
19

Semantics: The environment model

The addition of mutability – which enables impure programming

paradigms like imperative and procedural programming, with its

potential for efficiencies in both time and space, and enables lazy and

object-oriented programming as well – comes at a cost. Leibniz’s law

no longer applies. One and the same expression in the same context

can evaluate to different values, making reasoning about programs

more difficult.

That complexity ramifies in providing explicit semantics for the

language as well. The simple substitution semantics of Chapter 13 is

no longer sufficient. For that reason, and looking forward to the imple-

mentation of an interpreter for a larger fragment of OCaml (Chapter A),

we revisit the formal substitution semantics from Chapter 13, modify-

ing and augmenting it to provide a rigorous semantics for references

and assignment, showing where the additional complexity arises and

clarifying issues such as scope, side effects, and order of evaluation.

19.1 Review of substitution semantics

Recall from Section 13.6 the abstract syntax of a simple functional

language with arithmetic:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉
| fun 〈var〉 -> 〈exprbody〉
| 〈exprfun〉 〈exprarg〉

322 P RO G R A M M I N G W E L L

The semantics for this language was provided through the apparatus of

evaluation rules, which defined derivations for judgements of the form

P ⇓ v

where P is an expression and v is its value (a simplified expression that

means the same and that cannot be further evaluated).

The substitution semantics is sufficient for this simple language

because it is a pure functional programming language. But binding

constructs like let, let rec, and fun are awkward to implement,

and extending the language to handle references, mutability, and

imperative programming is quite challenging if not impossible. For

that reason, we start by modifying the substitution semantics to make

use of an E N V I RO N M E N T that stores a mapping from variables to

their values. In the next two sections, we develop the environment

semantics for the language of Chapter 13 in two variants: a dynamic

environment semantics and a lexical environment semantics. We then

augment the environment semantics with a model of a mutable store

to allow for reference values and their assignment.

19.2 Environment semantics

In an environment semantics, instead of substituting for variables

the value that they specify, we directly model a mapping between

variables and their values, which we call an E N V I RO N M E N T. We use

the following notation for mappings in the semantics. A mapping from

elements, say, x, y , z, to elements a, b, c, respectively, will be notated

as {x 7→ a; y 7→ b; z 7→ c}. The notation purposefully evokes the OCaml

record notation, since a record also provides a kind of mapping from

a finite set of elements (labels) to associated values. It also evokes,

through the use of the 7→ symbol, the idea of substitution, as these

mappings will replace substitutions in the environment semantics.

Indeed, the environments that give their name to environment

semantics are just such mappings – from variables to their values. We’ll

conventionally use the symbol E and its primed versions (E ′, E ′′, . . .)

as metavariables standing for environments. The empty environment

will be notated {}, and the environment E augmented so as to add the

mapping of the variable x to the value v will be notated E {x 7→ v}. To

look up what value an environment E maps a variable x to, we use

Euler’s function application notation: E(x).

Having introduced the necessary notation, we turn to modifying the

substitution semantics to use environments instead.

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 323

19.2.1 Dynamic environment semantics

Recall that the substitution semantics is given through a series of rules

defining judgements of how expressions evaluate to values. (Reviewing

Figure 13.5 may refresh your memory.)

In an environment semantics, expressions aren’t evaluated in isola-

tion. Rather, they are evaluated in the context of an environment that

specifies which variables have which values. Instead of defining rules

for P evaluating to v (written as the judgement P ⇓ v), we define rules

for P evaluating to v in an environment E (written as the judgement

E ⊢ P ⇓ v). The rule for evaluating numbers, for instance, becomes

E ⊢ n ⇓ n (Rint)

stating that “in environment E a numeral n evaluates to itself (inde-

pendent of the environment)”, and the rule for addition provides the

environment as context for evaluating the subexpressions:

E ⊢ P + Q ⇓∣∣∣∣∣ E ⊢ P ⇓ m

E ⊢Q ⇓ n

⇓ m +n

(R+)

Glossing again, the rule says “to evaluate an expression of the form P

+ Q in an environment E , first evaluate P in the environment E to an

integer value m and Q in the environment E to an integer value n. The

value of the full expression is then the integer literal representing the

sum of m and n.”

To construct a derivation for a whole expression using these rules,

we start in the empty environment {}. For instance, a derivation for the

expression 3 + 5 would be

{} ⊢ 3 + 5 ⇓∣∣∣∣∣ {} ⊢ 3 ⇓ 3
{} ⊢ 5 ⇓ 5

⇓ 8

So far, not much is different from the substitution semantics. The

differences show up in the handling of binding constructs like let.

Recall the Rlet rule for let binding in the substitution semantics.

