
16

Loops and procedural programming

Back in Section 7.3.1, we implemented a function to compute the

length of a list, by capturing how the length is defined: the length of

the empty list is 0; the length of a non-empty list is one more than the

length of its tail. This definition can be immediately cashed out as

let rec length (lst : 'a list) : int =

match lst with

| [] -> 0

| _hd :: tl -> 1 + length tl ;;

val length : 'a list -> int = <fun>

An alternative approach, in the spirit of imperative programming,

is to think not about what the length is but about what one does

when calculating the length: For each element of the list, add one to

a counter until the end of the list is reached.

This approach – which we might term P RO C E D U R A L P RO G R A M -

M I N G because it emphasizes the steps in the procedure to be carried

out – is typical of how introductory programming is taught, with an

emphasis on commands with side effects that are executed repeatedly

through loops.

In this chapter, we’ll provide examples of procedural programming,

emphasizing one of the main benefits of the paradigm, S PAC E E F F I -

C I E N C Y. Procedural programming can be more space efficient in a

couple of ways. First, it can reduce the need for storing suspended

computations in so-called “stack frames”, though as we’ll see, the func-

tional language technique of tail-recursion optimization can provide

this benefit as well. Second, it can reduce the need for copying data

structures as they are manipulated.

Although OCaml is at its core a functional programming language,

it supports procedural programming as well. There are, for instance,

272 P RO G R A M M I N G W E L L

while loops:

〈expr〉 ::= while 〈exprcondition〉 do
〈exprbody〉

done

which specify that the body expression be executed repeatedly so long

as the condition expression is true.

In addition, the for loop, familiar from other procedural languages,

is expressed as follows to count up from a start value to an end value:

〈expr〉 ::= for 〈var〉 = 〈exprstart〉 to 〈exprend〉 do
〈exprbody〉

done

or, counting down,

〈expr〉 ::= for 〈var〉 = 〈exprstart〉 downto 〈exprend〉 do
〈exprbody〉

done

16.1 Loops require impurity

In a pure language, an expression in a given context always has the

same value. Thus, in a while loop of the form

while 〈exprcondition〉 do
〈exprbody〉

done

if the condition expression 〈exprcondition〉 is true the first time it’s eval-

uated, it will remain so perpetually and the loop will never terminate.

Conversely, if the condition expression is false the first time it’s eval-

uated, it will remain so perpetually and the loop body will never be

evaluated. Similarly, the body expression 〈exprbody〉 will always evalu-

ate to the same value, so what could possibly be the point of evaluating

it more than once?

In summary, procedural programming only makes sense in a lan-

guage with side effects, the kind of impure constructs (like variable

assignment) that we introduced in the previous chapter. You can see

this need in attempting to implement the length function in this pro-

cedural paradigm. Here is a sketch of a procedure for calculating the

length of a list:

L O O P S A N D P RO C E D U R A L P RO G R A M M I N G 273

let length (lst : 'a list) : int =

(* initialize the counter *)

while (* the list is not empty *) do

(* increment the counter *)

(* drop an element from the list *)

done;

(* return the counter *) ;;

We’ll need to establish the counter in such a way that its value can

change. Similarly, we’ll need to update the list each time the loop

body is executed. We’ll thus need both the counter and the list being

manipulated to be references, so that they can change. Putting all this

together, we get the following procedure for computing the length of a

list:

let length_iter (lst : 'a list) : int =

let counter = ref 0 in (* initialize the counter *)

let lst_ref = ref lst in (* initialize the list *)

while !lst_ref <> [] do (* while list not empty... *)

incr counter; (* increment the counter *)

lst_ref := List.tl !lst_ref (* drop element from list *)

done;

!counter ;; (* return the counter value *)

val length_iter : 'a list -> int = <fun>

length_iter [1; 2; 3; 4; 5] ;;

- : int = 5

16.2 Recursion versus iteration

Is this impure, iterative, procedural method better than the pure,

recursive, functional approach? It certainly seems more complex,

and gaining an understanding that it provides the correct values as

specified in the definition of list length is certainly more difficult.

