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Figure 20.1: Gordon Moore’s chart on
the basis of which his 1965 eponymous
“law” was extrapolated.

In 1965, Gordon Moore, one of the founders of the pioneering electron-

ics company Fairchild Semiconductor, noted the exponential growth

in the number of components that were being placed on integrated

circuit chips, the building blocks of all kinds of electronics but espe-

cially of computers. Extrapolating from just four points on a chart

(Figure 20.1), Moore saw that the number of integrated circuit compo-

nents had been growing at “a rate of roughly a factor of two per year”,

and he expected that rate to continue for the foreseeable future. Ten

years later, he revised his estimate to a doubling per two years. This

prediction became “Moore’s law”, and has been generalized to many

other aspects of computer technology and performance.

The generalized form of Moore’s law would have it that computer

performance, measured, say, in total number of instructions executed

per second, should grow exponentially as well, as indeed it has. Em-

pirical data on the number of standardized operations performed

per second, charted as squares in Figure 20.2, shows that Moore’s law

as applied to the performance of microprocessor chips has held up

remarkably well for many decades. Data on clock speed, the rate at

which individual instructions can be executed, charted as circles,

shows a different story. The clock speed of the processors showed the

same exponential growth through the mid to late 2000’s, but flattened

after that. What could account for this differential? If the processors

weren’t executing instructions faster, how could they be executing

more instructions in the same amount of time. The answer is given

by the third series, shown as triangles in Figure 20.2, which graphs the

number of processors per chip. Over the last decade or so, we’ve seen

a regular rise in the number of processors per chip, making up the

difference in Moore’s law by having multiple instructions executed in

parallel.

These days, specialized architectures like graphics processing units

(GPUs) and AI accelerators take advantage of even larger scale paral-
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Figure 20.2: Chart showing growth in
clock speed (in megaHertz (MHZ),
as circles), throughput (in Dhrystone
millions of instructions per second
(DMIPS), as squares), and number
of cores per chip for Intel and recent
AMD microcomputer chips. Note the
logarithmic vertical scale.

lelism to speed up complex highly structured computations for graph-

ics or machine learning. In fact, parallel computing is responsible for

the recent breakthroughs in machine learning performance, and is

in large part the future of maintaining the tremendous performance

improvements that Moore’s law has captured.

There’s no free lunch. Programming computations that happen

concurrently introduces new challenges, requiring new programming

abstractions to manage them. In this chapter, we’ll explore some of the

promise, difficulty, and tools of concurrent programming. As usual,

in the effort to simplify the management of the daunting problems of

concurrency, new abstractions will be crucial.

20.1 Sequential, concurrent, and parallel computation

It will be helpful, in thinking about these issues, to imagine compu-

tation as proceeding sequentially in a series of small atomic steps.

Indeed, computation does proceed that way, down at the level of ab-

straction at which the hardware processors operate. The role of a

compiler is to translate programs written using higher-level abstrac-

tions down to a sequence of atomic instructions directly runnable on

(possibly virtual) hardware.1

1 Exactly what constitutes an atomic
step depends on the particularities
of the hardware; we needn’t concern
ourselves with the details here. We’ll just
assume that operations like reading a
value from memory (as, for instance,
accessing a variable’s value), modifying
a value in memory (instantiating
a variable or updating a mutable
variable, for instance), performing a
simple operation on retrieved values
(arithmetic operations, for instance),
and the like are atomic. In the examples
we’ll use, we’ll write the atomic steps on
separate lines, so that any line of code
will be assumed to execute atomically.

Suppose we have two tasks (A and B) to complete, each requiring
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(a) (b) (c) (d)

Figure 20.3: Two tasks running in vari-
ous forms of sequential and concurrent
computation. Each task is depicted
as atomic steps (the individual boxes)
executing through time (running from
top to bottom). (a) Task A runs sequen-
tially to completion before task B. (b)
Coarsely concurrent execution of the
two tasks, with some steps of task B first
running after four steps of task A. (c)
Finer concurrent execution, interleaving
at each atomic step. (d) Parallel compu-
tation of the tasks, with task B beginning
execution after the fourth step of task A
and running simultaneously. The arrows
denote a dependency requiring task
B.1 to run after task A.4. Note that that
dependency is violated in (c).

execution of a sequence of atomic steps. One way of completing the

tasks is to execute the two tasks S E QU E N T I A L LY, all of the steps of Task

A before any of the steps of Task B, as depicted in Figure 20.3(a). Alter-

natively, we might execute some of the steps in Task A, then some from

Task B, then the remainder of Task A and the remainder of Task B (Fig-

ure 20.3(b)). The tasks are said to be running C O N C U R R E N T LY. Even

more fine-grained concurrency is possible of course (Figure 20.3(c)).