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD] ⇓ vB

⇓ vB

(Rlet)

324 P RO G R A M M I N G W E L L

This rule specifies that an expression of the form let x = D in

B evaluates to the value vB , whenever the definition expression D

evaluates to vD and the body expression B after substituting vB for the

variable x evaluates to vB .

The corresponding environment semantics rule doesn’t substi-

tute into B . It evaluates B directly, but it does so in an environment

augmented with a new binding of x to its value vD :

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet)

According to this rule, “to evaluate an expression of the form let x

= D in B in an environment E , first evaluate D in E resulting in a

value vD and then evaluate the body B in an environment that is like E

except that the variable x is mapped to the value vD . The result of this

latter evaluation, vB , is the value of the let expression as a whole.”

In the substitution semantics, we will have substituted away all of

the bound variables in a closed expression, so no rule is needed for

evaluating variables themselves. But in the environment semantics,

since no substitution occurs, we’ll need to be able to evaluate expres-

sions that are just variables. Presumably, those variables will have

values in the prevailing environment; we’ll just look them up.

E ⊢ x ⇓ E(x) (Rvar)

A gloss for this rule is “evaluating a variable x in an environment E

yields the value of x in E .”

Putting all these rules together, we can derive a value for the expres-

sion let x = 3 in x + x:

{} ⊢ let x = 3 in x + x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 3 ⇓ 3
{x 7→ 3} ⊢ x + x ⇓∣∣∣∣∣ {x 7→ 3} ⊢ x ⇓ 3

{x 7→ 3} ⊢ x ⇓ 3
⇓ 6

⇓ 6
The derivation makes clear how the environment semantics differs

from the substitution semantics. Rather than replacing a bound vari-

able with its value, we add the bound variable with its value to the

environment; when an occurrence of the variable is reached, we sim-

ply look up its value in the environment.

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 325

Exercise 184

Construct the derivation for the expression

let x = 3 in
let y = 5 in
x + y ;;

Exercise 185

Construct the derivation for the expression

let x = 3 in
let x = 5 in
x + x ;;

Continuing the translation of the substitution semantics directly

into an environment semantics, we turn to functions and their appli-

cation. Maintaining functions as values is reflected in this simple rule:

E ⊢ fun x -> P ⇓ fun x -> P (Rfun)

and the application of a function to its argument again adds the ar-

gument’s value to the environment used in evaluating the body of the

function:

E ⊢ P Q ⇓∣∣∣∣∣∣∣
E ⊢ P ⇓ fun x -> B

E ⊢Q ⇓ vQ

E {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Exercise 186

Provide glosses for these two rules.

We can try the example from Section 13.6:

(fun x -> x + x) (3 * 4)

whose evaluation to 24 is captured by the following derivation:

{} ⊢ (fun x -> x + x) (3 * 4)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ (fun x -> x + x) ⇓ (fun x -> x + x)

{} ⊢ 3 * 4 ⇓∣∣∣∣∣ {} ⊢ 3 ⇓ 3
{} ⊢ 4 ⇓ 4

⇓ 12
{x 7→ 12} ⊢ x + x ⇓∣∣∣∣∣ {x 7→ 12} ⊢ x ⇓ 12

{x 7→ 12} ⊢ x ⇓ 12
⇓ 24

⇓ 24

326 P RO G R A M M I N G W E L L

The full set of dynamic environment semantics rules so far is pre-

sented in Figure 19.1.

E ⊢ n ⇓ n (Rint)

E ⊢ x ⇓ E(x) (Rvar)

E ⊢ fun x -> P ⇓ fun x -> P (Rfun)

E ⊢ P + Q ⇓∣∣∣∣∣ E ⊢ P ⇓ m

E ⊢Q ⇓ n

⇓ m +n

(R+)

(and similarly for other binary operators)

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet)

E ⊢ P Q ⇓∣∣∣∣∣∣∣
E ⊢ P ⇓ fun x -> B

E ⊢Q ⇓ vQ

E {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Figure 19.1: Dynamic environment
semantics rules for evaluating expres-
sions, for a functional language with
naming and arithmetic.

Problems with the dynamic semantics The environment semantics

captured in these rules (Figure 19.1) seems like it should generate the

same evaluations as the substitution semantics (Figure 13.5). After

all, the only difference would seem to be that instead of the binding

constructs (let and fun) substituting a value for the variables they

bind, they place the value in the environment, to be retrieved when the

variables they bind need them. But there are subtle differences, hidden

in the decision as to which variable occurrences see which values.

Recall (Section 5.5) that in OCaml the connection between occur-

rences of variables and the binding constructs they are bound by is

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 327

determined by the lexical structure of the code. For instance, in the

expression

let x = 1 in

let f = fun y -> x + y in

let x = 2 in

f 3 ;;

Line 3, characters 4-5:

3 | let x = 2 in

^

Warning 26 [unused-var]: unused variable x.

