

17

Infinite data structures and lazy programming

Combining functions as first-class values, algebraic data types, and

references enables programming with infinite data structures, the

surprising topic of this chapter. We’ll build infinite lists (streams) and

infinite trees. The primary technique we use, lazy evaluation, has many

other applications.

17.1 Delaying computation

OCaml is an E AG E R language. Recall the semantic rule for function

application from Chapter 13:

P Q ⇓∣∣∣∣∣∣∣
P ⇓ fun x -> B

Q ⇓ vQ

B [x 7→ vQ] ⇓ vB

⇓ vB

(Rapp)

According to this rule, before generating the result of the application

(by substituting into the body expression B), we first evaluate the

argument Q. Similarly, in a local let expression,

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD] ⇓ vB

⇓ vB

(Rlet)

before substituting the definition D into the body expression B , we first

evaluate D to a value.

There are disadvantages of this eager evaluation approach. For

instance, if the argument value is not used in the body of the function,

the computation to generate the value will still be carried out, an

entirely wasted effort. An extreme case occurs when the computation

of the argument value doesn’t even terminate:

286 P RO G R A M M I N G W E L L

let rec forever n = 1 + forever n ;;

val forever : 'a -> int = <fun>

(fun x -> "this value ignores x") (forever 42) ;;

Line 1, characters 5-6:

1 | (fun x -> "this value ignores x") (forever 42) ;;

^

Warning 27 [unused-var-strict]: unused variable x.

Stack overflow during evaluation (looping recursion?).

If we had delayed the computation of forever 42 until after it had

been substituted in as the argument of the function, we would never

have had to evaluate it at all, and the evaluation of the full expression

would have terminated with "this value ignores x".

Examples like this indicate the potential utility of L A Z Y E VA LU -

AT I O N – being able to D E L AY computation until such time as it is

needed, at which time the computation can be F O RC E D to occur.

There are, in fact, constructs of OCaml that work lazily. The condi-

tional expression if 〈exprtest〉 then 〈exprtrue〉 else 〈exprfalse〉 delays

evaluation of 〈exprtrue〉 and 〈exprfalse〉 until after evaluating 〈exprtest〉,
and in fact will refrain from evaluating the unchosen branch of the

conditional entirely. Thus the following computation terminates, even

though the else branch, if it were evaluated, would not.

if true then 3 else forever 42 ;;

- : int = 3

Another construct that delays computation is the function itself.

The body of a function is not evaluated until the function is applied.

If application is postponed indefinitely, the body is never evaluated.

Thus the following “computation” terminates.

fun () -> forever 42 ;;

- : unit -> int = <fun>

This latter approach provides a universal method for delaying and

forcing computations: wrapping the computation in a function (delay),

and applying the function (forcing) if and when we need the value.

What should the argument to the function be? Its only role is to post-

pone evaluation, so there needn’t be a real datum as argument – just

a unit. As noted above, we refer to this wrapping a computation in a

function from unit as delay of the computation. Conversely, we force

the computation when the delayed expression is applied to unit so as

to carry out the computation and get the value.

Though OCaml is eager in its evaluation strategy (with the few ex-

ceptions noted), some languages have embraced lazy evaluation as

the default, starting with Rod Burstall’s Hope language and finding

its widest use in the Haskell language named after Haskell Curry (Fig-

ure 6.2).

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 287

We’ll make use of lazy evaluation in perhaps the most counter-

intuitive application, the creation and manipulation of infinite data

structures. We start with the stream, a kind of infinite list.

17.2 Streams

Here’s a new algebraic data type definition defining the S T R E A M.

type 'a stream = Cons of 'a * 'a stream ;;

type 'a stream = Cons of 'a * 'a stream

It may look familiar; it shares much in common with the algebraic

type definition of the polymorphic list, from Section 11.1, except that it

dispenses with the Nil marking the end of the list.

