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Extension and object-oriented programming

Think of your favorite graphical user interface (GUI). It probably has

various W I D G E T S – buttons, checkboxes, textboxes, radio buttons,

menus, icons, and so forth. These widgets might undergo various op-

erations – we might want to draw them in a window, click on them,

change their location, remove them, highlight them, select from them.

Each of these operations seems like a function. We’d organize func-

tions like this:

how to draw:
   a button
   a checkbox
   a textbox
   ...

how to click on:
   a button
   a checkbox
   a textbox
   …

how to highlight:
   a button
   a checkbox
   a textbox
   ...

Figure 18.1: Function-oriented organi-
zation of widget software

But new widgets are being invented all the time. Every time a new

widget type is added, we’d have to change every one of these functions.

Instead, we might want to organize the code a different way:

buttons:
   how to draw
   how to click
   how to highlight
   ...

checkboxes:
   how to draw
   how to click
   how to highlight
   ...

textboxes:
   how to draw
   how to click
   how to highlight
   ...

Figure 18.2: Object-oriented organiza-
tion of widget software

This way, adding a new widget doesn’t affect any of the existing

ones. The changes are localized, and therefore likely to be much more

reliably added. We are carving the software at its joints, following the

edict of decomposition.

This latter approach to code organization, organizing by “object”
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rather than by function, is referred to as O B J E C T- O R I E N T E D. It’s prob-

ably no surprise that the rise in popularity of object-oriented pro-

gramming tracks the development of graphical user interfaces; as seen

above, it’s a natural fit. In particular, the idea of object-oriented pro-

gramming was popularized by the Smalltalk programming language

and system, which pioneered many of the fundamental ideas of graph-

ical user interfaces that we are now accustomed to – windows, icons,

menus, buttons. Smalltalk with its graphical user interface was devel-

oped in the early 1970’s at Xerox PARC by Alan Kay, Adele Goldberg,

Dan Ingalls, and others (Figure 18.3). Steve Jobs, seeing the Smalltalk

environment in a 1979 visit to Xerox PARC, immediately imported the

ideas into Apple’s Lisa and Macintosh computers, thereby disseminat-

ing and indeed universalizing the ideas.

In this chapter, we introduce object-oriented programming, a pro-

gramming paradigm based on organizing functionalities (in the form

of methods) together with the data that they operate on, as opposed to

the functional paradigm, which organizes functionalities (in the form

of functions) separate from the corresponding data.

18.1 Drawing graphical elements

To motivate such a reorganization, consider a program to draw graph-

ical elements on a window. We’ll start by organizing the code in a

function-oriented, not object-oriented, style.

Positions in the window can be captured with a point data type:

# type point = {x : int; y : int} ;;

type point = { x : int; y : int; }

Figure 18.3: Alan Kay, Adele Goldberg,
and Dan Ingalls, developers of the influ-
ential Smalltalk language, a pioneering
object-oriented language, with an inno-
vative user interface based on graphical
widgets and direct manipulation.

We might want data types for the individual kinds of graphical ele-

ments – rectangles, circles, squares – each with its own parameters

specifying pertinent positions, sizes, and the like:

# type rect = {rect_pos : point;

# rect_width : int;

# rect_height : int} ;;

type rect = { rect_pos : point; rect_width : int; rect_height :

int; }

# type circle = {circle_pos : point; circle_radius : int} ;;

type circle = { circle_pos : point; circle_radius : int; }

# type square = {square_pos : point; square_width : int} ;;

type square = { square_pos : point; square_width : int; }

We can think of a scene as being composed of a set of these display

elements:
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# type display_elt =

# | Rect of rect

# | Circle of circle

# | Square of square ;;

type display_elt = Rect of rect | Circle of circle | Square of

square

# type scene = display_elt list ;;

type scene = display_elt list

In order to make use of these elements to actually draw on a screen,

we’ll make use of the OCaml Graphics module, which you may want

to familiarize yourself with before proceeding. (We rename the module

G for brevity.)