- : int = 4

the highlighted occurrence of the variable x is bound by the outer let

x, not the inner. For that reason, the result of evaluating the expression

is 4, and not 5. The substitution semantics reflects this fact, as seen in

the derivation

let x = 1 in let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣

1 ⇓ 1
let f = fun y -> 1 + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun y -> 1 + y ⇓ fun y -> 1 + y

let x = 2 in (fun y -> 1 + y) 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 ⇓ 2
(fun y -> 1 + y) 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun y -> 1 + y ⇓ fun y -> 1 + y

3 ⇓ 3
1 + 3 ⇓∣∣∣∣∣ 1 ⇓ 1

3 ⇓ 3
⇓ 4

⇓ 4
⇓ 4

⇓ 4
⇓ 4

But the environment semantics evaluates this expression to 5.

Exercise 187

Before proceeding, see if you can construct the derivation for this expression according
to the environment semantics rules. Do you see where the difference lies?

According to the environment semantics developed so far, a deriva-

328 P RO G R A M M I N G W E L L

tion for this expression proceeds as

{} ⊢ let x = 1 in let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣

{} ⊢ 1 ⇓ 1
{x 7→ 1} ⊢ let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1} ⊢ fun y -> x + y ⇓ fun y -> x + y

{x 7→ 1;f 7→ fun y -> x + y} ⊢ let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1;f 7→ fun y -> x + y} ⊢ 2 ⇓ 2
{f 7→ fun y -> x + y;x 7→ 2} ⊢ f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{f 7→ fun y -> x + y;x 7→ 2} ⊢ f ⇓ fun y -> x + y

{f 7→ fun y -> x + y;x 7→ 2} ⊢ 3 ⇓ 3
{f 7→ fun y -> x + y;x 7→ 2;y 7→ 3} ⊢ x + y

⇓∣∣∣∣∣ {f 7→ fun y -> x + y;x 7→ 2;y 7→ 3} ⊢ x ⇓ 2
{f 7→ fun y -> x + y;x 7→ 2;y 7→ 3} ⊢ y ⇓ 3

⇓ 5
⇓ 5

⇓ 5
⇓ 5

⇓ 5
The crucial difference comes when augmenting the environment

during application of the function fun y -> x + y to its argument.

Examine closely the two highlighted environments in the derivation

above. The first is the environment in force when the function is de-

fined, the L E X I C A L E N V I RO N M E N T of the function. The second is the

environment in force when the function is applied, its DY N A M I C E N -

V I RO N M E N T. The environment semantics presented so far augments

the dynamic environment with the new binding induced by the appli-

cation. It manifests a DY N A M I C E N V I RO N M E N T S E M A N T I C S. But for

consistency with the substitution semantics (which substitutes occur-

rences of a bound variable when the binding construct is defined, not

applied), we should use the lexical environment, thereby manifesting a

L E X I C A L E N V I RO N M E N T S E M A N T I C S.

In Section 19.2.2, We’ll develop a lexical environment semantics

that cleaves more faithfully to the lexical scope of the substitution

semantics, but first, we note some other divergences between dynamic

and lexical semantics.

Consider this simple application of a curried function:

(fun x -> fun y -> x + y) 1 2

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 329

The substitution semantics rules specify that this expression evaluates

to 3. But the dynamic semantics misbehaves:

{} ⊢ (fun x -> fun y -> x + y) 1 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ (fun x -> fun y -> x + y) 1

⇓∣∣∣∣∣∣∣
{} ⊢ fun x -> fun y -> x + y ⇓ fun x -> fun y -> x + y

{} ⊢ 1 ⇓ 1
{x 7→ 1} ⊢ fun y -> x + y ⇓ fun y -> x + y

⇓ fun y -> x + y

{} ⊢ 2 ⇓ 2
{y 7→ 2} ⊢ x + y

⇓∣∣∣∣∣ {y 7→ 2} ⊢ x ⇓ ???
· · ·

⇓ ???
⇓ ???

We can start the derivation, but the dynamic environment available

when we come to evaluate the x in the function body contains no

binding for x! (If only we had been evaluating the body in its lexical

environment.) In a dynamic semantics, currying – so central to many

functional idioms – becomes impossible.