We can define some operations on streams, like taking the head or

tail of a stream.

let head (Cons (hd, _tl) : 'a stream) : 'a = hd ;;

val head : 'a stream -> 'a = <fun>

let tail (Cons (_hd, tl) : 'a stream) : 'a stream = tl ;;

val tail : 'a stream -> 'a stream = <fun>

It’s all well and good to have streams and functions over them,

but how are we to build one? It looks like we have a chicken and egg

problem, requiring a stream in order to create one. Nonetheless, we

press on, building a stream whose head is the integer 1. We start with

let ones = Cons (1, ...) ;;

We need to fill in the ... with an int stream, but where are we to find

one? How about the int stream named ones itself?

let ones = Cons (1, ones) ;;

Line 1, characters 20-24:

1 | let ones = Cons (1, ones) ;;

^^^^

Error: Unbound value ones

Of course, that doesn’t work, because the name ones isn’t itself avail-

able in the definition. That requires a let rec.

let rec ones = Cons (1, ones) ;;

val ones : int stream = Cons (1, <cycle>)

It works! And the operations on this stream work as well:

head ones ;;

- : int = 1

head (tail ones) ;;

- : int = 1

head (tail (tail ones)) ;;

- : int = 1

288 P RO G R A M M I N G W E L L

Its head is one, as is the head of its tail, and the head of the tail of the

tail. It seems to be an infinite sequence of ones!

What is going on here? How does the implementation make this

possible? Under the hood, the components of an algebraic data type

have implicit pointers to their values. When we define ones as above,

OCaml allocates space for the cons without initializing it (yet) and

connects the name ones to it. It then initializes the contents of the

cons, the head and tail, a pair of hidden pointers. The head pointer

points to the value 1, and the tail points to the cons itself. This explains

where the notation <cycle> comes from in the R E P L printing out the

value. In any case, the details of how this behavior is implemented isn’t

necessary to make good use of it.

Not all such cyclic definitions are well defined however. Consider

this definition of an integer x:

let rec x = 1 + x ;;

Line 1, characters 12-17:

1 | let rec x = 1 + x ;;

^^^^^

Error: This kind of expression is not allowed as right-hand side of

`let rec'

We can allocate space for the integer and name it x, but when it comes

to initializing it, we need more than just a pointer to x; we need its

value. But that isn’t yet defined, so the whole process fails and we get

an error message.

17.2.1 Operations on streams

We can look to lists for inspiration for operations on streams – opera-

tions like map, fold, and filter. Here is a definition for map on streams,

which we call smap:

let rec smap (f : 'a -> 'b) (s : 'a stream) : ('b stream) =

match s with

| Cons (hd, tl) -> Cons (f hd, smap f tl) ;;

val smap : ('a -> 'b) -> 'a stream -> 'b stream = <fun>

or, alternatively, using our recent definitions of head and tail,

let rec smap (f : 'a -> 'b) (s : 'a stream) : ('b stream) =

Cons (f (head s), smap f (tail s)) ;;

val smap : ('a -> 'b) -> 'a stream -> 'b stream = <fun>

Now, we map the successor function over the stream of ones to form a

stream of twos.

let twos = smap succ ones ;;

Stack overflow during evaluation (looping recursion?).

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 289

Of course, that doesn’t work at all. We’re asking OCaml to add one to

each element in an infinite sequence of ones. Luckily, smap isn’t tail

recursive, so we blow the stack, instead of just hanging in an infinite

loop. This behavior makes streams as currently implemented less

than useful since there’s little we can do to them without getting into

trouble. If only the system were less eager about doing all those infinite

number of operations, doing them only if it “needed to”.

The problem is that when calculating the result of the map, we need

to generate (and cons together) both the head of the list (f (head s))

and the tail of the list (smap f (tail s)). But the tail already involves

calling smap.

Why isn’t this a problem in calling regular recursive functions, like

List.map? In that case, there’s a base case that is eventually called.

Why isn’t this a problem in defining regular recursive functions?

Why is there no problem in defining, say,

let rec fact n =

if n = 0 then 1

else n * fact (pred n) ;;

Recall that this definition is syntactic sugar for

let rec fact =

fun n ->

if n = 0 then 1

else n * fact (pred n) ;;

The name fact can be associated with a function that uses it because

functions are values. The parts inside are not further evaluated, at least

not until the function is called. In essence, a function delays the latent

computation in its body until it is applied to its argument.

We can take advantage of that in our definition of streams by using

functions to perform computations lazily. We achieve laziness by

wrapping the computation in a function delaying the computation

until such time as we need the value. We can then force the value by

applying the function.

