I T Y

holds when two values are the identical “physical” block of memory, as

r and s in Figure 15.1(e). Values that are physically equal are of course

structurally equal as well but the converse needn’t hold.

In OCaml, structural equality and inequality are tested with (=) :

’a -> ’a -> bool and (<>) : ’a -> ’a -> bool, respectively,

whereas physical equality and inequality of mutable types are tested

with (==) : ’a -> ’a -> bool and (!=) : ’a -> ’a -> bool.3 3 The behavior of == and != tests on
immutable (pure) types is allowed to
be implementation-dependent and
shouldn’t be relied on. These operators
should only be used with values of
mutable types.

Exercise 154

Construct an example defining values r and s that are structurally but not physically
equal. Construct an example defining values r and s that are both structurally and
physically equal. Verify these conditions using the equality functions.

15.1.3 References and pointers

You may have seen this kind of thing before. In programming lan-

guages like c, references to blocks of memory are manipulated through

P O I N T E R S to memory, which are explicitly created (with malloc) and

freed (with free), dereferenced (with *), and updated (with =). Some

correspondences between OCaml and c syntax for these operations are

given in Table 15.1.

Notable differences between the OCaml and c approaches are:

• In OCaml, unlike in c, references can’t be created without initializing

them. Referencing uninitialized blocks of memory is a recipe for

difficult to diagnose bugs. OCaml’s type regime eliminates this

entire class of bugs, since a reference type like int ref specifies
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Operation OCaml c

Create, initialize ref 42

Create, name int *r = malloc(sizeof int);

Create, initialize, name let r = ref 42 int *r = malloc(sizeof int);

*r = 42;

Dereference !r *r

Update r := 21 *r = 21

Free free(r)

Table 15.1: Approximate equivalencies
between OCaml references and c
pointers.

that the block must at all times store an int and the operators

maintain this invariant.

• In c, nothing conspires to make sure that the size of the block al-

located is appropriate for the value being stored, leading to the

possibility of BU F F E R OV E R F L OW S – assignments that overflow one

block of memory to overwrite others. Buffer overflows allow for

widely exploited security holes in code. In OCaml, the strong typing

again eliminates this class of bug. Similarly, BU F F E R OV E R- R E A D S

occur when a program reading from a block of memory continues

to read past the end of the block into adjacent memory, potentially

compromising the security of information in the adjacent block. An

infamous example is the H E A RT B L E E D bug in OpenSSL, so notori-

ous that it even acquired its own logo (Figure 15.2).

Figure 15.2: The logo for H E A RT B L E E D,
a buffer over-read bug in the widely
used OpenSSL library (written in c) for
securing web interactions. The bug
was revealed in 2014 after two years
undiscovered in the field.

• In c, programs must free memory explicitly in order to reclaim the

previously allocated memory for future use. When blocks are freed

while still being used, the memory can be overwritten, leading to

M E M O RY C O R RU P T I O N and once again to insidious bugs. Con-

versely, not freeing blocks even when they are no longer needed,

called a M E M O RY L E A K, leads to programs running out of memory

needlessly.

OCaml has no function for explicitly freeing memory. Instead,

blocks of memory that are no longer needed, as determined by the

OCaml run-time system itself, are referred to as G A R B AG E. The

run-time system reclaims garbage automatically, in a process called

G A R B AG E C O L L E C T I O N. Since computers can typically analyze

the status of memory blocks better than people, the use of garbage

collection eliminates memory corruption and memory leaks.

However, the garbage collection approach takes the timing of mem-

ory reclamation out of the hands of the programmer. The run-time

system may decide to perform computation-intensive garbage col-

lection at inopportune times. For applications where careful control

of such timing issues is necessary, the garbage collection approach
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may be undesirable; use of a language, like c, that allows explicit

allocation and deallocation of memory may be necessary.4 4 A new class of functional programming
languages is exploring the design space
of languages with high-level abstraction
mechanisms as in OCaml, including
strongly typed safe references, while
providing finer control of memory
deallocation, in order to obtain the best
of both the explicit approach and the
garbage collection approach. The prime
example is Mozilla’s Rust language.

Problem 155

For each of the following expressions, give its type and value, if any.