On the other hand, under a dynamic semantics, recursion needs no

special treatment. By using the dynamic environment in evaluating the

definiendum of a let, the definition of the bound variable is already

available. We revisit the derivation for factorial from Section 13.7, but

330 P RO G R A M M I N G W E L L

this time using the dynamic environment semantics:

{} ⊢ let f = fun n -> if n = 0 then 1 else n * f (n - 1) in f 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ fun n -> if n = 0 then 1 else n * f (n - 1)

⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

{f 7→ fun n -> if n = 0 then 1 else n * f (n - 1)} ⊢ f 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{f 7→ fun n -> if n = 0 then 1 else n * f (n - 1)} ⊢ f

⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

{f 7→ fun n -> if n = 0 then 1 else n * f (n - 1)} ⊢ 2

⇓ 2
{ f 7→ if n = 0 then 1 else n * f (n - 1);n 7→ 2} ⊢ if n = 0 then 1 else n * f (n - 1)

⇓∣∣∣ · · ·
⇓ 2

⇓ 2
⇓ 2

Notice how the body of the function, with its free occurrence of the

variable f, is evaluated in an environment in which f is bound to the

function itself. By using the dynamic environment semantics rules, we

get recursion “for free”. Consequently, the dynamic semantics rule for

the let rec construction can simply mimic the let construction:

E ⊢ let rec x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rletrec)

To truly reflect the intended semantics of expressions in an envi-

ronment semantics, we need to find a way of using the lexical envi-

ronment for functions instead of the dynamic environment; we need a

lexical environment semantics.

19.2.2 Lexical environment semantics

To modify the rules to provide a lexical rather than dynamic environ-

ment semantics, we must provide some way of capturing the lexical

environment when functions are defined. The technique is to have

functions evaluate not to themselves (awaiting the dynamic environ-

ment for interpretation of the variables within them), but rather to

have them evaluate to a “package” containing the function and its

lexical (defining) environment. This package is called a C L O S U R E.1

1 The term comes from the terminology
of open versus closed expressions.
Open expressions have free variables
in them; closed expressions have none.
By capturing the defining environment,
we essentially use it to close the free
variables in the function. The closure
thus turns what would otherwise
be an open expression into a closed
expression.

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 331

We’ll notate the closure that packages together a function P and its

environment E as [E ⊢ P]. In evaluating a function, then, we merely

construct such a closure, capturing the function’s defining environ-

ment.

E ⊢ fun x -> P ⇓ [E ⊢ fun x -> P] (Rfun)

We make use of closures constructed in this way when the function is

applied:

Ed ⊢ P Q ⇓∣∣∣∣∣∣∣
Ed ⊢ P ⇓ [El ⊢ fun x -> B]

Ed ⊢Q ⇓ vQ

El {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Rather than augmenting the dynamic environment Ed in evaluating

the body, we augment the lexical environment El extracted from the

closure.

The lexical environment semantics properly reflects the intended

semantics for several of the problematic examples in Section 19.2.1,

as demonstrated in the following exercises. However, the handling

of recursion still requires some further work, which we’ll return to in

Section 19.4.

Exercise 188

Carry out the derivation using the lexical environment semantics for the expression

let x = 1 in
let f = fun y -> x + y in
let x = 2 in
f 3 ;;

What value does it evaluate to under the lexical environment semantics?

Exercise 189

Carry out the derivation using the lexical environment semantics for the expression

(fun x -> fun y -> x + y) 1 2 ;;

Problem 190

In problem 155, you evaluated several expressions as OCaml would, with lexical scoping.
Which of those expressions would evaluate to a different value using dynamic scoping?

19.3 Conditionals and booleans

In Section 13.5, exercises asked you to develop abstract syntax and

substitution semantics rules for booleans and conditionals. In this

section, we call for similar rules for environment semantics (applicable

to dynamic or lexical variants).

332 P RO G R A M M I N G W E L L

Exercise 191

Adjust the substitution semantics rules for booleans from Exercise 135 to construct
environment semantics rules for the constructs.

Exercise 192

Adjust the substitution semantics rules for conditional expressions (if 〈〉 then 〈〉 else 〈〉
) from Exercise 136 to construct environment semantics rules for the construct.

19.4 Recursion

The dynamic environment semantics already allows for recursion – in

fact, too much recursion – because of its dynamic nature. Think about

an ill-formed “almost-recursive” function, like

let f = fun x -> if x = 0 then 1 else f (x - 1) in f 1 ;;

It’s ill-formed because the lack of a rec keyword means that the f in

the definition part ought to be unbound. But it works just fine in the

dynamic environment semantics. When f 1 is evaluated in the dy-

namic environment in which f is bound to fun x -> if x = 0 then

1 else f (x - 1), all of the subexpressions of the definiens, includ-

ing the occurrence of f itself, will be evaluated in an augmentation

of that environment, so the “recursive” occurrence of f will obtain a

value. (It is perhaps for this reason that the earliest implementations of

functional programming languages, the original versions of LISP, used

a dynamic semantics.)