To achieve the delay of computation, we’ll take a stream not to

be a cons as before, but a delayed cons, a function from unit to the

cons. Other functions that need access to the components of the de-

layed cons can force it as needed. We need a new type definition for

streams, which will make use of a simultaneously defined auxiliary

type stream_internal:1 1 The and connective allows mutually re-
cursive type definitions. Unfortunately,
OCaml doesn’t allow direct definition of
nested types, like

type 'a stream = unit -> (Cons of 'a * 'a stream)

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = unit -> 'a stream_internal ;;

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = unit -> 'a stream_internal

An infinite stream of ones is now defined as so:

290 P RO G R A M M I N G W E L L

let rec ones : int stream =

fun () -> Cons (1, ones) ;;

val ones : int stream = <fun>

Notice that it returns a delayed cons, that is, a function which, when

applied to a unit, returns the cons.

We need to redefine the functions accordingly to take and return

these new lazy streams. In particular, head and tail now force their

argument by applying it to unit.

let head (s : 'a stream) : 'a =

match s () with

| Cons (hd, _tl) -> hd ;;

val head : 'a stream -> 'a = <fun>

let tail (s : 'a stream) : 'a stream =

match s () with

| Cons (_hd, tl) -> tl ;;

val tail : 'a stream -> 'a stream = <fun>

let rec smap (f : 'a -> 'b) (s : 'a stream) : ('b stream) =

fun () -> Cons (f (head s), smap f (tail s)) ;;

val smap : ('a -> 'b) -> 'a stream -> 'b stream = <fun>

The smap function now returns a lazy stream, a function, so that the

recursive call to smap isn’t immediately evaluated (as it was in the

old definition). Only when the cons is needed (as in the head or tail

functions) is the function applied and the cons constructed. That cons

itself has a stream as its tail, but that stream is also delayed.

Now, finally, we can map the successor function over the infinite

stream of ones to form an infinite stream of twos.

let twos = smap succ ones ;;

val twos : int stream = <fun>

head twos ;;

- : int = 2

head (tail twos) ;;

- : int = 2

head (tail (tail twos)) ;;

- : int = 2

We can convert a stream – or at least the first n of its infinity of

elements – into a corresponding list,

let rec first (n : int) (s : 'a stream) : 'a list =

if n = 0 then []

else head s :: first (n - 1) (tail s) ;;

val first : int -> 'a stream -> 'a list = <fun>

allowing us to examine the first few elements of the streams we have

constructed:

first 10 ones ;;

- : int list = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1]

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 291

first 10 twos ;;

- : int list = [2; 2; 2; 2; 2; 2; 2; 2; 2; 2]

So far, we’ve constructed a few infinite streams, but none of much

interest. But the tools are in hand to do much more. Think of the natu-

ral numbers: 0,1,2,3,4,5, What is this sequence? We can think of it

as the sequence formed by taking the natural numbers, incrementing

them all to form the sequence 1,2,3,4,5,6, . . ., and then prepending a

zero to the front, as depicted in Figure 17.1.

Start with the natural numbers
0 1 2 3 4 5 6 7 ...

Increment them
1 2 3 4 5 6 7 8 ...

Prepend a zero
0 1 2 3 4 5 6 7 8 ...

Figure 17.1: Creating an infinite stream
of natural numbers by taking the natural
numbers, incrementing them, and
prepending a zero.

We’ll define a stream called nats in just this way.

let rec nats =

fun () -> Cons (0, smap succ nats) ;;

val nats : int stream = <fun>

first 10 nats ;;

- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

Let’s just pause for a moment to let that sink in.

A function to map over two streams simultaneously, like the

List.map2 function, allows even more powerful ways of building

streams.

let rec smap2 f s1 s2 =

fun () -> Cons (f (head s1) (head s2),

smap2 f (tail s1) (tail s2)) ;;

val smap2 : ('a -> 'b -> 'c) -> 'a stream -> 'b stream -> 'c stream

= <fun>

We can, for instance, generate the Fibonacci sequence (see Exercise 33)

in this way. Figure 17.2 gives the recipe.

Start with the Fibonacci sequence
0 1 1 2 3 5 8 ...

Take its tail
1 1 2 3 5 8 13 ...

Sum them
1 2 3 5 8 13 21 ...

Prepend a zero and one
0 1 1 2 3 5 8 13 21 ...

Figure 17.2: Creating an infinite stream
of the Fibonacci numbers.

let rec fibs =

fun () -> Cons (0,

fun () -> Cons (1,

(smap2 (+) fibs (tail fibs)))) ;;

val fibs : int stream = <fun>

Here, we’ve timed generating the first 10 elements of the sequence.