1. let a = ref 3 in
let b = ref 5 in
let a = ref b in
!(!a) ;;

2. let rec a, b = ref b, ref a in
!a ;;

3. let a = ref 1 in
let b = ref a in
let a = ref 2 in
!(!b) ;;

4. let a = 2 in
let f = (fun b -> a * b) in
let a = 3 in
f (f a) ;;

15.2 Other primitive mutable data types

In addition to references, OCaml provides two other primitive data

types that allow for mutability: mutable record fields and arrays. We

mention them briefly for completeness; full details are available in the

OCaml documentation.

15.2.1 Mutable record fields

Records (Section 7.4) are compound data structures with named fields,

each of which stores a value of a particular type. As introduced, each

field of a record, and hence records themselves, are immutable. How-

ever, when a record type is defined with the type construct, and the

individual fields are specified and typed, its individual fields can also

be marked as allowing mutability by adding the keyword mutable.

For instance, we can define a person record type with immutable

name fields but a mutable address field.

# type person = {lastname : string;

# firstname : string;

# mutable address : string} ;;

type person = {

lastname : string;

firstname : string;

mutable address : string;

}

Once constructed, the address of a person can be updated.

# let sms = {lastname = "Shieber";

# firstname = "Stuart";

# address = "123 Main"} ;;

val sms : person =

https://www.rust-lang.org/en-US/
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{lastname = "Shieber"; firstname = "Stuart"; address = "123

Main"}

# sms.address <- "124 Main" ;; (* I moved next door *)

- : unit = ()

To update a mutable record, the operator <- is used, rather than := as

for references.

In fact, reference types and their operators can be thought of as

being implemented using mutable records by the following type and

operator definitions:

type 'a ref_ = {mutable contents : 'a} ;;

let ref_ (v : 'a) : 'a ref_ = {contents = v} ;;

let (:=) (r : 'a ref_) (v : 'a) : unit = r.contents <- v ;;

let (!) (r : 'a ref_) : 'a = r.contents ;;

This should explain the otherwise cryptic references to contents when

the R E P L prints values of reference type.

15.2.2 Arrays

Arrays are a kind of cross between lists and tuples with added muta-

bility. Like lists, they can have an arbitrary number of elements all of

the same type. Unlike lists (but like tuples), they cannot be extended

in size; there is no cons equivalent for arrays. Finally, each element of

an array can be individually indexed and updated. An example may

indicate the use of arrays:

# let a = Array.init 5 (fun n -> n * n) ;;

val a : int array = [|0; 1; 4; 9; 16|]

# a ;;

- : int array = [|0; 1; 4; 9; 16|]

# a.(3) <- 0 ;;

- : unit = ()

# a ;;

- : int array = [|0; 1; 4; 0; 16|]

Here, we’ve created an array of five elements, each the square of its

index. We update the third element to be 0, and examine the result,

which now has a 0 in the appropriate location.

15.3 References and mutation

To provide an example of the use of mutating references, we consider

the task of counting the occurrences of an event. We start by establish-

ing a location to store the current count as an int ref named gctr

(for “global counter”).

# let gctr = ref 0 ;;

val gctr : int ref = {contents = 0}
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Now we define a function that “bumps” the counter (adding 1) and

then returns the current value of the counter.

# let bump () =

# gctr := !gctr + 1;

# !gctr ;;

val bump : unit -> int = <fun>

We’ve used a new operator here, the binary sequencing operator (;),

which is a bit like the pair operator (,) in that it evaluates its left and

right arguments, except that the sequencing operator returns the

value only of the second.5 But then what could possibly be the point 5 You can think of P ; Q as being
syntactic sugar for let () = P in Q.of evaluating the first argument? Since the argument isn’t used for

its value, it must be of interest for its side effects. That is the case in

this example; the expression gctr := !gctr + 1 has the side effect

of updating the counter to a new value, its old value (retrieved with

!gctr) plus one.6 Since the sequencing operator ignores the value 6 This part of the bump function that
does the actual incrementing of an
int ref is a common enough activity
that OCaml provides a function incr

: int ref -> unit in the Stdlib
library for just this purpose. It works as
if implemented by

let incr (r : int ref) : unit =

r := !r + 1 ;;

We could therefore have substituted
incr gctr as the second line of the
bump function.

returned by its first argument, it requires that argument to be of type

unit, the type for expressions with no useful value.7

7 Sometimes, you may want to sequence
an expression that returns a value other
than (). The ignore function of type ’a
-> unit in Stdlib comes in handy in
such cases.