16.2.1 Saving stack space

There is one way, however, in which this approach might be supe-

rior. Think of the calculation of the length of a list, say [1; 2; 3],

using the functional definition. Since the list is non-empty, we need

to add one to the result of evaluating length [2; 3], and we’ll need

to suspend the addition until that evaluation completes. Likewise, to

evaluate length [2; 3] we’ll need to add one to the result of evaluat-

ing length [3], again suspending the addition until that evaluation

completes. Continuing on in this way, at run time we’ll eventually have

a nested stack of suspended calls. Each element of this stack, carry-

ing information about the suspended computation, is referred to as a

S TAC K F R A M E. Only once we reach length [] can we start unwind-

ing this stack, performing all of the suspended additions specified in

274 P RO G R A M M I N G W E L L

the stack frames, to calculate the final answer. Figure 16.1 depicts this

linearly growing stack of suspended calls. length [1; 2; 3]

⇒ 1 + length [2; 3]

⇒ 1 + (1 + length [3])

⇒ 1 + (1 + (1 + length []))

⇒ 1 + (1 + (1 + 0))

⇒ 1 + (1 + 1)

⇒ 1 + 2

⇒ 3

Figure 16.1: The nested stack of sus-
pended calls in evaluating a non-tail-
recursive length function. We indicate
each stack frame with a highlighted
box. Notice that the number of stack
frames increases as each recursive call is
generated.

The iterative approach, on the other hand, needs no stack of sus-

pended computations. The single call to length_iter invokes the

while loop to iteratively increment the counter and drop elements

from the list. The computation is “flat”.

The difference can be seen forcefully when computing the length of

a very long list. Here, we’ve defined very_long_list to be a list with

one million elements.

let very_long_list = List.init 1_000_000 Fun.id ;;

val very_long_list : int list = [0; 1; 2; 3; 4; 5; 6; 7; ...]

The iterative procedure for computing its length works well.

length_iter very_long_list ;;

- : int = 1000000

But the functional recursive version overflows the stack dedicated to

storing the suspended computations. Apparently, one million stack

frames is more than the computer has space for.

length very_long_list ;;

Stack overflow during evaluation (looping recursion?).

16.2.2 Tail recursion

The profligate use of space for stack frames is not inherent in all purely

functional recursive computations however. Consider the following

purely functional method length_tr for implementing the length

calculation.

let length_tr lst =

let rec length_plus lst acc =

match lst with

| [] -> acc

| _hd :: tl -> length_plus tl (1 + acc) in

length_plus lst 0 ;;

val length_tr : 'a list -> int = <fun>

Here, a local auxiliary function length_plus takes two arguments,

the list and an integer accumulator of the count of elements counted

so far. It returns the length of its list argument plus the value of its

accumulator. Thus, the call to length_plus lst 0 calculates the the

length of lst plus 0, which is just the length desired.

This length_tr version of calculating list length still operates re-

cursively; length_plus is the locus of the recursion as indicated by

the rec keyword. The nesting of recursive calls proceeds as shown in

Figure 16.2.

length_tr [1; 2; 3]

⇒ length_plus [1; 2; 3] 0

⇒ length_plus [2; 3] 1

⇒ length_plus [3] 2

⇒ length_plus [] 3

⇒ 3

Figure 16.2: The call structure in
evaluating a tail-recursive length
function. Note the lack of nesting of
suspended calls.

L O O P S A N D P RO C E D U R A L P RO G R A M M I N G 275

As with the previous recursive version, the number of such recursive

computations is linear in the length of the list. One might think, then,

that the same problem of stack overflow will haunt the length_tr

implementation as well. Let’s try it.

length_tr very_long_list ;;

- : int = 1000000

This version doesn’t have the same problem. It’s easy to see why. For

the recursive length, the result of each call is a computation using the

result of the embedded call to length; that computation must there-

fore be suspended, and a stack frame must be allocated to store infor-

mation about that pending computation. But the result of each call to

the recursive length_plus is not just a computation using the result of

the embedded call to length_plus; it is the result of that nested call.

We don’t need to store any information about a suspended computa-

tion – no need to allocate a stack frame – because the embedded call

result is all that is needed.

Recursive programs written in this way, in which every recursive in-

vocation is the result of the invoking call, are deemed TA I L R E C U R S I V E

(hence the _tr in the function’s name). Tail-recursive functions need

not use a stack to keep track of suspended computations. Program-

ming language implementations that take advantage of this possibility

by not allocating a stack frame to tail-recursive applications are said to

perform TA I L - R E C U R S I O N O P T I M I Z AT I O N, effectively turning the re-

cursion into a corresponding iteration, and yielding the benefits of the

procedural iterative solution. The OCaml interpreter is such a language

implementation.

Thus, this putative advantage of loop-based procedures over recur-

sive functions – the ability to perform computations space-efficiently –

can often be replicated in functional style through careful tail-recursive

implementation where needed.