It’s slow, but it works.

Absbook.call_reporting_time (first 10) fibs ;;

time (msecs): 1.309872

- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34]

17.3 Lazy recomputation and thunks

Recall the definition of streams:

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = unit -> 'a stream_internal ;;

292 P RO G R A M M I N G W E L L

Every time we want access to the head or tail of the stream, we need

to rerun the function. In a computation like the Fibonacci defini-

tion above, that means that every time we ask for the n-th Fibonacci

number, we recalculate all the previous ones – more than once. But

if the value being forced is pure, without side effects, there’s no rea-

son to recompute it. We should be able to avoid the recomputation

by remembering its value the first time it’s computed, and using the

remembered value from then on. The term of art for this technique is

M E M O I Z AT I O N.2 2 Not “memorization”. For unknown
reasons, computer scientists have
settled on this bastardized form of the
word.

We’ll encapsulate this idea in a new abstraction called a T H U N K,

essentially a delayed computation that stores its value upon being

forced. We implement a thunk as a mutable value (a reference) that

can be in one of two states: not yet evaluated or previously evaluated.

The type definition is thus structured with two alternatives.

type 'a thunk = 'a thunk_internal ref

and 'a thunk_internal =

| Unevaluated of (unit -> 'a)

| Evaluated of 'a ;;

type 'a thunk = 'a thunk_internal ref

and 'a thunk_internal = Unevaluated of (unit -> 'a) | Evaluated of

'a

Notice that in the unevaluated state, the thunk stores a delayed value

of type ’a. Once evaluated, it stores an immediate value of type ’a.

When we need to access the actual value encapsulated in a thunk,

we’ll use the force function. If the thunk has been forced before and

thus evaluated, we simply retrieve the value. Otherwise, we compute

the value, remember it by changing the state of the thunk to be evalu-

ated, and return the value.

let rec force (t : 'a thunk) : 'a =

match !t with

| Evaluated v -> v

| Unevaluated f ->

t := Evaluated (f ());

force t ;;

val force : 'a thunk -> 'a = <fun>

Here’s a thunk for a computation of, say, factorial of 15. To make the

timing clearer, we’ll give it a side effect of printing a short message.

let fact15 =

ref (Unevaluated (fun () ->

print_endline "evaluating 15!";

fact 15)) ;;

val fact15 : int thunk_internal ref = {contents = Unevaluated

<fun>}

which can be forced to carry out the calculation:

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 293

Absbook.call_reporting_time force fact15 ;;

evaluating 15!

time (msecs): 0.013828

- : int = 1307674368000

Now that the value has been forced, it is remembered in the thunk

and can be returned without recomputation. You can tell that no

recomputation occurs because the printing side effect doesn’t happen,

and the computation takes orders of magnitude less time.

fact15 ;;

- : int thunk_internal ref = {contents = Evaluated 1307674368000}

Absbook.call_reporting_time force fact15 ;;

time (msecs): 0.001192

- : int = 1307674368000

17.3.1 The Lazy Module

Thunks give us the ability to delay computation, force a delayed com-

putation, and memoize the result. But the notation is horribly cum-

bersome. Fortunately, OCaml provides a module and some appropri-

ate syntactic sugar for working with lazy computation implemented

through thunks – the Lazy module.

In the built-in Lazy module, the type of a delayed computation

of an ’a value is given not by ’a thunk but by ’a Lazy.t. A de-

layed computation is specified not by wrapping the expression in

ref (Unevaluated (fun () -> ...)) but by preceding it with the

new keyword lazy. Finally, forcing a delayed value uses the function

Lazy.force.

Availing ourselves of the Lazy module, we can perform the same

experiment more simply:

let fact15 =

lazy (print_endline "evaluating 15!";

fact 15) ;;

val fact15 : int lazy_t = <lazy>

Absbook.call_reporting_time Lazy.force fact15 ;;

evaluating 15!

time (msecs): 0.010967

- : int = 1307674368000

Absbook.call_reporting_time Lazy.force fact15 ;;

time (msecs): 0.000954

- : int = 1307674368000

Now we can reconstruct infinite streams using the Lazy module.