We can test it out.

# bump () ;;

- : int = 1

# bump () ;;

- : int = 2

# bump () ;;

- : int = 3

Again, you see the hallmark of impure code – the same expression in

the same context evaluates to different values. The change between

invocations happens because of the side effects of the earlier calls to

bump. We can see evidence of the side effects also in the value of the

counter, which is globally visible.

# !gctr ;;

- : int = 3

In the case of the bump function, it is the intention to provide these

side effects. They are what generates the counting functionality. How-

ever, it is not necessarily the intention to make the current counter

visible to users of the bump function. Doing so enables unintended side

effects, like manipulating the value stored in the counter outside of the

manipulation by the bump function itself, enabling misuses such as the

following:

# gctr := -17 ;;

- : unit = ()

# bump () ;;

- : int = -16

https://url.cs51.io/xe2
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To eliminate this abuse we’d like to avoid a global variable for the

counter. We’ve seen this kind of information hiding before – in the use

of local variables within functions, and in the use of signatures to hide

auxiliary values and functions from users of modules, all instances of

the edict of compartmentalization. But in the context of assignment,

making gctr a local variable (we’ll call it ctr) requires some thought. A

naive approach doesn’t work:

# let bump () =

# let ctr = ref 0 in

# ctr := !ctr + 1;

# !ctr ;;

val bump : unit -> int = <fun>

Exercise 156

What goes wrong with this definition? Try using it a few times and see what happens.

The problem: This code establishes the counter variable ctr upon

application of bump, and establishes a new such variable at each such

application. Instead, we want to define ctr just once, upon the defini-

tion of bump, and not its applications.

In this case, the compact notation for function definition, which

conflates the defining of the function and its naming, is doing us a

disservice. Fortunately, we aren’t obligated to use that syntactic sugar.

We can use the desugared version:

let bump =

fun () ->

ctr := !ctr + 1;

!ctr ;;

Now the naming (first line) and the function definition (second line

and following) are separate. We want the definition of ctr to outscope

the function definition but fall within the local scope of its naming:

# let bump =

# let ctr = ref 0 in

# fun () ->

# ctr := !ctr + 1;

# !ctr ;;

val bump : unit -> int = <fun>

The function is defined within the scope of – and therefore can access

and modify – a local variable ctr whose scope is only that function.

This definition operates as before to deliver incremented integers:

# bump () ;;

- : int = 1

# bump () ;;

- : int = 2

# bump () ;;

- : int = 3
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but access to the counter variable is available only within the function,

as it should be, and not outside of it:

# !ctr ;;

Line 1, characters 1-4:

1 | !ctr ;;

^^^

Error: Unbound value ctr

Hint: Did you mean gctr?

This example – the counter with local, otherwise inaccessible, per-

sistent, mutable state – is one of the most central to understand. We’ll

see a dramatic application of this simple pattern in Chapter 18, where

it underlies the idea of instance variables in object-oriented program-

ming.
Problem 157

Suppose you typed the following OCaml expressions into the OCaml R E P L sequentially.

1 let p = ref 11 ;;
2 let r = ref p ;;
3 let s = ref !r ;;
4 let t =
5 !s := 14;
6 !p + !(!r) + !(!s) ;;
7 let t =
8 s := ref 17;
9 !p + !(!r) + !(!s) ;;

Try to answer the questions below about the status of the various variables being defined
before typing them into the R E P L yourself.

1. After line 1, what is the type of p?

2. After line 2, what is the type of r?

3. After line 3, which of the following statements are true?

(a) p and s have the same type

(b) r and s have the same type

(c) p and s have the same value (in the sense that p = s would be true)

(d) r and s have the same value (in the sense that r = s would be true)

4. After line 6, what is the value of t?

5. After line 9, what is the value of t?

15.4 Mutable lists

To demonstrate the power of imperative programming, we use

OCaml’s imperative aspects to provide implementations of two mu-

table data structures: mutable lists and mutable queues.