Why might such concurrency be useful? Through concurrent exe-

cution, Task B might be able to generate some useful behavior earlier

than having to wait for Task A to complete. Perhaps Task A part way

through its execution computes some value that is needed by Task

B, or vice versa. Waiting for Task A to complete may postpone Task

B for a long time. Indeed, some computations are intended never to

complete. Think of the process that runs a bank ATM, which is always

running a single program to handle requests from users as they walk

up to and interact with it. Although the ATM process never completes,

other processes may want to interact with it and intersperse their

computations on the same processor, perhaps to report changes to a

central database. In sum, concurrency allows multiple separate pro-

cesses to interact and communicate without requiring one of them to

complete before the other begins.

Where such concurrency is possible, a further benefit can accrue

– carrying out the steps of the tasks I N PA R A L L E L (Figure 20.3(d)) by

making use of separate hardware for processing the sequences of

instructions. Parallelism allows both tasks to complete in fewer time

steps, effectively trading time for “space” (hardware).

20.2 Dependencies

In taking advantage of concurrency or parallelism, delicate issues

quickly arise when there are dependencies between the two sequences
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of instructions. For instance, Task B might read a value at one of its

steps (its first step, say) that Task A computes at its, say, fourth step.

We’ve indicated such a dependency with the arrows in Figure 20.3.

If Task A and B run sequentially in that order, then of course the

value generated by Task A will be available to Task B at the proper time.

But concurrent computation is also possible, say if Task A completes

its first four steps before Task B begins. But other interleavings can

be problematic, for instance, if Tasks A and B interleave after each

step. Task B will then attempt to make use of the value that Task A will

calculate before it has actually been calculated. This kind of depen-

dency, where one task must read a value only after another task writes

it, is sometimes referred to as a R E A D - A F T E R- W R I T E D E P E N D E N C Y.

What happens when concurrent execution violates the read-after-write

dependency may not be well defined, but it certainly is not a good

situation.

In addition to read-after-write dependencies, other kinds of de-

pendencies (W R I T E - A F T E R- R E A D, W R I T E - A F T E R- W R I T E) are also

important. The details are beyond the scope of this discussion. At this

point, we’re merely concerned with how to allow concurrency while

avoiding violations of ordering dependencies whatever they might be.

In summary, if we just allow tasks to interleave however they hap-

pen to, with no control over which parts of which task run when, de-

pendencies introduce a kind of race between the tasks. Will Task A’s

write step run faster and execute, as it should, before Task B’s read? Or

will Task B win the race, performing its read before task A has a chance

to write? This kind of R AC E C O N D I T I O N leads to the possibility of a

new kind of error. Gaining the benefits of concurrency and parallelism,

while avoiding race conditions and other new classes of errors, is the

challenge of concurrent and parallel programming.

20.3 Threads

In order to demonstrate these issues and experiment with abstractions

that can help avoid these new classes of errors, we need a way to im-

plement concurrency. OCaml provides a programming abstraction

that allows us to experiment with concurrency, the T H R E A D. A thread

can be thought of as providing a separate virtual processor.2 2 OCaml thread’s provide concurrency,
not true parallelism, but the issues
they raise apply equally well to parallel
processing, so they’re all we’ll need
to demonstrate the problems. Other
OCaml modules, and aspects of many
other programming languages, provide
concurrency and parallelism constructs
that introduce just the same issues.

Suppose we need to do two tasks – call them Task A and B as before

– implemented as OCaml functions named accordingly. Perhaps we

want to sum the results returned by these two tasks. We can easily

execute them sequentially, task A before B:

let resultA = taskA () in

let resultB = taskB () in
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(* log thread_name msg -- Prints a message recording that a

thread with the given `thread_name` has generated a log

message `msg`. Also prints an indication of time in seconds

since an initialization time. Used for tracking concurrent

executions. *)

let log =

(* store a fixed marker time for comparison *)

let init_time = Unix.gettimeofday () in

fun thread_name msg ->

Printf.printf "[%3.4f %s: %s]\n%!"