First, the stream type:

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = 'a stream_internal Lazy.t ;;

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = 'a stream_internal Lazy.t

294 P RO G R A M M I N G W E L L

Functions on streams will need to force the stream values. Here, for

instance, is the head function:

let head (s : 'a stream) : 'a =

match Lazy.force s with

| Cons (hd, _tl) -> hd ;;

Exercise 171

Rewrite tail, smap, smap2, and first to use the Lazy module.

The Fibonacci sequence can now be reconstructed. It runs hun-

dreds of times faster than the non-memoized version in Section 17.2.1:

let rec fibs =

lazy (Cons (0,

lazy (Cons (1,

smap2 (+) fibs (tail fibs))))) ;;

val fibs : int stream = <lazy>

Absbook.call_reporting_time (first 10) fibs ;;

time (msecs): 0.005960

- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34]

17.4 Application: Approximating π

Figure 17.3: English mathematician
Brook Taylor (1685–1731), inventor
of the Taylor series approximation of
functions.

A nice application of infinite streams is in the numerical approxima-

tion of the value of π. In 1715, the English mathematician Brook Taylor

showed how to approximate functions as an infinite sum of terms, a

technique we now call TAY L O R S E R I E S. For instance, the trigonomet-

ric arctangent function can be approximated by the following infinite

sum:

arctan x = x − x3

3
+ x5

5
− x7

7
+·· ·

Figure 17.4: The arctangent of 1, that
is, the angle whose ratio of opposite to
adjacent side is 1, is a 45 degree angle,
or π

4 in radians.

As a special case, the arctangent of 1 is π
4 (Figure 17.4). So

π

4
= 1− 1

3
+ 1

5
− 1

7
+·· ·

and

π= 4− 4

3
+ 4

5
− 4

7
+·· · .

We can thus approximate π by adding up the terms in this infinite

stream of numbers.

We start with a function to convert a stream of integers to a stream

of floats.

let to_float = smap float_of_int ;;

val to_float : int stream -> float stream = <fun>

Next, we build a stream of odd integers to serve as the denominators in

all the terms in the Taylor series:

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 295

let odds = smap (fun x -> x * 2 + 1) nats ;;

val odds : int stream = <lazy>

and a stream of alternating positive and negative ones to represent the

alternate adding and subtracting:

let alt_signs =

smap (fun x -> if x mod 2 = 0 then 1 else -1) nats ;;

val alt_signs : int stream = <lazy>

Finally, the stream of terms in the π sequence is

let pi_stream = smap2 (/.)

(to_float (smap ((*) 4) alt_signs))

(to_float odds) ;;

val pi_stream : float stream = <lazy>

A check of the first few elements in these streams verifies them:

first 5 odds ;;

- : int list = [1; 3; 5; 7; 9]

first 5 alt_signs ;;

- : int list = [1; -1; 1; -1; 1]

first 5 pi_stream ;;

- : float list =

[4.; -1.33333333333333326; 0.8; -0.571428571428571397;

0.44444444444444442]

Now that we have an infinite stream of terms, we can approximate

π by taking the sum of the first few elements of the stream, a PA RT I A L

S U M. The function pi_approx extracts the first n elements of the

stream and sums them up using a fold.

let pi_approx n =

List.fold_left (+.) 0.0 (first n pi_stream) ;;

val pi_approx : int -> float = <fun>

pi_approx 10 ;;

- : float = 3.04183961892940324

pi_approx 100 ;;

- : float = 3.13159290355855369

pi_approx 1000 ;;

- : float = 3.14059265383979413

pi_approx 10000 ;;

- : float = 3.14149265359003449

pi_approx 100000 ;;

- : float = 3.14158265358971978

After 100,000 terms, we have a pretty good approximation of π, good to

about four decimal places.

The given sequence
1 2 3 4 5 6 7

...

. . . and its partial sums
1 3 6 10 15 21 28

...
Prepend a zero to the partial sums

0 1 3 6 10 15 21 28
...
. . . plus the original sequence

1 2 3 4 5 6 7 8
...
. . . yields the partial sums

1 3 6 10 15 21 28 36
...

Figure 17.5: Creating an infinite stream
of partial sums of a given stream, in this
case, the stream of positive integers.
We prepend a zero to the sequence’s
partial sums and add in the original
sequence to generate the sequence
of partial sums. Only by virtue of lazy
computation can this possibly work.