As noted in Section 11.1, the OCaml list type operates as if defined

by

type 'a list =

| Nil

| Cons of 'a * 'a list ;;

A mutable list allows values constructed in this way to be updated;

we thus take values of type ’a mlist to be references to such com-

pound structures.
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# type 'a mlist = 'a mlist_internal ref

# and 'a mlist_internal =

# | Nil

# | Cons of 'a * 'a mlist ;;

type 'a mlist = 'a mlist_internal ref

and 'a mlist_internal = Nil | Cons of 'a * 'a mlist

(In this mutually recursive pair of type definitions, the intention is to

make use of values of type ’a mlist. The auxiliary type ’a mlist_-

internal is just an expedient, required because OCaml needs a name

for the type of values that references refer to.)

The shortest such mutable list is simply a reference to the Nil value

(in this case, coerced to an integer mutable list).

# let r : int mlist = ref Nil ;;

val r : int mlist = {contents = Nil}

We can build longer mutable lists by consing on a couple of integers.

We’ll do that bit by bit to allow naming of the intermediate lists.

# let s : int mlist = ref (Cons (1, r)) ;;

val s : int mlist = {contents = Cons (1, {contents = Nil})}

# let t : int mlist = ref (Cons (2, s));;

val t : int mlist =

{contents = Cons (2, {contents = Cons (1, {contents = Nil})})}

We can compute the length of such a list using the usual recursive

definition.

# let rec mlength (lst : 'a mlist) : int =

# match !lst with

# | Nil -> 0

# | Cons (_hd, tl) -> 1 + mlength tl ;;

val mlength : 'a mlist -> int = <fun>

Comparing this with the definition of length : ’a list -> int

from Section 7.3.1, the only difference here is the dereferencing of the

mutable list before it can be matched. Sure enough, this definition

works on the example mutable lists above.

# mlength r ;;

- : int = 0

# mlength s ;;

- : int = 1

# mlength t ;;

- : int = 2

Box and arrow diagrams (Figure 15.3) help in figuring out what’s

going on here.

Figure 15.3: Pictorial representation
of (top) the state of memory after
building some mutable list structures,
and (bottom) updating with r := !t.
The nil has become garbage and the
mutable lists r, s, and t now have cycles
in them.

Exercise 158

Write functions mhead and mtail that extract the head and the (dereferenced) tail from a
mutable list. For example,
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# mhead t ;;
- : int = 2
# mtail t ;;
- : int mlist = {contents = Cons (1, {contents = Nil})}

Because the lists are mutable, we can modify the tail of s (that is, r)

to point to t.

# r := !t ;;

- : unit = ()

Since the tail of s points to t and the tail of t to s, we’ve constructed

a C YC L I C data structure. Doing so uncovers a bug in the mlength

function,

# mlength t ;;

Stack overflow during evaluation (looping recursion?).

demonstrating once again how adding impure features to a language

introduces new and quite subtle complexities.
Problem 159

For each of the following expressions, give its type and value, if any.

1. let a = ref (Cons (2, ref (Cons (3, ref Nil)))) ;;

2. let Cons (_hd, tl) = !a in
let b = ref (Cons (1, a)) in
tl := !b ;
mhead (mtail (mtail b)) ;;

Problem 160

Provide an implementation of the mlength function that handles cyclic lists, so that

# mlength t ;;
- : int = 3

You’ll notice that the requirement to handle cyclic lists dramatically increases the
complexity of implementing length. (Hint: Keep a list of sublists you’ve already visited
and check to see if you’ve already visited each sublist. What is a reasonable value to
return in that case?)