# module G = Graphics ;;

module G = Graphics

We can write a function to draw a display element of whatever vari-

ety by dispatching (matching) based on the variant of the display_elt

type:1

1 All of the subtractions of half the
widths and heights is because the
Graphics module often draws graphics
based on the lower left hand corner
position, instead of the center of the
graphic that we’re using.

# let draw (d : display_elt) : unit =

# match d with

# | Rect r ->

# G.set_color G.black;

# G.fill_rect (r.rect_pos.x - r.rect_width / 2)

# (r.rect_pos.y - r.rect_height / 2)

# r.rect_width r.rect_height

# | Circle c ->

# G.set_color G.black;

# G.fill_circle c.circle_pos.x c.circle_pos.y

# c.circle_radius

# | Square s ->

# G.set_color G.black;

# G.fill_rect (s.square_pos.x - s.square_width / 2)

# (s.square_pos.y - s.square_width / 2)

# s.square_width s.square_width ;;

val draw : display_elt -> unit = <fun>

and use it to draw an entire scene on a fresh canvas:

# let draw_scene (s : scene) : unit =

# try

# G.open_graph ""; (* open the canvas *)

# G.resize_window 200 300; (* erase and resize *)

# List.iter draw s; (* draw the elements *)

# ignore (G.read_key ()) (* wait for a keystroke *)

# with

# exn -> (G.close_graph () ; raise exn) ;;

val draw_scene : scene -> unit = <fun>

Let’s test it on a simple scene of a few rectangles and circles:

https://ocaml.github.io/graphics/graphics/Graphics/index.html
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# let test_scene =

# [ Rect {rect_pos = {x = 0; y = 20};

# rect_width = 15; rect_height = 80};

# Circle {circle_pos = {x = 40; y = 100};

# circle_radius = 40};

# Circle {circle_pos = {x = 40; y = 140};

# circle_radius = 20};

# Square {square_pos = {x = 65; y = 160};

# square_width = 50} ] ;;

val test_scene : display_elt list =

[Rect {rect_pos = {x = 0; y = 20}; rect_width = 15; rect_height =

80};

Circle {circle_pos = {x = 40; y = 100}; circle_radius = 40};

Circle {circle_pos = {x = 40; y = 140}; circle_radius = 20};

Square {square_pos = {x = 65; y = 160}; square_width = 50}]

# draw_scene test_scene ;;

- : unit = ()

A window pops up with the scene (Figure 18.4(a)).

(a)

(b)

Figure 18.4: (a) A test scene. (b) The test
scene translated.

Sadly, the scene is not centered very well in the canvas. Fortunately,

it’s easy to add functionality in the functional programming paradigm:

just add functions. We can easily add functions to translate a display

element or a scene by a given amount in the x and y directions.

# let translate (p : point) (d : display_elt) : display_elt =

# let vec_sum {x = x1; y = y1} {x = x2; y = y2} =

# {x = x1 + x2; y = y1 + y2} in

# match d with

# | Rect r ->

# Rect {r with rect_pos = vec_sum p r.rect_pos}

# | Circle c ->

# Circle {c with circle_pos = vec_sum p c.circle_pos}

# | Square s ->

# Square {s with square_pos = vec_sum p s.square_pos} ;;

val translate : point -> display_elt -> display_elt = <fun>

# let translate_scene (p : point) : scene -> scene =

# List.map (translate p) ;;

val translate_scene : point -> scene -> scene = <fun>

Using these, we can translate the scene to center it before drawing:

# draw_scene (translate_scene {x = 42; y = 50} test_scene) ;;

- : unit = ()

to get the depiction in Figure 18.4(b).

So adding functionality is easy. What about adding new types of

data, new display elements? Suppose we want to add a textual display

element to place some text in the scene.