You’ll see discussion of this issue, for instance, in the description

of functions in the List library, which calls out those functions that

are not tail-recursive.1 For instance, the library function fold_left is 1 From the List library documentation:
“Some functions are flagged as not
tail-recursive. A tail-recursive function
uses constant stack space, while a
non-tail-recursive function uses stack
space proportional to the length of its
list argument, which can be a problem
with very long lists. . . . The above
considerations can usually be ignored
if your lists are not longer than about
10000 elements.”

implemented in a tail-recursive manner, so it can fold over very long

lists without running out of stack space. By contrast, the fold_right

implementation is not tail-recursive, so may not be appropriate when

processing extremely long lists.

16.3 Saving data structure space

Another advantage of procedural programming is the ability to avoid

building of new data structures. Think of the map function over lists,

which can be implemented as follows:

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

276 P RO G R A M M I N G W E L L

let rec map (fn : 'a -> 'b) (lst : 'a list) : 'b list =

match lst with

| [] -> []

| hd :: tl -> fn hd :: map fn tl ;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

We can use map to increment the values in a list:

let original = [1; 2; 3] ;;

val original : int list = [1; 2; 3]

map succ original ;;

- : int list = [2; 3; 4]

The result is a list with different values. Most notably, the result is a new

list. The original is unchanged.

original ;;

- : int list = [1; 2; 3]

The new list is created by virtue of the repeated construction of

conses with the :: operator highlighted in the map definition above.

Every time map is called to operate over a list, more conses will be

needed. There’s no free lunch here. Under the hood, every cons takes

up space; storage must be allocated for each one. If we start with a list

of length n, we’ll end up allocating n more conses to compute the map.

16.3.1 Problem section: Metering allocations

We can determine how many allocations are going on by metering

them. Imagine there were a module Metered satisfying the following

signature:

module type METERED =

sig

(* reset () -- Resets the count of allocations *)

val reset : unit -> unit

(* count () -- Returns the number of allocations

since the last reset *)

val count : unit -> int

(* cons hd tl -- Returns the list cons of `hd` and

`tl`, increasing the allocation count accordingly *)

val cons : 'a -> 'a list -> 'a list

(* pair first second -- Returns the pair of `first`
and `second`, increasing the allocation count

accordingly *)

val pair : 'a -> 'b -> 'a * 'b

end ;;

module type METERED =

sig

val reset : unit -> unit

val count : unit -> int

val cons : 'a -> 'a list -> 'a list

val pair : 'a -> 'b -> 'a * 'b

end

L O O P S A N D P RO C E D U R A L P RO G R A M M I N G 277

The functions cons and pair could be used to replace their built-in

counterparts for consing (::) and pairing (,) to track the number of

allocations required.
Problem 167

Implement the module Metered.

Problem 168

Reimplement the zip function of Section 10.3.2 using metered conses and pairs.

Having metered the zip function, we can observe the count of

allocations.

Metered.reset () ;;

- : unit = ()

zip [1; 2; 3; 4; 5] [5; 4; 3; 2; 1] ;;

- : (int * int) list = [(1, 5); (2, 4); (3, ...); ...]

Metered.count () ;;

- : int = 10

16.3.2 Reusing space through mutable data structures

Now consider, by contrast to the functional map over lists above, a

function (call it map_array) to map a function over a mutable data

structure, an array. Instead of returning a new data structure, we’ll

mutate the values in the original data structure. For that reason, map_-

array doesn’t itself need to return an array. 2 2 The function being applied must be
of type ’a -> ’a since the output of
the function is being stored in the same
location as the input, and must thus
be of the same type. For that reason,
map_array can’t be as polymorphic as
map.

let map_array (fn : 'a -> 'a) (arr : 'a array) : unit =

for i = 0 to Array.length arr - 1 do

arr.(i) <- fn arr.(i)

done ;;

val map_array : ('a -> 'a) -> 'a array -> unit = <fun>

We can perform a similar computation, mapping the successor func-

tion over the elements of an array.

let original = [|1; 2; 3|] ;;

val original : int array = [|1; 2; 3|]

map_array succ original ;;

- : unit = ()

We see the effect of the map this time not in the return value but in the

modified original array.

original ;;

- : int array = [|2; 3; 4|]

By using imperative techniques, we gain access to the incremented

values, and without incurring the cost of allocating further storage.

There is a cost, however. We no longer have access to the original

unincremented values. They’ve been destroyed, replaced by the new

values. There’s a tradeoff – reduced storage versus loss of access to

prior results. Under what conditions the tradeoff is beneficial is a

judgement call. But as an issue of efficiency, we’d want to heed Knuth’s

warning against premature optimization.