Problem 161

Define a function mfirst : int -> ’a mlist -> ’a list that returns a list (im-
mutable) of the first n elements of a mutable list:

Problem 162

Write code to define a mutable integer list alternating such that for all integers n, the
expression mfirst n alternating returns a list of alternating 1s and 2s, for example,

# mfirst 5 alternating ;;
- : int list = [1; 2; 1; 2; 1]
# mfirst 8 alternating ;;
- : int list = [1; 2; 1; 2; 1; 2; 1; 2]

15.5 Imperative queues

By way of review, the pure functional queue data structure in Sec-

tion 12.4 implemented the following signature:

# module type QUEUE = sig

# type 'a queue

# val empty_queue : 'a queue

# val enqueue : 'a -> 'a queue -> 'a queue
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# val dequeue : 'a queue -> 'a * 'a queue

# end ;;

module type QUEUE =

sig

type 'a queue

val empty_queue : 'a queue

val enqueue : 'a -> 'a queue -> 'a queue

val dequeue : 'a queue -> 'a * 'a queue

end

Each call to enqueue and dequeue returns a new queue, differing from

its argument queue in having an element added or removed.

In an imperative implementation of queues, the enqueuing and

dequeuing operations can and do mutate the data structure, so that

the operations don’t need to return an updated queue. The types for

the operations thus change accordingly. We’ll use the following IMP_-

QUEUE signature for imperative queues:

# module type IMP_QUEUE = sig

# type 'a queue

# val empty_queue : unit -> 'a queue

# val enqueue : 'a -> 'a queue -> unit

# val dequeue : 'a queue -> 'a option

# end ;;

module type IMP_QUEUE =

sig

type 'a queue

val empty_queue : unit -> 'a queue

val enqueue : 'a -> 'a queue -> unit

val dequeue : 'a queue -> 'a option

end

Here again, you see the sign of a side-effecting operation: the enqueue

operation returns a unit. Dually, to convert a procedure that modifies

its argument and returns a unit into a pure function, the standard

technique is to have the function return instead a modified copy of its

argument, leaving the original untouched. Indeed, when we generalize

the substitution semantics of Chapter 13 to handle state and state

change in Chapter 19, we will use just this technique of passing a

representation of the computation state as an argument and returning

a representation of the updated state as the return value.

Another subtlety introduced by the addition of mutability is the

type of the empty_queue value. In the functional signature, we had

empty_queue : ’a queue; the empty_queue value was an empty

queue. In the mutable signature, we have empty_queue : unit ->

’a queue; the empty_queue value is a function that returns a (new,

physically distinct) empty queue. Without this change, the empty_-

queue value would be “poisoned” as soon as something was inserted

in it, so that further references to empty_queue would see the modified
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(non-empty) value. Instead, the empty_queue function can generate a

new empty queue each time it is called.

15.5.1 Method 1: List references

Perhaps the simplest method to implement an imperative queue is as a

(mutable) reference to an (immutable) list of the queue’s elements.

# module SimpleImpQueue : IMP_QUEUE =

# struct

# type 'a queue = 'a list ref

# let empty_queue () = ref []

# let enqueue elt q =

# q := (!q @ [elt])

# let dequeue q =

# match !q with

# | first :: rest -> (q := rest; Some first)

# | [] -> None

# end ;;

module SimpleImpQueue : IMP_QUEUE

This is basically the same as the list implementation from Section 12.4,

but with the imperative signature. Nonetheless, internally the opera-

tions are still functional, and enqueuing an element requires time lin-

ear in the number of elements in the queue. (Recall from Section 14.5

that the functional append function (here invoked as Stdlib.(@)) is

linear.)

We’ll examine two methods for generating constant time implemen-

tations of an imperative queue.

15.5.2 Method 2: Two stacks

An old trick is to use two stacks to implement a queue. The two stacks

hold the front of the queue (the first elements in, and hence the first

out) and the reversal of the rear of the queue. For example, a queue

containing the elements 1 through 4 in order might be represented by

the two stacks (implemented as int lists) [1; 2] and [4; 3], or

pictorially as in Figure 15.4 (upper left).

Figure 15.4: Pictorial representation of
implementing a queue with two stacks.

Enqueuing works by adding an element (5 in upper right) to the rev

rear stack. Dequeuing works by popping the top element in the front

stack, if there is one (middle right and left and lower right). If there are

no elements to dequeue in the front stack (middle left), the rev rear

stack is reversed onto the front stack first (lower left).

The stacks can be implemented with type ’a list ref and the two

stacks packaged together in a record.

module TwoStackImpQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a list ref;
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revrear : 'a list ref}

...

The empty queue has two empty lists.

module TwoStackImpQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a list ref;

revrear : 'a list ref}

let empty_queue () =

{front = ref []; revrear = ref []}

...