Of course, this technique of partial sums isn’t in the spirit of infinite

streams. Better would be to generate an infinite stream of all of the

partial sums. Figure 17.5 gives a recipe for generating a stream of

partial sums from a given stream. Starting with the stream, we take its

296 P RO G R A M M I N G W E L L

partial sums (!) and prepend a zero. Adding the original stream and the

prepended partial sums stream yields. . . the partial sums stream. This

technique, implemented as a function over streams, is:

let rec sums s =

smap2 (+.) s (lazy (Cons (0.0, sums s))) ;;

val sums : float stream -> float stream = <fun>

Now the first few approximations of π are easily accessed:

let pi_approximations = sums pi_stream ;;

val pi_approximations : float stream = <lazy>

first 5 pi_approximations ;;

- : float list =

[4.; 2.66666666666666696; 3.46666666666666679; 2.89523809523809561;

3.33968253968254025]

If we want to find an approximation within a certain tolerance, say

ϵ, we can search for two terms in the stream of approximations whose

difference is less than ϵ.

let rec within epsilon s =

let hd, tl = head s, tail s in

if abs_float (hd -. (head tl)) < epsilon then hd

else within epsilon tl ;;

val within : float -> float stream -> float = <fun>

We can now search for a value accurate to within any number of digits

we desire:

within 0.01 pi_approximations ;;

- : float = 3.13659268483881615

within 0.001 pi_approximations ;;

- : float = 3.14109265362104129

Continuing on in this vein, we might explore methods for S E R I E S

AC C E L E R AT I O N – techniques to cause series to converge more quickly

– or apply infinite streams to other applications. But for now, this

should be sufficient to give a sense of the power of computing with

infinite streams.

Exercise 172

As mentioned in Exercise 33, the ratios of successive numbers in the Fibonacci sequence
approach the golden ratio (1.61803. . .). Show this by generating a stream of ratios of
successive Fibonacci numbers and use it to calculate the golden ratio within 0.000001.

17.5 Problem section: Circuits and boolean streams

A boolean circuit is a device with one or more inputs and a single

output that receives over time a sequence of boolean values on its

inputs and converts them to a corresponding sequence of boolean

values on its output. The building blocks of circuits are called gates.

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 297

For instance, the and gate is a boolean device with two inputs; its

output is true when its two inputs are both true, and false if either

output is false. The not gate is a boolean device with a single input; its

output is true when its input is false and vice versa.

In this problem, you’ll generate code for modeling boolean circuits.

The inputs and outputs will be modeled as lazy boolean streams.

Let’s start with an infinite stream of false values.

Exercise 173

Define a value falses to be an infinite stream of the boolean value false.

Exercise 174

What is the type of falses?

Exercise 175

A useful function is the trueat function. The expression trueat n generates a stream of
values that are all false except for a single true at index n:

first 5 (trueat 1) ;;
- : bool list = [false; true; false; false; false]

Define the function trueat.

Exercise 176

Define a function circnot : bool stream -> bool stream to represent the not gate.
It should have the following behavior:

first 5 (circnot (trueat 1)) ;;
- : bool list = [true; false; true; true; true]

Exercise 177

Define a function circand to represent the and gate. It should have the following
behavior:

first 5 (circand (circnot (trueat 1)) (circnot (trueat 3))) ;;
- : bool list = [true; false; true; false; true]

A nand gate is a gate that computes the negation of an and gate.

That is, it negates the and of its two inputs, so that its output is false

only if both of its inputs are true.

Exercise 178

Succinctly define a function circnand using the functions above to represent the nand
gate. It should have the following behavior:

first 5 (circnand falses (trueat 3)) ;;
- : bool list = [true; true; true; true; true]
first 5 (circnand (trueat 3) (trueat 3)) ;;
- : bool list = [true; true; true; false; true]

17.6 A unit testing framework

With the additional tools of algebraic data types and lazy evaluation,

we can put together a more elegant framework for unit testing. Lazy

evaluation in particular is useful here, since a unit test is nothing other

than an expression to be evaluated for its truth at some later time

when the tests are run. Algebraic data types are useful in a couple of

298 P RO G R A M M I N G W E L L

ways, first to package together the components of a test and second to

express the alternative ways that a test can come out.