The lexical semantics, of course, does not benefit from this fortu-

itous accident of definition. The lexical environment in force when f

is defined is empty, and thus, when the body of f is evaluated, it is the

empty environment that is augmented with the argument x bound to

1. There is no binding for the recursively invoked f, and the deriva-

tion cannot be completed – consistent, by the way, with how OCaml

behaves:

let f = fun x -> if x = 0 then 1 else f (x - 1) in f 1 ;;

Line 1, characters 38-39:

1 | let f = fun x -> if x = 0 then 1 else f (x - 1) in f 1 ;;

^

Error: Unbound value f

Hint: If this is a recursive definition,

you should add the 'rec' keyword on line 1

To allow for recursion in the lexical environment semantics, we

should add a special rule for let rec then. A let rec expression is

built from three parts: a variable name (x), a definition expression (D),

and a body (B). To evaluate it, we ought to first evaluate the definition

part D , but using what environment? Any functions inside the defi-

nition part will see this environment as their lexical environment, to

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 333

be captured in a closure. We’ll thus want to make a value for x avail-

able in that environment. But what will we use for the value of x in the

environment? We can’t merely map x to the definition D , with its free

occurence of x; that just postpones the problem.

In one sense, it doesn’t matter what value we use for x in evaluating

the definition D , because in evaluating D , we won’t (or at least better

not) make use of x directly, as for instance in

let rec x = x + 1 in x ;;

Line 1, characters 12-17:

1 | let rec x = x + 1 in x ;;

^^^^^

Error: This kind of expression is not allowed as right-hand side of

`let rec'

That wouldn’t be a well-founded recursion. Instead, the occurrences

of x in D will have to be in contexts where they are not evaluated.

Canonically, that would be within an unapplied function, like the

factorial example

let rec f = fun n -> if n = 0 then 1 else n * f (n - 1) in f 2 ;;

- : int = 2

Because of this requirement for well-founding of the recursion, what-

ever value we use for x, we’ll be able to evaluate the definition to some

value, call it vD . That value, however, may involve closures that capture

the binding for x, and we’ll need to look up the value for x later in eval-

uating the body. Thus, the environment used in evaluating the body

best have a binding for x to vD .

These considerations call for the following approach to handling

the semantics of let rec in an environment E . We start by forming an

environment E ′ that extends E with a binding for x, but a binding that

is mutable, so it can be changed later. Initially, x can be bound to some

recognizable and otherwise ungenerable value, say, Unassigned. We

evaluate the definition D in environment E ′ to a value vD , which may

capture E ′ (or extensions of it) in closures. We then change the value

stored for x in E ′ to vD , and evaluate the body B in E ′ (thus modified).

By mutating the value bound to x, any closures that have captured E ′

will see this new value for x as well, so that (recursive) lookups of x in

the body will see the evaluated vD as well.

Because this approach relies on mutation, our notation for environ-

ment semantics isn’t up to the task of formalizing this idea, and doing

so is beyond the scope of this discussion, so we’ll leave it at that for

now. But once mutability is incorporated into the semantics – that was

the whole point in moving to an environment semantics, remember –

we’ll revisit the issue and give appropriate rules for let rec.

Even without formal rules for let rec, you’ll see in Chapter A how

334 P RO G R A M M I N G W E L L

this approach can be implemented in an interpreter for a language

with a let rec construction.

E ⊢ n ⇓ n (Rint)

E ⊢ x ⇓ E(x) (Rvar)

E ⊢ fun x -> P ⇓ [E ⊢ fun x -> P] (Rfun)

E ⊢ P + Q ⇓∣∣∣∣∣ E ⊢ P ⇓ m

E ⊢Q ⇓ n

⇓ m +n

(R+)

(and similarly for other binary operators)

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet)

Ed ⊢ P Q ⇓∣∣∣∣∣∣∣
Ed ⊢ P ⇓ [El ⊢ fun x -> B]

Ed ⊢Q ⇓ vQ

El {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Figure 19.2: Lexical environment
semantics rules for evaluating expres-
sions, for a functional language with
naming and arithmetic.

19.5 Implementing environment semantics

In Section 13.4.2, we presented an implementation of the substitution

semantics in the form of a function eval : expr -> expr. Modifying

it to follow the environment semantics requires just a few simple

changes. First, evaluation is relative to an environment, so the eval

function should take an additional argument, of type, say env. Second,

under the lexical environment semantics, expressions evaluate to

values that include more than just the pertinent subset of expressions.

In particular, expressions may evaluate to closures, so that an extended

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 335

notion of value, codified in a type value is needed. In summary, the

type of eval should be expr -> env -> value.

The new env type, a simple mapping from variables to the values

they are bound to, can be implemented as an association list

type env = (varid * value ref) list

and the value type can include expression values and closures in a

simple variant type

type value =

| Val of expr

| Closure of (expr * env)

(The env data structure maps variables to mutable value refs to

allow for the mutation required in implementing let rec as described

in Section 19.4.) The carrying out of this exercise is the subject of

Chapter A.