((Unix.gettimeofday ()) -. init_time)

thread_name

msg ;;

(* task_delayed name delay value -- Prints a message

recording that a thread with the given `thread_name` has

generated a log message `msg`. Also prints an indication of

time in seconds since an initialization time. Used for

tracking concurrent executions. *)

let task_delayed (name : string)

(delay : float)

(value : 'a)

: 'a =

log name "starts";

Thread.delay delay;

log name "ends";

value ;;

(* Two sample tasks taking differing lengths of time and

returning different values. *)

let task_short () = task_delayed "task_short" 0.1 1 ;;

let task_long () = task_delayed "task_long " 0.2 2 ;;

Figure 20.4: For reference, some lo-
gistical code used in the concurrency
demonstrations.



346 P RO G R A M M I N G W E L L

resultA + resultB ;;

We can think of the two tasks (along with the computation of their

sum) as being executed in a single thread of computation. The se-

mantics of the let construct ensures that taskA () will be evaluated,

generating resultA, before taskB () begins its evaluation.

In order to demonstrate the idea, and prepare for the significantly

more subtle examples to come, we define a test function that takes two

functions as its argument, which play the roles of tasks A and B.

# let test_sequential taskA taskB =

# let resultA = taskA () in

# let resultB = taskB () in

# resultA + resultB ;;

val test_sequential : (unit -> int) -> (unit -> int) -> int = <fun>

We can test this sequential computation using some simulated tasks.

The unit function task_short simulates a task that engages in a

shorter computation (0.1 seconds) returning the value 1. The corre-

sponding function task_long takes longer (0.2 seconds) and returns

the value 2. (The details of how they’re implemented aren’t important,

but for completeness, they’re provided in Figure 20.4.) Let’s test it out.

# test_sequential task_short task_long ;;

[1.1147 task_short: starts]

[1.2149 task_short: ends]

[1.2149 task_long : starts]

[1.4150 task_long : ends]

- : int = 3

The test returns the summed results 3. Along the way, various key

events are logged. We see the start of the short task and its ending,

followed by the start and end of the long task, indicating their sequen-

tiality. The logged start and end times indicate that the short and long

tasks required about 0.1 and 0.2 seconds, respectively, together requir-

ing 0.3 seconds, as expected.

If we’d like the two tasks to execute concurrently, we can establish

a separate thread (that is, a separate virtual processor) corresponding

to taskA. We refer to this process as F O R K I N G a new thread. OCaml

provides for creating and manipulating threads in its Thread module.3 3 The Thread module is part of OCaml’s
threads library, which allows for creating
multiple concurrent threads. To make
use of the library in the R E P L, you’ll
need to make it available with

#use "topfind" ;;

#thread ;;

To fork a new thread, we use the Thread.create function, which takes

a function and its argument and returns a separate new thread of com-

putation (a value of type Thread.t) in which the function is applied to

its argument. Its type is thus (’a -> ’b) -> ’a -> Thread.t. So we

can evaluate tasks A and B in separate threads, concurrently, as follows:

let threadA = Thread.create taskA () in

let resultB = taskB () in

...
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The evaluation of the Thread.create expression returns immediately,

without waiting for the result of the application of taskA to () to finish

in the new thread. Thus when taskB () is evaluated, it doesn’t wait

until taskA completes.4 4 The Thread library allows for concur-
rent execution of the various threads
forked in the process, not parallel
execution. An exception is that the
Thread.delay function, which we use
to simulate computations that take
a long time, allows other threads to
continue to run during the delay period.

20.4 Interthread communication

We’ve enabled two tasks to operate concurrently using threads. But

we have no way as of yet for threads to communicate with each other.

For instance, in the example above, how can taskA, isolated in its

own thread, inform the thread running taskB about its return value?

Similarly, how can taskB communicate information to taskA if it

needs to?

A simple mechanism for this interthread communication is for the

threads to share mutable values, which serve as channels of commu-

nication between the threads. Let’s start with how the created thread

executing taskA can communicate its return value to the main thread

that needs to calculate the sum.

We’ll define another test function called test_communication

to test the communication between two tasks executed in separate

threads as above.

let test_communication taskA taskB =

...

We’ll use a shared mutable value called shared_result of type int

option, initially None since no result is yet available.

...

let shared_result = ref None in

...

Now we can create a new thread for executing task A, saving its return

value in the shared result.

...

let _thread =

Thread.create

(fun () -> shared_result := Some (taskA ())) () in

...

In the original thread, we perform task B, saving its result.

...

let resultB = taskB () in

...