Of course, tests can pass or fail, which we represent by an expres-

sion that returns either true or false respectively. But tests can have

other outcomes as well; there are other forms of failing than returning

false. In particular, a test might raise an exception, or it might not

terminate at all. In order to deal with tests that might not terminate,

we’ll need a way of safely running these tests in a context in which we

cut off computation after a specified amount of time. The computation

will be said to have T I M E D O U T. To record the outcome of a test, we’ll

define a variant type:

type status =

| Passed

| Failed

| Raised_exn of string (* string describing exn *)

| Timed_out of int (* timeout in seconds *) ;;

type status = Passed | Failed | Raised_exn of string | Timed_out of

int

A unit test type will package together a mnemonic label for the test,

the test condition itself (as a delayed expression), and a timeout period

in seconds.

type test =

{ label : string;

condition : bool Lazy.t;

time : int } ;;

type test = { label : string; condition : bool Lazy.t; time : int;

}

Notice that the condition of the test is a lazy boolean, so that the con-

dition will not be evaluated until the test is run.

To construct a test, we provide a function that packages together the

components.3 3 We make use of an optional argument
for the timeout time, which defaults
to five seconds if not provided. For
the interested, details of optional
arguments are discussed here.

(* test ?time label condition -- Returns a test with the

given label and condition, with optional timeout time

in seconds (defaulting to 5 seconds). *)

let test ?(time=5) label condition =

{label; condition; time} ;;

val test : ?time:int -> string -> bool Lazy.t -> test = <fun>

The crux of the matter is the running of a test. Doing so generates

a value of type status. The run_test function will be provided a

function continue to be applied to the label of the test and its status.

For instance, an appropriate such function might print out a line in a

report describing the outcome, like this:

(* present labels status -- Prints a line describing the

outcome of a test. Appropriate for use as the continue

https://url.cs51.io/hwp

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 299

function in run_test. *)

let present (label : string) (status : status) : unit =

let open Printf in

match status with

| Passed ->

printf "%s: passed\n" label

| Failed ->

printf "%s: failed\n" label

| Timed_out secs ->

printf "%s: timed out after %d seconds\n" label secs

| Raised_exn msg ->

printf "%s: raised %s\n" label msg ;;

val present : string -> status -> unit = <fun>

The run_test function needs to evaluate the test by forcing evaluation

of the delayed condition. As a first cut, we’ll look only to the normal

case, where a test returns true or false.

(* run_test test continue -- Runs the test, applying the

continue function to the test label and status. *)

let run_test ({label; condition; _} : test)

(continue : string -> status -> unit)

: unit =

let result = Lazy.force condition in

if result then continue label Passed

else continue label Failed ;;

val run_test : test -> (string -> status -> unit) -> unit = <fun>

But what if the test raises an exception? We’ll evaluate the test condi-

tion in a try 〈〉 with 〈〉 to deal with this case.

(* run_test test continue -- Runs the test, applying the

continue function to the test label and status. *)

let run_test ({label; condition; _} : test)

(continue : string -> status -> unit)

: unit =

try

let result = Lazy.force condition in

if result then continue label Passed

else continue label Failed

with

| exn -> continue label

(Raised_exn (Printexc.to_string exn)) ;;

val run_test : test -> (string -> status -> unit) -> unit = <fun>

Finally, we need to deal with timeouts. We appeal to a function

timeout that forces a lazy computation, but raises a special Timeout

exception if the computation goes on too long. The workings of this

function are well beyond the scope of this text, but we provide the code

in Figure 17.6.

Using the timeout function to force the condition and checking for

the Timeout exception handles the final possible status of a unit test.

300 P RO G R A M M I N G W E L L

(* timeout time f -- Forces delayed computation f, returning

what f returns, except that after time seconds it raises

a Timeout exception. *)

#

exception Timeout ;;

exception Timeout

let sigalrm_handler =

Sys.Signal_handle (fun _ -> raise Timeout) ;;

val sigalrm_handler : Sys.signal_behavior = Sys.Signal_handle <fun>

let timeout (time : int) (f : 'a Lazy.t) : 'a =

let old_behavior =

Sys.signal Sys.sigalrm sigalrm_handler in

let reset_sigalrm () =

ignore (Unix.alarm 0);