19.6 Semantics of mutable storage

In this section, we further extend the lexical environment semantics to

allow for imperative programming with references and assignment. (As

a byproduct, we’ll have the infrastructure to probide a formal seman-

tics rule for let rec.) To do so, we’ll start by augmenting the syntax of

the language, and then adjust the environment semantic rules so that

the context of evaluation includes not only an environment, but also a

model for the mutable storage that references require.

We’ll start with adding to the syntax a unit value () and operators

(ref, !, and :=) to manipulate reference values:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉
| fun 〈var〉 -> 〈exprbody〉
| 〈exprfun〉 〈exprarg〉
| ()

| ref 〈expr〉
| ! 〈expr〉
| 〈var〉 := 〈expr〉

The plan for handling references is to add a new kind of value, a

L O C AT I O N, which is an index or pointer into an abstract model of

memory that we will call the S TO R E. A store S will be a finite mapping

336 P RO G R A M M I N G W E L L

(like the environment) from locations to values. So a reference to a

value v will be a location l such that the store S maps l to v . Evaluation

will need to be relative to a store in addition to an environment, so

evaluation judgements will look like E ,S ⊢ P ⇓ ·· · .
Because the store can change as a side effect of evaluation (that’s

the whole point of mutability), the result of evaluation can’t simply be a

value. We’ll need access to the modified store as well. So the right-hand

side of the evaluation arrow ⇓ will provide both a value and a store. Our

final form for evaluation judgements is thus

E ,S ⊢ P ⇓ vP ,S′ .

(See Figure 19.3 for a breakdown of such a judgement.)

E ,S︸︷︷︸
a

⊢ P︸︷︷︸
b

⇓ vP ,S ′︸ ︷︷ ︸
c︸ ︷︷ ︸

d︸ ︷︷ ︸
e

Figure 19.3: Anatomy of an evaluation
judgement. (a) The context of evalua-
tion, including an environment E and a
store S. (b) The expression to be evalu-
ated. (c) The result of the evaluation, a
value and a store mutated by side effect.
(d) The evaluation of P to its result.
(e) The judgement as a whole. “In the
environment E and store S, expression
P evaluates to value vP with modified
store S′.”

A semantic rule for references reflects these ideas:

E ,S ⊢ ref P ⇓∣∣∣ E ,S ⊢ P ⇓ vP ,S′

⇓ l ,S′{l 7→ vP } (where l is a new location)

(Rref)

According to this rule, “to evaluate an expression of the form ref P in

an environment E and store S, we evaluate P in that environment and

store, yielding a value vP for P and a new store S′ (as there may have

been side effects to S in the evaluation). The value for the reference is

a new location l , and as side effect, a new store that is S′ augmented so

that l maps to the value vP .”

To dereference such a reference, as in an expression of the form

! P , P will need to be evaluated to a location, and the value at that

location retrieved.

Exercise 193

Write a semantic rule for dereferencing references.

Finally, and most centrally to the idea of mutable storage, is assign-

ment to a reference. Evaluating an assignment of the form P := Q

involves evaluating P to a location l and evaluating Q to a value vQ ,

and updating the store so that l maps to vQ . Along the way, the various

subevaluations may themselves have side effects leading to updated

stores, which must be dealt with. For instance, starting with an envi-

ronment E and store S, evaluating P may result in an updated store

S′. That updated store would then be the store with respect to which

Q would be evaluated, leading to a possibly updated store S′′. It is this

final store that would be augmented with the new assignment. A rule

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 337

specifying this semantics is

E ,S ⊢ P := Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ l ,S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ (),S′′{l 7→ vQ }

(Rassign)

The important point of the rule is the update to the store. But like

all evaluation rules, a value must be returned for the expression as a

whole. Here, we’ve simply returned the unit value ().

Exercise 194

In the presence of side effects, sequencing (with ;) becomes important. Write an evalua-
tion rule for sequencing.

To complete the semantics of mutable state, the remaining rules

must be modified to use and update stores appropriately. Figure 19.4

provides a full set of rules.

As an example of the deployment of these semantic rules, we con-

sider the expression

let x = ref 3 in

x := 42;

!x

Here is the derivation in full.