# type text = {text_pos : point;

# text_title : string} ;;

type text = { text_pos : point; text_title : string; }
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We’ll have to modify the display_elt data type to incorporate text

elements:

# type display_elt =

# | Rect of rect

# | Circle of circle

# | Square of square

# | Text of text ;;

type display_elt =

Rect of rect

| Circle of circle

| Square of square

| Text of text

Now the draw function complains (unsurprisingly) of an inexhaustive

match:

# let draw (d : display_elt) : unit =

# match d with

# | Rect r ->

# G.set_color G.black;

# G.fill_rect (r.rect_pos.x - r.rect_width / 2)

# (r.rect_pos.y - r.rect_height / 2)

# r.rect_width r.rect_height

# | Circle c ->

# G.set_color G.black;

# G.fill_circle c.circle_pos.x c.circle_pos.y

# c.circle_radius

# | Square s ->

# G.set_color G.black;

# G.fill_rect (s.square_pos.x - s.square_width / 2)

# (s.square_pos.y - s.square_width / 2)

# s.square_width s.square_width ;;

Lines 2-16, characters 0-29:

2 | match d with

3 | | Rect r ->

4 | G.set_color G.black;

5 | G.fill_rect (r.rect_pos.x - r.rect_width / 2)

6 | (r.rect_pos.y - r.rect_height / 2)

...

13 | G.set_color G.black;

14 | G.fill_rect (s.square_pos.x - s.square_width / 2)

15 | (s.square_pos.y - s.square_width / 2)

16 | s.square_width s.square_width...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Text _

val draw : display_elt -> unit = <fun>

We’ll have to augment it to handle drawing text. Ditto for the

translate function. In fact, every function that manipulates display

elements will have to be changed. If we’re going to be adding new types

of elements to display, translate, and the like, this will get unwieldy

quickly. But there’s a better way – objects.
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18.2 Objects introduced

What do we care about about display elements? That they can be

drawn. That’s it. We want to abstract away from all else.

We’ll define a data type, an abstraction, display_elt, that is a

record with a single field called draw that stores a drawing function.

# type display_elt = {draw : unit -> unit} ;;

type display_elt = { draw : unit -> unit; }

Then rectangles, circles, squares, and texts are just ways of building

display elements with that drawing functionality.

Take rectangles for example. A rectangle is a display_elt whose

draw function displays a rectangle. We can establish a rect function

that builds such a display element given its initial parameters – posi-

tion, width, and height:

# let rect (p : point) (w : int) (h : int) : display_elt =

# { draw = fun () ->

# G.set_color G.black ;

# G.fill_rect (p.x - w/2) (p.y - h/2) w h } ;;

val rect : point -> int -> int -> display_elt = <fun>

Similarly with circles and squares:

# let circle (p : point) (r : int) : display_elt =

# { draw = fun () ->

# G.set_color G.black;

# G.fill_circle p.x p.y r } ;;

val circle : point -> int -> display_elt = <fun>

# let square (p : point) (w : int) : display_elt =

# { draw = fun () ->

# G.set_color G.black ;

# G.fill_rect (p.x - w/2) (p.y - w/2) w w } ;;

val square : point -> int -> display_elt = <fun>

Now to draw a display element, we just extract the draw function and

call it. The display element data object knows how to draw itself.

# let draw (d : display_elt) = d.draw () ;;

val draw : display_elt -> unit = <fun>

If we want to add a new display element, a text, say, we just have to

provide a way to draw such a thing. No other code (draw, draw_scene)

needs to change.

# let text (p : point) (s : string) : display_elt =

# { draw = (fun () ->

# let (w, h) = G.text_size s in

# G.set_color G.black;

# G.moveto (p.x - w/2) (p.y - h/2);

# G.draw_string s) } ;;

val text : point -> string -> display_elt = <fun>
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Of course, we’d probably want display elements to have more func-

tionality than just drawing themselves – for instance, moving them to a

new position, querying and changing their color, and much more. Let’s

start with these.

# type display_elt =

# { draw : unit -> unit;

# set_pos : point -> unit;

# get_pos : unit -> point;

# set_color : G.color -> unit;

# get_color : unit -> G.color } ;;

type display_elt = {

draw : unit -> unit;

set_pos : point -> unit;

get_pos : unit -> point;

set_color : G.color -> unit;

get_color : unit -> G.color;

}

Notice that display elements now (apparently) must have mutable

state. Their position and color can be modified over time. We’ll im-

plement this state by creating appropriate references, called pos and

color, respectively, that are generated upon creation of an object and

are specific to it. Here, for instance, is the circle function to create a

circular display element object:

# let circle (p : point) (r : int) : display_elt =

# let pos = ref p in

# let color = ref G.black in

# { draw = (fun () -> G.set_color (!color);

# G.fill_circle (!pos).x (!pos).y r);

# set_pos = (fun p -> pos := p);

# get_pos = (fun () -> !pos);

# set_color = (fun c -> color := c);

# get_color = (fun () -> !color) } ;;

val circle : point -> int -> display_elt = <fun>

The scoping is crucial. The definitions of pos and color are within

the scope of the circle function. Thus, new references are generated

each time circle is invoked and are accessible only to the record

structure (the object) created by that invocation.2 Similarly, we’ll want 2 Recall the similar idea of local, other-
wise inaccessible, persistent, mutable
state first introduced in the bump func-
tion from Section 15.3, and reproduced
here:

# let bump =

# let ctr = ref 0 in

# fun () ->

# ctr := !ctr + 1;

# !ctr ;;

val bump : unit -> int = <fun>

a function to create rectangles and text boxes, each with its own state

and functionality as specified by the display_elt type.

# let rect (p : point) (w : int) (h : int) : display_elt =

# let pos = ref p in

# let color = ref G.black in

# { draw = (fun () ->

# G.set_color (!color);

# G.fill_rect ((!pos).x - w/2) ((!pos).y - h/2)

# w h);

# set_pos = (fun p -> pos := p);
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# get_pos = (fun () -> !pos);

# set_color = (fun c -> color := c);

# get_color = (fun () -> !color) };;

val rect : point -> int -> int -> display_elt = <fun>

# let text (p : point) (s : string) : display_elt =

# let pos = ref p in

# let color = ref G.black in

# { draw = (fun () ->

# let (w, h) = G.text_size s in

# G.set_color (!color);

# G.moveto ((!pos).x - w/2) ((!pos).y - h/2);

# G.draw_string s);

# set_pos = (fun p -> pos := p);

# get_pos = (fun () -> !pos);

# set_color = (fun c -> color := c);

# get_color = (fun () -> !color) } ;;

val text : point -> string -> display_elt = <fun>

What we’ve done is to generate a wholesale reorganization of the

display element code, organizing it not by functionality (with a draw

function, a set_pos function, and so forth), but instead by variety of

“object” bearing that functionality. We’ve organized the code in an

O B J E C T- O R I E N T E D manner.

Think of a table (as in Table 18.1) that describes for each function-

ality (draw, move, getting and setting color) and each class of object

(rectangle, circle, text) the code necessary to carry out that function-

ality for that class of object. We can organize the code by functional-

ity, packaging the rows into functions; this is the function-oriented

paradigm. Alternatively, we can organize the code by class of ob-

ject, packaging the columns into objects; this is the object-oriented

paradigm.

rectangle circle text

draw

G.set_color (!color);

G.fill_rect (!pos).x

(!pos).y w h

G.set_color (!color)

G.fill_circle (!pos).x

(!pos).y r

G.set_color (!color);

G.moveto (!pos).x

(!pos).y;

G.draw_string s

move pos := p pos := p pos := p

set color color := c color := c color := c

get color !color !color !color

Table 18.1: The matrix of functionality
(rows) and object classes (columns)
for the display elements example.
The code can be organized by row –
function-oriented – or by column –
object-oriented.

Which is the better approach? The edict of decomposition appeals

to cutting up software at its joints. Which of row or column constitutes

the natural joints will vary from case to case. It is thus a fundamental
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design decision as to whether to use a function- or object-oriented

structuring of code. If you expect a need to add additional columns

with regularity, whereas adding rows will be rare, the object-oriented

approach will fare better. Conversely, if new rows, new functional-

ity, will be needed over a relatively static set of classes of data, the

function-oriented approach is preferable.

18.3 Object-oriented terminology and syntax

The object-oriented programming paradigm that we’ve reconstructed

here comes with its own set of terminology. First, the data structure

that encapsulates the various bits of functionality – here implemented

as a simple record structure – is an O B J E C T. The various components

providing the functionality are its M E T H O D S, and the state variables

(like color and pos) its I N S TA N C E VA R I A B L E S. The specification of

what methods are provided by an object (like display_elt) is its

C L A S S I N T E R F AC E, and the creation of an object is specified by its

C L A S S (like circle or text).