Enqueuing simply places the element on the top of the rear stack.

module TwoStackImpQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a list ref;

revrear : 'a list ref}

let empty_queue () =

{front = ref []; revrear = ref []}

let enqueue elt q =

q.revrear := elt :: !(q.revrear)

...

Dequeuing is the more complicated operation.

# module TwoStackImpQueue : IMP_QUEUE =

# struct

# type 'a queue = {front : 'a list ref;

# revrear : 'a list ref}

# let empty_queue () =

# {front = ref []; revrear = ref []}

# let enqueue elt q =

# q.revrear := elt :: !(q.revrear)

# let rec dequeue q =

# match !(q.front) with

# | h :: t -> (q.front := t; Some h)

# | [] -> if !(q.revrear) = [] then None

# else ((* reverse revrear onto front *)

# q.front := List.rev (!(q.revrear));

# (* clear revrear *)

# q.revrear := [];

# (* try the dequeue again *)

# dequeue q)

# end ;;

module TwoStackImpQueue : IMP_QUEUE

As in method 1, the enqueue operation takes constant time. But de-

queuing usually takes constant time too, unless we have to perform the

reversal of the rear stack. Since the stack reversal takes time linear in

the number of enqueues, the time to enqueue and dequeue elements

is, on average, constant time per element.
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Exercise 163

An alternative is to use mutable record fields, so that the queue type would be

type 'a queue = {mutable front : 'a list;
mutable revrear : 'a list}

Reimplement the TwoStackImpQueue module using this type for the queue implementa-
tion.

15.5.3 Method 3: Mutable lists

To allow for manipulation of both the head of the queue (where en-

queuing happens) and the tail (where dequeuing happens), a final

implementation uses mutable lists. The queue type

module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

...

provides a reference to the front of the queue as well as a reference to

the last cons in the queue if there is one. When the queue is empty,

both of these lists will be ref Nil.

module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

let empty_queue () = {front = ref Nil;

rear = ref Nil}

...

Enqueuing a new element differs depending on whether the queue

is empty. If it already contains at least one element, the rear will have

a head and a ref Nil tail (because the rear always points to the last

cons.

module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

let empty_queue () = {front = ref Nil;

rear = ref Nil}

let enqueue elt q =

match !(q.rear) with

| Cons (hd, tl) -> (assert (!tl = Nil);

tl := Cons (elt, ref Nil);

q.rear := !tl)

| Nil -> ...

If the queue is empty, we establish a single element mutable list with

front and rear pointers to its single element.
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module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

let empty_queue () = {front = ref Nil;

rear = ref Nil}

let enqueue elt q =

match !(q.rear) with

| Cons (hd, tl) -> (assert (!tl = Nil);

tl := Cons (elt, ref Nil);

q.rear := !tl)

| Nil -> (assert (!(q.front) = Nil);

q.front := Cons (elt, ref Nil);

q.rear := !(q.front))

...

Finally, dequeuing involves moving the front pointer to the next ele-

ment in the list, and updating the rear to Nil if the last element was

dequeued and the queue is now empty.

# module MutableListQueue : IMP_QUEUE =

# struct

# type 'a queue = {front : 'a mlist;

# rear : 'a mlist}

#

# let empty_queue () = {front = ref Nil;

# rear = ref Nil}

# let enqueue elt q =

# match !(q.rear) with

# | Cons (_hd, tl) -> (assert (!tl = Nil);

# tl := Cons (elt, ref Nil);

# q.rear := !tl)

# | Nil -> (assert (!(q.front) = Nil);

# q.front := Cons (elt, ref Nil);

# q.rear := !(q.front))

# let dequeue q =

# match !(q.front) with

# | Cons (hd, tl) ->

# (q.front := !tl;

# (match !tl with

# | Nil -> q.rear := Nil

# | Cons (_, _) -> ());

# Some hd)

# | Nil -> None

# end ;;

module MutableListQueue : IMP_QUEUE

Figure 15.5: Pictorial representation of
implementing a queue with a mutable
list.