{}, {} ⊢ let x = ref 3 in x := 42; !x

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{}, {} ⊢ ref 3 ⇓∣∣∣ {}, {} ⊢ 3 ⇓ 3, {}

⇓ l1, {l1 7→ 3}

{x 7→ l1}, {l1 7→ 3} ⊢ x := 42; !x

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ l1}, {l1 7→ 3} ⊢ x := 42

⇓∣∣∣∣∣ {x 7→ l1}, {l1 7→ 3} ⊢ x ⇓ l1, {l1 7→ 3}

{x 7→ l1}, {l1 7→ 3} ⊢ 42 ⇓ 42, {l1 7→ 3}

⇓ (), {l1 7→ 42}

{x 7→ l1}, {l1 7→ 42} ⊢ !x

⇓∣∣∣ {x 7→ l1}, {l1 7→ 42} ⊢ x ⇓ l1, {l1 7→ 42}

⇓ 42, {l1 7→ 42}

⇓ 42, {l1 7→ 42}

⇓ 42, {l1 7→ 42}

338 P RO G R A M M I N G W E L L

E ,S ⊢ n ⇓ n,S (Rint)

E ,S ⊢ x ⇓ E(x),S (Rvar)

E ,S ⊢ fun x -> P ⇓ [E ⊢ fun x -> P],S (Rfun)

E ,S ⊢ P + Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ m,S′

E ,S′ ⊢Q ⇓ n,S′′

⇓ m +n,S′′

(R+)

(and similarly for other binary operators)

E ,S ⊢ let x = D in B ⇓∣∣∣∣∣ E ,S ⊢ D ⇓ vD ,S′

E {x 7→ vD },S′ ⊢ B ⇓ vB ,S′′

⇓ vB ,S′′

(Rlet)

Ed ,S ⊢ P Q ⇓∣∣∣∣∣∣∣
Ed ,S ⊢ P ⇓ [El ⊢ fun x -> B],S′

Ed ,S′ ⊢Q ⇓ vQ ,S′′

El {x 7→ vQ },S′′ ⊢ B ⇓ vB ,S′′′

⇓ vB ,S′′′

(Rapp)

Figure 19.4: Lexical environment
semantics rules for evaluating ex-
pressions, for a functional language
with naming, arithmetic, and mutable
storage.

S E M A N T I C S : T H E E N V I RO N M E N T M O D E L 339

E ,S ⊢ ref P ⇓∣∣∣ E ,S ⊢ P ⇓ vP ,S′

⇓ l ,S′{l 7→ vP } (where l is a new location)

(Rref)

E ,S ⊢ ! P ⇓∣∣∣ E ,S ⊢ P ⇓ l ,S′

⇓ S′(l),S′
(Rderef)

E ,S ⊢ P := Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ l ,S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ (),S′′{l 7→ vQ }

(Rassign)

E ,S ⊢ P ; Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ (),S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ vQ ,S′′

(Rseq)

Figure 19.4: (continued) Lexical envi-
ronment semantics rules for evaluating
expressions, for a functional language
with naming, arithmetic, and mutable
storage.

19.6.1 Lexical environment semantics of recursion

The extended language with references and assignment is sufficient to

provide a semantics for the recursive let rec construct. A simple way

to observe this is to reconstruct a let rec expression of the form

let rec x = D in B

as syntactic sugar for an expression that caches the recursion out using

just the trick described in Section 19.4: first assigning to x a mutable

reference to a special unassigned value, then evaluating the definition

D , replacing the value of x with the evaluated D , and finally, evaluating

B in that environment. We can carry out that recipe with the following

expression, which we can think of as the desugared let rec:

let x = ref unassigned in

x := D[x 7→ !x];

B [x 7→ !x]

(Since we’ve changed x to a reference type, we need to replace occur-

rences of x in D and B with !x to retrieve the referenced value.)

One way to verify that this approach works is to test it out in OCaml

itself. Take this application of the factorial function, for instance:

340 P RO G R A M M I N G W E L L

let rec f = fun n -> if n = 0 then 1

else n * f (n - 1) in

f 4 ;;

- : int = 24

Desugaring it as above, we get

let unassigned = fun _ -> failwith "unassigned" ;;

val unassigned : 'a -> 'b = <fun>

let f = ref unassigned in

(f := fun n -> if n = 0 then 1

else n * !f (n - 1));

!f 4 ;;

- : int = 24

(To serve as the “unassigned” value, we define unassigned to simply

raise an exception.)

This expression, note, makes use of only the language constructs

provided in the semantics in the previous section. That semantics,

with its lexical environment and mutable store, thus has enough ex-

pressivity for capturing the approach to recursion described informally

in Section 19.4. In fact, we could even provide a semantic rule for let

rec by carrying through the semantics for the desugared expression.

This leads to the following let rec semantic rule for the let rec

construction:

E ,S ⊢ let rec x = D in B ⇓∣∣∣∣∣ E {x 7→ l },S{l 7→ unassigned} ⊢ D[x 7→ !x] ⇓ vD ,S′

E {x 7→ l },S′{l 7→ vD } ⊢ B [x 7→ !x] ⇓ vB ,S′′

⇓ vB ,S′′

(Rletrec)

Problem 195

For the formally inclined, prove that the semantic rule for let rec above is equivalent to
the syntactic sugar approach.