We create an object by I N S TA N T I AT I N G the class, in this example,

the circle class,

# let circle1 = circle {x = 100; y = 100} 50 ;;

val circle1 : display_elt =

{draw = <fun>; set_pos = <fun>; get_pos = <fun>; set_color =

<fun>;

get_color = <fun>}

which satisfies the display_elt class interface.

When we make use of a method, for instance, the set_pos method,

# circle1.set_pos {x = 125; y = 125} ;;

- : unit = ()

we are said to I N V O K E the method

It should be clear that the object-oriented programming paradigm

can be carried out in any programming language with the abstractions

that we’ve relied on here, basically, first-class functions, lexical scoping,

and mutable state. But, as with other programming paradigms we’ve

looked at, providing some syntactic sugar in support of the paradigm

can be quite useful. OCaml does just that. Indeed, the “O” in “OCaml”

indicates that the language was developed as an extension to the Caml

language by adding syntactic support for object-oriented program-

ming.

The object-oriented syntax extensions in OCaml are summarized in

Table 18.2.

The display element example can thus be stated in colloquial

OCaml as follows. We start with the display_elt class interface:
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Concept Syntax

Class interfaces class type 〈interfacename〉 = ...

Class definition class 〈classname〉 〈args〉 = ...

Object definition object ... end

Instance variables val (mutable) 〈varname〉 = ...

Methods method 〈methodname〉 〈args〉 = ...

Instance variable update ... <- ...

Instantiating classes new 〈classname〉 〈args〉
Invoking methods 〈object〉#〈methodname〉 〈args〉

Table 18.2: Syntactic extensions in
OCaml supporting object-oriented
programming.

# class type display_elt =

# object

# method draw : unit

# method set_pos : point -> unit

# method get_pos : point

# method set_color : G.color -> unit

# method get_color : G.color

# end ;;

class type display_elt =

object

method draw : unit

method get_color : G.color

method get_pos : point

method set_color : G.color -> unit

method set_pos : point -> unit

end

and define some classes that satisfy the interface:

# class circle (p : point) (r : int) : display_elt =

# object

# val mutable pos = p

# val mutable color = G.black

# method draw = G.set_color color;

# G.fill_circle pos.x pos.y r

# method set_pos p = pos <- p

# method get_pos = pos

# method set_color c = color <- c

# method get_color = color

# end ;;

class circle : point -> int -> display_elt

# class rect (p : point) (w : int) (h : int) : display_elt =

# object

# val mutable pos = p

# val mutable color = G.black

# method draw = G.set_color color;

# G.fill_rect (pos.x - w/2) (pos.y - h/2)

# w h

# method set_pos p = pos <- p
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# method get_pos = pos

# method set_color c = color <- c

# method get_color = color

# end ;;

class rect : point -> int -> int -> display_elt

Now we can use these to create and draw some display elements. We

create a new circle,

# let _ = G.open_graph "";

# G.clear_graph ;;

- : unit -> unit = <fun>

# let b = new circle {x = 100; y = 100} 40 ;;

val b : circle = <obj>

but nothing appears yet until we draw the element.

# let _ = b#draw ;;

- : unit = ()

(Notice that invoking the method doesn’t require the application to

a unit. In the object-oriented syntax, method invocation with no

arguments can be implicit in this way.) The circle now appears, as in

Figure 18.5(a).

(a)

(b)

(c)

Figure 18.5: A circle appears (a) and
disappears (b). It moves and reappears
with a changed color (c).

We can erase the object by setting its color to white and redrawing it

(Figure 18.5(b)).

# let _ = b#set_color G.white;

# b#draw ;;

- : unit = ()

We move it to a new position and change its color (Figure 18.5(c)).

# let _ = b#set_pos {x = 150; y = 150};

# b#set_color G.red;

# b#draw ;;

- : unit = ()

18.4 Inheritance

The code we’ve developed so far violates the edict of irredundancy.

The implementations of the circle and rect classes, for instance, are

almost identical, differing only in the arguments of the class and the

details of the draw method.