Figure 15.5 depicts the queue data structure as it performs the follow-

ing operations:

# let open MutableListQueue in

# let q = empty_queue () in

# enqueue 1 q;

# enqueue 2 q;
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# dequeue q ;;

- : int option = Some 1

15.6 Hash tables

A hash table is a data structure implementing a mutable dictionary.

We’ve seen functional key-value dictionaries already in Section 12.6,

which implement a signature like the following:

module type DICT =

sig

type key

type value

type dict

(* An empty dictionary *)

val empty : dict

(* Returns as an option the value associated with the

provided key. If the key is not in the dictionary,

returns None. *)

val lookup : dict -> key -> value option

(* Returns true if and only if the key is in the

dictionary. *)

val member : dict -> key -> bool

(* Inserts a key-value pair into the dictionary. If the

key is already present, updates the key to have the

new value. *)

val insert : dict -> key -> value -> dict

(* Removes the key from the dictionary. If the key is

not present, returns the original dictionary. *)

val remove : dict -> key -> dict

end ;;

In a mutable dictionary, the data structure state is actually modified

by side effect when inserting or removing key-value pairs. Conse-

quently, those functions need not (and should not) return an updated

dictionary. (As with mutable lists, because dictionaries can be mod-

ified by side effect, care must also be taken with specifying an empty

dictionary. Instead of a single empty dictionary value, we provide a

function from unit that returns a new empty dictionary.) An appropri-

ate signature for a mutable dictionary, then, is

# module type MDICT =

# sig

# type key

# type value

# type dict

#

# (* Returns an empty dictionary. *)

# val empty : unit -> dict

# (* Returns as an option the value associated with the

# provided key. If the key is not in the dictionary,
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# returns None. *)

# val lookup : dict -> key -> value option

# (* Returns true if and only if the key is in the

# dictionary. *)

# val member : dict -> key -> bool

# (* Inserts a key-value pair into the dictionary. If the

# key is already present, updates the key to have the

# new value. *)

# val insert : dict -> key -> value -> unit

# (* Removes the key from the dictionary. If the key is

# not present, leaves the original dictionary unchanged. *)

# val remove : dict -> key -> unit

# end ;;

module type MDICT =

sig

type key

type value

type dict

val empty : unit -> dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> unit

val remove : dict -> key -> unit

end

In a H A S H TA B L E implementation of this signature, the key-value

pairs are stored in a mutable array of a given size at an index speci-

fied by a H A S H F U N C T I O N, a function from keys to integers within

the range provided. The idea is that the hash function should assign

well distributed locations to keys, so that inserting or looking up a

particular key-value pair involves just computing the hash function

to generate the location where it can be found. Thus, insertion and

lookup are constant-time operations.

An important problem to resolve is what to do in case of a H A S H

C O L L I S I O N, when two different keys hash to the same value. We as-

sume that only a single key-value pair can be stored at a given location

in the hash table – called C L O S E D H A S H I N G – so in case of a collision

when inserting a key-value pair, we keep searching in the table at the

sequentially following array indices until an empty slot in the table is

found. Similarly, when looking up a key, if the key-value pair stored

at the hash location does not match the key being looked up, we se-

quentially search for a pair that does match. This process of trying

sequential locations is known as L I N E A R P RO B I N G. Frankly, linear

probing is not a particularly good method for handling hash collisions

(see Exercises 165 and 166), but it will do for our purposes here.

To define a new kind of hash table, we need to provide types for the

keys and values, a size for the array, and an appropriate hash function.

We package all of this up in a module that can serve as the argument to
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a functor.

# module type MDICT_ARG =

# sig

# (* Types to be used for the dictionary keys and values *)

# type key

# type value

# (* size -- Number of elements that can be stored in the

# dictionary *)

# val size : int

# (* hash_fn key -- Returns the hash value for a key. *)

# val hash_fn : key -> int

# end ;;

module type MDICT_ARG =

sig type key type value val size : int val hash_fn : key -> int

end

Here is the beginning of an implementation of such a functor:

module MakeHashtableDict (D : MDICT_ARG)

: (MDICT with type key = D.key

and type value = D.value) =

struct

type key = D.key

type value = D.value

(* A hash record is a key value pair *)

type hashrecord = { key : key;

value : value }

(* An element of the hash table array is a hash record

(or empty) *)

type hashelement =

| Empty

| Element of hashrecord

(* The hash table itself is a (mutable) array of hash

elements *)

type dict = hashelement array

let empty () = Array.make D.size Empty

...

end ;;

With a full implementation of the MakeHashtableDict functor

(Exercise 164), we can build an IntStringHashtbl hash table module

for hash tables that map integers to strings as follows:8 8 The hash function we use here is an
especially poor choice; we use it to
make it easy to experiment with hash
collisions.