278 P RO G R A M M I N G W E L L

16.4 In-place sorting

As another example of the use of procedural programming to reduce

storage requirements, we consider one of the most elegant sorting

algorithms, QU I C K S O RT. Quicksort works by selecting a pivot value

– the first element of the list, say – and partitioning the list into those

elements less than the pivot and those that are greater. The two sub-

lists are recursively sorted, and then concatenated to form the final

sorted list. A recursive implementation of quicksort, following the SORT

signature of Section 14.2, is as follows:

module QuickSort : SORT =

struct

(* partition lt pivot xs -- Returns two lists

constituting all elements in `xs` less than (according

to `lt`) than the `pivot` value and greater than the

pivot `value`, respectively *)

let rec partition lt pivot xs =

match xs with

| [] -> [], []

| hd :: tl ->

let first, second = partition lt pivot tl in

if lt hd pivot then hd :: first, second

else first, hd :: second

#

(* sort lt xs -- Returns the sorted `xs` according to the

comparison function `lt` using the Quicksort algorithm *)

let rec sort (lt : 'a -> 'a -> bool)

(xs : 'a list)

: 'a list =

match xs with

| [] -> []

| pivot :: rest ->

let first, second = partition lt pivot rest in

(sort lt first) @ [pivot] @ (sort lt second)

end ;;

module QuickSort : SORT

Problem 169

Implement a metered version of quicksort, and experiment with how many allocations
are needed to sort lists of different lengths.

Just as we built a version of map that mutated an array to map over

its elements, we can build a version of quicksort that mutates an array

to sort its elements. This approach, I N - P L AC E sorting, is much more

space-efficient. As we’ll see, though, there is a cost in transparency of

the implementation.

The type for an in-place sort differs from its pure alternative, which

allocates extra space. A signature for an in-place sorting module makes

clear the differences.

module type SORT_IN_PLACE =

sig

L O O P S A N D P RO C E D U R A L P RO G R A M M I N G 279

(* sort lt xs -- Sorts the array `xs` in place in increasing

order by the "less than" function `lt`. *)

val sort : ('a -> 'a -> bool) -> 'a array -> unit

end ;;

module type SORT_IN_PLACE =

sig val sort : ('a -> 'a -> bool) -> 'a array -> unit end

First, we’re sorting a mutable data structure, an array, rather than a

list. Second, the sort function returns a unit as it works by side effect

rather than by returning a sorted version of the unchanged argument

list. The sorting function, then, begins with a header line

let sort (lt : 'a -> 'a -> bool) (arr : 'a array) : unit =

The primitive operation of in-place sorting is the swapping of two

elements in the array, specified by their indices. We’ll make use of a

function swap to perform this operation.

let swap (i : int) (j : int) : unit =

let temp = arr.(i) in

arr.(i) <- arr.(j);

arr.(j) <- temp

We’ll need to partition a region of the array, by which we mean a

contiguous subportion of the array between two indices. For that pur-

pose, we’ll have a function partition that takes two indices (left and

right) demarcating the region to partition (the elements between the

indices inclusive). The partition function returns the index of the

split point in the region, the position that marks the border between

the left partition and the right partition where the pivot element re-

sides. We note that for our purposes, there should and will always be

at least two elements in the region; otherwise, no recursive sorting is

necessary, hence no need to partition.

To partition the region, we select the leftmost element as the pivot.

We keep a “current” index that moves from left to right as we process

each element in the region. At the same time, we maintain a moving

“border” index, again moving from left to right. At any point, all of the

elements to the left of the border will be guaranteed to be less than

the pivot value. Those between the border and the current index are

greater than or equal to the pivot. Those to the right of the current

index are yet to be processed. Eventually, when we’ve processed all

elements, we swap the pivot element itself into the correct position at

the border. Here’s the implementation of this quite subtle process:

let partition (left : int) (right : int) : int =

(* region has at least two elements *)

assert (left < right);

280 P RO G R A M M I N G W E L L

(* select the pivot element to be the first element in

the region *)

let pivot_val = arr.(left) in

(* all elements to the left of `border` are guaranteed

to be strictly less than pivot value *)

let border = ref (left + 1) in

(* current element being partitioned, starting just

after pivot *)

let current = ref (left + 1) in

(* process each element, moving those less than the

pivot to before the border *)

while !current <= right do

if lt arr.(!current) pivot_val then

begin

(* current should be left of pivot *)

swap !current !border; (* swap into place at border *)

incr border (* move border to the right to make room *)

end;

incr current

done

(* the split point is just to left of the border *)

let split = !border - 1 in

(* move pivot into place at the split point *)

swap left split;