To capture the commonality, the object-oriented paradigm allows

for definition of a class expressing the common aspects, from which

both of the classes can I N H E R I T their behaviors. We refer to the class

(or class type) that is being inherited from as the S U P E RC L A S S and the

inheriting class as the S U B C L A S S.

We’ll define a shape superclass that can handle the position and

color aspects of the more specific classes. Its class type is given by
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# class type shape_elt =

# object

# method set_pos : point -> unit

# method get_pos : point

# method set_color : G.color -> unit

# method get_color : G.color

# end ;;

class type shape_elt =

object

method get_color : G.color

method get_pos : point

method set_color : G.color -> unit

method set_pos : point -> unit

end

and a simple implementation of the class is

# class shape (p : point) : shape_elt =

# object

# val mutable pos = p

# val mutable color = G.black

# method set_pos p = pos <- p

# method get_pos = pos

# method set_color c = color <- c

# method get_color = color

# end ;;

class shape : point -> shape_elt

Notice that the new shape_elt signature provides access to the four

methods, but not directly to the instance variables used to implement

those methods. The only access to those instance variables will be

through the methods, an instance of the edict of compartmentaliza-

tion that seems appropriate.

The display_elt class type can inherit the methods from shape_-

elt, adding just the additional draw method.

# class type display_elt =

# object

# inherit shape_elt

# method draw : unit

# end ;;

class type display_elt =

object

method draw : unit

method get_color : G.color

method get_pos : point

method set_color : G.color -> unit

method set_pos : point -> unit

end

The inherit specification works as if the contents of the inherited su-

perclass type were simply copied into the subclass type at that location

in the code.
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The rect and circle subclasses can inherit much of their behavior

from the shape superclass, just adding their own draw methods. How-

ever, without the ability to refer directly to the instance variables, the

draw method will need to call its own methods for getting and setting

the position and color. We can add a variable to name the object itself,

by adding a parenthesized name after the object keyword. Although

any name can be used, by convention, we use this or self. We can

then invoke the methods from the shape superclass with, for instance,

this#get_color.

# class rect (p : point) (w : int) (h : int) : display_elt =

# object (this)

# inherit shape p

# method draw =

# G.set_color this#get_color ;

# G.fill_rect (this#get_pos.x - w/2)

# (this#get_pos.y - h/2)

# w h

# end ;;

class rect : point -> int -> int -> display_elt

# class circle (p : point) (r : int) : display_elt =

# object (this)

# inherit shape p

# method draw =

# G.set_color this#get_color;

# G.fill_circle this#get_pos.x this#get_pos.y r

# end ;;

class circle : point -> int -> display_elt

Notice how the inherited shape class is provided the position argu-

ment p so its instance variables and methods can be set up properly.

Using inheritance, a square class can be implemented with a single

inheritance from the rect class, merely by specifying that the width

and height of the inherited rectangle are the same:

# class square (p : point) (w : int) : display_elt =

# object

# inherit rect p w w

# end ;;

class square : point -> int -> display_elt

Exercise 179

Define a class text : point -> string -> display_elt for placing a string of text at
a given point position on the canvas. (You’ll need the Graphics.draw_string function
for this.)

18.4.1 Overriding

Inheritance in OCaml allows for subclasses to override the methods

in superclasses. For instance, we can implement a class of bordered
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rectangles (rather than the filled rectangles of the rect class) simply by

overriding the draw method:

# class border_rect (p : point)

# (w : int) (h : int)

# : display_elt =

# object (this)

# inherit rect p w h as super

# method! draw = G.set_color this#get_color;

# G.fill_rect (this#get_pos.x - w/2 - 2)

# (this#get_pos.y - h/2 - 2)

# (w+4) (h+4) ;

# let c = this#get_color in

# this#set_color G.white ;

# super#draw ;

# this#set_color c

# end ;;

class border_rect : point -> int -> int -> display_elt

Here, we’ve introduced the overriding draw method with method!,

where the exclamation mark diacritic explicitly marks the method as

overriding the superclass’s draw method. Without that, OCaml will

provide a helpful warning to the programmer in case the overriding

was unintentional.