Sys.set_signal Sys.sigalrm old_behavior in

ignore (Unix.alarm time) ;

let res = Lazy.force f in

reset_sigalrm () ; res ;;

val timeout : int -> 'a Lazy.t -> 'a = <fun>

Figure 17.6: The function timeout used
in the evaluation of unit tests, based on
the timeout function of Chailloux et al.
(2000)

I N F I N I T E D ATA S T RU C T U R E S A N D L A Z Y P RO G R A M M I N G 301

(* run_test test continue -- Runs the test, applying the

continue function to the test label and status. *)

let run_test ({label; time; condition} : test)

(continue : string -> status -> unit)

: unit =

try

if timeout time condition

then continue label Passed

else continue label Failed

with

| Timeout -> continue label (Timed_out time)

| exn -> continue label

(Raised_exn (Printexc.to_string exn)) ;;

val run_test : test -> (string -> status -> unit) -> unit = <fun>

By iterating over a list of unit tests, we can generate a nice report of

all the tests.

(* report tests -- Generates a report based on the

provided tests. *)

let report (tests : test list) : unit =

List.iter (fun test -> run_test test present) tests ;;

val report : test list -> unit = <fun>

With this infrastructure in place, we can define a test suite that

demonstrates all of the functionality of the unit testing framework.

let tests =

[test "should fail" (lazy (3 > 4));

test "should pass" (lazy (4 > 3));

test "should time out" (lazy (let rec f x = f x in f 1));

test "should raise exception" (lazy ((List.nth [0; 1] 3) = 3))

] ;;

val tests : test list =

[{label = "should fail"; condition = <lazy>; time = 5};

{label = "should pass"; condition = <lazy>; time = 5};

{label = "should time out"; condition = <lazy>; time = 5};

{label = "should raise exception"; condition = <lazy>; time =

5}]

report tests ;;

should fail: failed

should pass: passed

should time out: timed out after 5 seconds

should raise exception: raised Failure("nth")

- : unit = ()

17.7 A brief history of laziness

Figure 17.7: Peter Landin (1930–2009),
developer of many innovative ideas
in programming languages, including
the roots of lazy programming. His
influence transcended his role as a
computer scientist, especially in his
active support of gay rights.

The idea of lazy computation probably starts with Peter Landin (Fig-

ure 17.7). He observed “a relationship between lists and functions”:

In this relationship a nonnull list L is mirrored by a none-adic function S

that produces a 2-list consisting of (1) the head of L, and (2) the function

302 P RO G R A M M I N G W E L L

mirroring the tail of L. . . . This correspondence serves two related pur-

poses. It enables us to perform operations on lists (such as generating

them, mapping them, concatenating them) without using an “exten-

sive,” item-by-item representation of the intermediately resulting lists;

and it enables us to postpone the evaluation of the expressions specify-

ing the items of a list until they are actually needed. The second of these

is what interests us here. (Landin, 1965)

The idea of a “function mirroring the tail of” a list is exactly the delay-

ing of the tail computation that we’ve seen in the stream data type.

Landin is notable for many other ideas of great currency. For in-

stance, he invented the term “syntactic sugar” for the addition of

extra concrete syntax to abbreviate some useful but otherwise com-

plicated abstract syntax. His 1966 paper “The next 700 programming

languages” (Landin, 1966) introduced several innovative ideas in-

cluding the “offside rule” of concrete syntax, allowing the indentation

pattern of a program to indicate its structure. Python is typically noted

for making use of this Landin innovation. Indeed, the ISWIM language

that Landin described in this paper is arguably the most influential

programming language that no one ever programmed in.

Following Landin’s observation, Wadsworth proposed the lazy

lambda calculus in 1971, and Friedman and Wise published an article

proposing that “Cons should not evaluate its arguments” in 1976. The

first programming language to specify lazy evaluation as the evaluation

regime was Burstall’s Hope language (which also introduced the idea,

found in nascent form in ISWIM, of algebraic data types). A series of

lazy languages followed, most notably Miranda, but the lazy program-

ming community came together to converge on the now canonical lazy

language Haskell, named after Haskell Curry.

17.8 Supplementary material

• Lab 14: Lazy programming and infinite data structures: Implement-

ing laziness as user code

• Lab 15: Lazy programming and infinite data structures: Using

OCaml’s native lazy module

• Problem set A.7: Refs, streams, and music

http://url.cs51.io/lab14
http://url.cs51.io/lab14
http://url.cs51.io/lab15
http://url.cs51.io/lab15

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