(* return the split index *)

split

With the availability of the partition function, we can implement

a function sort_region to sort a region, again picked out by two

indices.

let rec sort_region (left : int) (right : int) : unit =

if left >= right then ()

else

let split = partition left right in

(* recursively sort left and right regions *)

sort_region left (split - 1);

sort_region (split + 1) right

Finally, to sort the entire array, we can sort the region between the

leftmost and rightmost indices

sort_region 0 ((Array.length arr) - 1)

Putting this all together leads to the implementation shown in Fig-

ure 16.3. (We’ve placed the swap and partition functions within

the sort function so that they are within the scope of (and can thus

access) the lt and arr arguments of sort.)

You’ll note that the in-place quicksort is considerably longer than

the pure version. In part that is because of the much more detailed

work that must be done in partitioning a region, maintaining complex

L O O P S A N D P RO C E D U R A L P RO G R A M M I N G 281

module QuickSort : SORT_IN_PLACE =

struct

let sort (lt : 'a -> 'a -> bool) (arr : 'a array) : unit =

(* swap i j -- Update the `arr` array by swapping the

elements at indices `i` and `j` *)

let swap (i : int) (j : int) : unit =

let temp = arr.(i) in

arr.(i) <- arr.(j);

arr.(j) <- temp in

(* partition left right -- Partition the region of the

`arr` array between indices `left` and `right`

inclusive, returning the split point, that is, the

index of the pivot element. Assumes the region

contains at least two elements. At the end,

everything to left of the split is less than the

pivot; everything to the right is greater. *)

let partition (left : int) (right : int) : int =

(* region has at least two elements *)

assert (left < right);

(* select the pivot element to be the first element in

the region *)

let pivot_val = arr.(left) in

(* all elements to the left of `border` are guaranteed

to be strictly less than pivot value *)

let border = ref (left + 1) in

(* current element being partitioned, starting just

after pivot *)

let current = ref (left + 1) in

Figure 16.3: Implementation of an
in-place quicksort.

282 P RO G R A M M I N G W E L L

(* process each element, moving those less than the

pivot to before the border *)

while !current <= right do

if lt arr.(!current) pivot_val then

begin

(* current should be left of pivot *)

swap !current !border; (* swap into place *)

incr border (* move border right to make room *)

end;

incr current

done;

(* the split point is just to left of the border *)

let split = !border - 1 in

(* move pivot into place at the split point *)

swap left split;

(* return the split index *)

split in

(* sort_region left right -- quicksort the subarray of

the `arr` array between indices `left` and `right`

inclusive *)

let rec sort_region (left : int) (right : int) : unit =

if left >= right then ()

else

let split = partition left right in

(* recursively sort left and right regions *)

sort_region left (split - 1);

sort_region (split + 1) right

in

(* sort the whole `arr` array *)

sort_region 0 ((Array.length arr) - 1)

end

Figure 16.3: (continued) Implementa-
tion of an in-place quicksort.

L O O P S A N D P RO C E D U R A L P RO G R A M M I N G 283

invariants concerning the left, right, current, and border indices and

the elements in the various subregions. In part the length is a result

of considerably more documentation in the implementation, but that

is not a coincidence. The implementation requires this additional

documentation to be remotely as understandable as the pure version.

(Even still, an understanding of the in-place version is arguably more

complex. It’s hard to imagine understanding how the partition func-

tion works without manually “playing computer” on some examples to

verify the procedure.)

The payoff is that the in-place version needs to allocate only a tiny

amount of space beyond the storage in the various stack frames for the

function applications – just the storage for the current and border

elements. Is the cost in code complexity and opaqueness worth it?

That depends on the application. If sorting huge amounts of data is

necessary, the reduction in space may be needed.
Problem 170

A completely in-place version of mergesort that uses only a fixed amount of extra space
turns out to be quite tricky to implement. However, a version that uses only a single
extra array is possible, and still more space-efficient than the pure version described in
Section 14.2. Implement a version of mergesort that uses a single extra array as “scratch
space” for use while merging. To sort a region, we sort the left and right subregions
recursively, then merge the two into the scratch array, and finally copy the merged region
back into the main array.

16.5 Supplementary material

• Lab 12: Procedural programming and loops

http://url.cs51.io/lab12

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