When a subclass overrides the method of a superclass, the subclass

may still want access to the superclass’s version of the method. That’s

the case here, where the subclass’s draw method needs to call the su-

perclass’s. In the presence of overriding, then, it becomes important to

have a name for the superclass object so as to be able to call its meth-

ods. The inherited superclass can be given a name for this purpose by

the as construct used above in the inherit specification. The variable

following the as – conventionally super though any variable can be

used – then names the superclass providing access to its version of any

overridden methods.

18.5 Subtyping

Back in Section 18.1, we defined a scene as a set of drawable ele-

ments, so as to be able to iterate over a scene to draw each element.

We can obtain that ability by defining a new function that draws a list

of display_elt objects:

# let draw_list (d : display_elt list) : unit =

# List.iter (fun x -> x#draw) d ;;

val draw_list : display_elt list -> unit = <fun>

We’ve put together a small scene (Figure 18.6), evocatively called

scene, to test the process.3

3 The type of the scene is displayed not,
as one might expect, as display_elt
list but as border_rect list. OCaml
uses class names, not class type names,
to serve the purpose of reporting typing
information for objects. The elements
of scene are instances of various
classes (all consistent with class type
display_elt). OCaml selects the first
element of the list, which happens to be
a border_rect instance, to serve as the
printable name of the type. This quirk
of OCaml reveals that the grafting of
the “O” part of the language isn’t always
seamless.
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let scene =

(* generate some graphical objects *)

let box = new border_rect {x = 100; y = 110} 180 210 in

let l1 = new rect {x = 70; y = 60} 20 80 in

let l2 = new rect {x = 135; y = 100} 20 160 in

let b = new circle {x = 100; y = 100} 40 in

let bu = new circle {x = 100; y = 140} 20 in

let h = new rect {x = 150; y = 170} 50 20 in

let t = new text {x = 100; y = 200} "The CS51 camel" in

(* bundle them together *)

let scene = [box; l1; l2; b; bu; h; t] in

(* change their color and translate them *)

List.iter (fun x -> x#set_color 0x994c00) scene;

List.iter (fun o -> let {x; y} = o#get_pos in

o#set_pos {x = x + 50; y = y + 40})

scene;

(* update the surround color *)

box#set_color G.blue;

scene ;;

Figure 18.6: A test scene.

# scene ;;

- : border_rect list = [<obj>; <obj>; <obj>; <obj>; <obj>; <obj>;

<obj>]

We can draw this scene in a fresh window using draw_list.

# let test scene =

# try

# G.open_graph "";

# G.resize_window 300 300;

# G.clear_graph ();

# draw_list scene;

# ignore (G.read_key ())

# with

# exn -> (G.close_graph (); raise exn) ;;

val test : display_elt list -> unit = <fun>

# test scene ;;

- : unit = ()

We defined draw_list to operate on display_elt lists. But there’s

no reason to be so specific. It ought to be the case that any object with

a draw method should be able to participate in a scene. We can define

a new class type of drawable elements

# class type drawable =

# object

# method draw : unit
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# end ;;

class type drawable = object method draw : unit end

and redefine draw_list accordingly:

# let draw_list (d : drawable list) : unit =

# List.iter (fun x -> x#draw) d ;;

val draw_list : drawable list -> unit = <fun>

We’ve defined drawable as a S U P E RT Y P E of display_elt. It’s a super-

type because anything that can be done with a drawable can be done

with a display_elt, but also potentially with other classes as well

(namely, any that have a draw method). The idea is that an object with

a “wider” interface (a subtype, like display_elt) can be used where

an object with a “narrower” interface (a supertype, like drawable) is

needed.

There is a family resemblance in this idea to polymorphism. Any

function with a more polymorphic type (like ’a -> ’a list, say) can

be used where an object with a less polymorphic type (like int -> int

list) is needed.

Exercise 180

Test out this polymorphism subtyping behavior in OCaml by defining two functions
mono : int -> int list and poly : ’a -> ’a list, along with a function need :

(int -> int list) -> int list. Then apply need to both mono and poly, thereby
showing that need works with an argument of its required type (int -> int list) and
also a subtype thereof (’a -> ’a list).