19.7 Supplementary material

• Lab 18: Environment semantics

• Lab 19: Synthesis: Cellular automata

• Lab 20: Synthesis: Digital halftoning

http://url.cs51.io/lab18
http://url.cs51.io/lab19
http://url.cs51.io/lab20

	Preface
	Introduction
	An extended example: greatest common divisor
	Programming as design
	The OCaml programming language
	Tools and skills for design

	A Cook's tour of OCaml
	Expressions and the linguistics of programming languages
	Specifying syntactic structure with rules
	Disambiguating ambiguous expressions
	Abstract and concrete syntax
	Expressing your intentions

	Values and types
	OCaml expressions have values
	OCaml expressions have types
	The unit type
	Functions are themselves values

	Naming and scope
	Variables are names for values
	The type of a let-bound variable can be inferred
	let expressions are expressions
	Naming to avoid duplication
	Scope
	Global naming and top-level let

	Functions
	Function application
	Multiple arguments and currying
	Defining anonymous functions
	Named functions
	Function abstraction and irredundancy
	Defining recursive functions
	Unit testing
	Supplementary material

	Structured data and composite types
	Tuples
	Pattern matching for decomposing data structures
	Lists
	Records
	Comparative summary

	Higher-order functions and functional programming
	The map abstraction
	Partial application
	The fold abstraction
	The filter abstraction
	Problem section: Credit card numbers and the Luhn check
	Supplementary material

	Polymorphism and generic programming
	Polymorphism
	Polymorphic map
	Regaining explicit types
	The List library
	Problem section: Function composition
	Weak type variables
	Supplementary material

	Handling anomalous conditions
	A non-solution: Error values
	Option types
	Exceptions
	Options or exceptions?
	Unit testing with exceptions
	Supplementary material

	Algebraic data types
	Built-in composite types as algebraic types
	Example: Boolean document search
	Example: Dictionaries
	Example: Arithmetic expressions
	Problem section: Binary trees
	Supplementary material

	Abstract data types and modular programming
	Modules
	A queue module
	Signatures hide extra components
	Modules with polymorphic components
	Abstract data types and programming for change
	A dictionary module
	Alternative methods for defining signatures and modules
	Library Modules
	Problem section: Image manipulation
	Problem section: An abstract data type for intervals
	Problem section: Mobiles
	Supplementary material

	Semantics: The substitution model
	Semantics of arithmetic expressions
	Semantics of local naming
	Defining substitution
	Implementing a substitution semantics
	Problem section: Semantics of booleans and conditionals
	Semantics of function application
	Substitution semantics of recursion
	Supplementary material

	Efficiency, complexity, and recurrences
	The need for an abstract notion of efficiency
	Two sorting functions
	Empirical efficiency
	Big-O notation
	Recurrence equations
	Problem section: Complexity of the Luhn check
	Supplementary material

	Mutable state and imperative programming
	References
	Other primitive mutable data types
	References and mutation
	Mutable lists
	Imperative queues
	Hash tables
	Conclusion
	Supplementary material

	Loops and procedural programming
	Loops require impurity
	Recursion versus iteration
	Saving data structure space
	In-place sorting
	Supplementary material

	Infinite data structures and lazy programming
	Delaying computation
	Streams
	Lazy recomputation and thunks
	Application: Approximating
	Problem section: Circuits and boolean streams
	A unit testing framework
	A brief history of laziness
	Supplementary material

	Extension and object-oriented programming
	Drawing graphical elements
	Objects introduced
	Object-oriented terminology and syntax
	Inheritance
	Subtyping
	Problem section: Object-oriented counters
	Supplementary material

	Semantics: The environment model
	Review of substitution semantics
	Environment semantics
	Conditionals and booleans
	Recursion
	Implementing environment semantics
	Semantics of mutable storage
	Supplementary material

	Concurrency
	Sequential, concurrent, and parallel computation
	Dependencies
	Threads
	Interthread communication
	Futures
	Futures are not enough
	Locks
	Deadlock

	Final project: Implementing MiniML
	Overview
	Implementing a substitution semantics for MiniML
	Implementing an environment semantics for MiniML
	Extending the language
	Submitting the project
	Alternative final projects

	Problem sets
	The prisoners' dilemma
	Higher-order functional programming
	Bignums and RSA encryption
	Symbolic differentiation
	Ordered collections
	The search for intelligent solutions
	Refs, streams, and music
	Force-directed graph drawing
	Simulating an infectious process

	Mathematical background and notations
	Functions
	Summation
	Logic
	Geometry
	Sets
	Equality and identity

	A style guide
	Formatting
	Documentation
	Naming and declarations
	Pattern matching
	Verbosity
	Other common infelicities

	Solutions to selected exercises
	Bibliography
	Index
	Image Credits