# module IntStringHashtbl : (MDICT with type key = int

# and type value = string) =

# MakeHashtableDict (struct

# type key = int

# type value = string

# let size = 100

# let hash_fn k = (k / 3) mod size

# end) ;;

module IntStringHashtbl :
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sig

type key = int

type value = string

type dict

val empty : unit -> dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> unit

val remove : dict -> key -> unit

end

Let’s experiment:

# open IntStringHashtbl ;;

# let d = empty () ;;

val d : IntStringHashtbl.dict = <abstr>

# insert d 10 "ten" ;;

- : unit = ()

# insert d 9 "nine" ;;

- : unit = ()

# insert d 34 "34" ;;

- : unit = ()

# insert d 1000 "a thousand" ;;

- : unit = ()

# lookup d 10 ;;

- : IntStringHashtbl.value option = Some "ten"

# lookup d 9 ;;

- : IntStringHashtbl.value option = Some "nine"

# lookup d 34 ;;

- : IntStringHashtbl.value option = Some "34"

# lookup d 8 ;;

- : IntStringHashtbl.value option = None

# remove d 9 ;;

- : unit = ()

# lookup d 10 ;;

- : IntStringHashtbl.value option = Some "ten"

# lookup d 9 ;;

- : IntStringHashtbl.value option = None

# lookup d 34 ;;

- : IntStringHashtbl.value option = Some "34"

# lookup d 8 ;;

- : IntStringHashtbl.value option = None

Exercise 164

Complete the implementation by providing implementations of the remaining func-
tions lookup, member, insert, and remove.

Exercise 165

Improve the collision handling in the implementation by allowing the linear probing to
“wrap around” so that if it reaches the end of the array it keeps looking at the beginning
of the array.

Exercise 166

A problem with linear probing is that as collisions happen, contiguous blocks of the
array get filled up, so that further collisions tend to yield long searches to get past
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these blocks for an empty location. Better is to use a method of rehashing that leaves
some gaps. A simple method to do so is QUA D R AT I C P RO B I N G: each probe increases
quadratically, adding 1, then 2, then 4, then 8, and so forth. Modify the implementation
so that it uses quadratic probing instead of linear probing.

15.7 Conclusion

With the introduction of references, we move from thinking about

what expressions mean to what they do. The ability to mutate state

means that data structures can now undergo change. By modifying

existing data structures, we may be able to avoid building new copies,

thereby saving some space. More importantly, performing small up-

dates may be much faster than constructing large copies, leading to

improvements in both space and time complexity.

But making good on these benefits requires much more subtle

reasoning about what programs are up to. The elegant substitution

model – which says that expressions are invariant under substitution

of one subexpression by another with the same value – doesn’t hold

when side effects can change those values out from under us. Aliasing

means that changes in one part of the code can have ramifications far

afield. Modifying data structures means that the hierarchical structures

can be modified to form cycles, with the potential to fall into infinite

loops. (We explore the changes needed to the substitution semantics

of Chapter 13 to allow for mutable state in Chapter 19.)

Nonetheless, the underlying structure of modern computer hard-

ware is based on stateful memory to store program and data, so that

at some point imperative programming is a necessity. Imperative pro-

gramming can be a powerful way of thinking about implementing

functionality.

❧

We’ve now introduced essentially all of the basic language con-

structs that we need. In the following chapters, we deploy them in new

combinations that interact to provide additional useful programming

abstractions – providing looping constructs to enable the repetition of

side effects (Chapter 16); the ability to perform a computation “lazily”,

delaying it until its result is needed (Chapter 17); and the encapsula-

tion of computations within data objects that they act on (Chapter 18).

15.8 Supplementary material

• Lab 12: Imperative programming and references

http://url.cs51.io/lab12
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