Anything that’s a display_elt or inherits from display_elt or

satisfies the display_elt interface will have at least the functionality

of a drawable. So they are subtypes of drawable.4

4 There would seem to be a correlation
between subclasses and subtypes. Of
course, not all subtypes are subclasses;
they may not be related by inheritance.
But in a subclass, you have all the
functionality of the superclass, plus you
can add some more. So are subclasses
always subtypes?

No. For instance, in the subclass,
you could redefine a method to have a
more restrictive signature. In that case,
the subclass would not be a subtype;
it would have a narrower interface (at
least for that method), not a wider one.

The advantage of subtyping – allowing functions with a wider in-

terface to be used where one with a narrower interface is called for –

is just the advantage of polymorphism. It allows reuse of functionality,

which redounds to the benefit of the edict of irredundancy. Rather

than reimplement functions for the different interface “widths”, we

reuse them instead. We’ll see that OCaml allows this kind of reuse,

though with a little less automaticity than the reuse from polymor-

phism.

It ought to be the case, for instance, that, as display_elt is a sub-

type of drawable, our revision of draw_scene to apply to drawable

objects ought to allow scenes composed of display_elt objects. Let’s

try it.

# let test scene =

# try

# G.open_graph "";

# G.resize_window 300 300;

# G.clear_graph ();

# draw_list scene;
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# ignore (G.read_key ())

# with

# exn -> (G.close_graph (); raise exn) ;;

val test : drawable list -> unit = <fun>

The type of test shows that it now takes a drawable list argument.

We apply it to our scene.

# test scene ;;

Line 1, characters 5-10:

1 | test scene ;;

^^^^^

Error: This expression has type border_rect list

but an expression was expected of type drawable list

Type border_rect = display_elt is not compatible with type

drawable = < draw : unit >

The second object type has no method get_color

But the draw_list call no longer works. We’ve tripped over a limita-

tion in OCaml’s type inference. A subtype ought to be allowed where

a supertype is needed, as it is in the case of polymorphic subtypes of

less polymorphic supertypes. But in the case of class subtyping, OCaml

is not able to perform the necessary type inference to view the sub-

type as the supertype and use it accordingly. We have to give the type

inference system a hint.

We want the call to draw_list to view scene not as its display_elt

list subtype but rather as the drawable list supertype. We use the

:> operator to specify that view. The expression scene :> drawable

list specifies scene viewed as a drawable list.

# let test scene =

# try

# G.open_graph "";

# G.resize_window 300 300;

# G.clear_graph ();

# draw_list (scene :> drawable list) ;

# ignore (G.read_key ())

# with

# exn -> (G.close_graph (); raise exn) ;;

val test : #drawable list -> unit = <fun>

# test scene ;;

- : unit = ()

Voila! The scene (Figure 18.7) appears. A little advice to the type infer-

ence mechanism has resolved the problem.

Figure 18.7: The rendered test scene.

18.6 Problem section: Object-oriented counters

Here is a class type and class definition for “counter” objects. Each

object maintains an integer state that can be “bumped” by adding
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an integer. The interface guarantees that only the two methods are

revealed.

class type counter_interface =

object

method bump : int -> unit

method get_state : int

end ;;

class counter : counter_interface =

object

val mutable state = 0

method bump n = state <- state + n

method get_state = state

end ;;

Problem 181

Write a class definition for a class loud_counter obeying the same interface that works
identically, except that it also prints the resulting state of the counter each time the
counter is bumped.

Problem 182

Write a class type definition for an interface reset_counter_interface, which is
just like counter_interface except that it has an additional method of no arguments
intended to reset the state back to zero.

Problem 183

Write a class definition for a class loud_reset_counter satisfying the reset_counter_-
interface that implements a counter that both allows for resetting and is “loud”
(printing the state whenever a bump or reset occurs).

18.7 Supplementary material

• Lab 16: Object-oriented programming

• Lab 17: Objects and classes

• Problem set A.8: Force-directed graph drawing

• Problem set A.9: Simulating an infectious process

http://url.cs51.io/lab16
http://url.cs51.io/lab17
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