Finally, we can extract the result from task A from the shared value, and

compute with the two results, by adding them as before.
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...

match !shared_result with

| Some resultA ->

(* compute with the two results *)

resultA + resultB

| None ->

(* Oops, taskA hasn't completed! *)

failwith "shouldn't happen!" ;;

Putting it all together, we have

# let test_communication taskA taskB =

# let shared_result = ref None in

# let _thread =

# Thread.create

# (fun () -> shared_result := Some (taskA ())) () in

# let resultB = taskB () in

# match !shared_result with

# | Some resultA ->

# (* compute with the two results *)

# resultA + resultB

# | None ->

# (* Oops, taskA hasn't completed! *)

# failwith "shouldn't happen!" ;;

val test_communication : (unit -> int) -> (unit -> int) -> int =

<fun>

Again, we can test using the simulated tasks. To start, we fork the

new thread running the shorter task, with the longer task in the main

thread.

# test_communication task_short task_long ;;

[2.1245 task_long : starts]

[2.1245 task_short: starts]

[2.2247 task_short: ends]

[2.3246 task_long : ends]

- : int = 3

the communication works as expected. The short task returns 1 –

passed through and retrievable from the shared variable – and the long

task returns 2. The test as a whole computes their sum, 3 as expected.

The logged events show the starting of the long task in the main

thread, followed immediately by the short task starting in the newly

created thread. The latter short thread completes quickly (it’s shorter,

after all), ending before the long task does. The main thread can extract

the completed value for the short task and add it to the result from the

long task.5 5 As before, the logged times indicate
that the short and long tasks required
about 0.1 and 0.2 seconds. This time,
however, the overall computation re-
quires only 0.2 seconds, since the delay
function allows for some parallelism
between the two threads (as noted
in footnote 4. The simulation thus
gives a hint of the potential for parallel
processing to speed computation.

But what if the task in the forked thread takes longer than that in

the main thread? We can simulate this by swapping the long and short

tasks in the test function.

# test_communication task_long task_short ;;

[2.3762 task_short: starts]
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[2.3762 task_long : starts]

[2.4763 task_short: ends]

Exception: Failure "shouldn't happen!".

In this version of the test, the short task in the main thread completes

before the forked thread has time to complete the long task and update

the shared variable, leading to a run-time exception. The code has a

race condition with respect to a read-after-write dependency. These

two executions of the test demonstrate that, depending on which task

“wins the race”, the value to be read may or may not be written in time

as it needs to be.

In general, one doesn’t have the kind of detailed information about

run times of various tasks as we have for task_short and task_long.

This kind of concurrent computation, without careful controls, thus

leads to indeterminacy at runtime. And debugging these intermittent

bugs that can come and go, perhaps appearing only rarely, can be

especially confounding. More tools are needed.

The lesson here is that the main thread shouldn’t attempt to use the

shared variable until the forked thread has completed. We thus need

a way of guaranteeing that a thread has completed. One solution you

may have thought of is to have the main thread test if the shared value

has not been properly set, and if not, to just “try again later”. We can

implement this with a simple loop,

while !shared_result == None do

Thread.delay 0.01

done;

which continually waits for a fraction of a second so long as the shared

result has not been properly set, a technique called BU S Y WA I T I N G.

# let test_communication taskA taskB =

# let shared_result = ref None in

# let _thread =

# Thread.create

# (fun () -> shared_result := Some (taskA ())) () in

# let resultB = taskB () in

# while !shared_result == None do

# Thread.delay 0.01

# done;

# match !shared_result with

# | Some resultA ->

# (* compute with the two results *)

# resultA + resultB

# | None ->

# (* Oops, taskA hasn't completed! *)

# failwith "shouldn't happen!" ;;

val test_communication : (unit -> int) -> (unit -> int) -> int =

<fun>

The errant race condition is now handled properly.
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# test_communication task_long task_short ;;

[3.5867 task_short: starts]

[3.5867 task_long : starts]

[3.6868 task_short: ends]

[3.7868 task_long : ends]

- : int = 3

But this kind of brute force trick of repeatedly polling the shared vari-

able until it is ready is profligate and inelegant. It can waste compu-

tation that would be better allocated to other threads, and can waste

time if the delay is longer than needed.

Instead, we’d like to be able to directly specify to wait until

the forked thread completes. The companion to the fork function

Thread.create is the join function Thread.join. Thread.join

takes a thread as its argument and returns only once that thread has

completed. By requiring the join before accessing the shared variable,

we are guaranteed that the variable will have been updated at the time

that we need it.

# let test_communication taskA taskB =

# let shared_result = ref None in

# let thread =

# Thread.create

# (fun () -> shared_result := Some (taskA ())) () in

# let resultB = taskB () in

# Thread.join thread;

# match !shared_result with

# | Some resultA ->

# (* compute with the two results *)

# resultA + resultB

# | None ->

# (* Oops, taskA hasn't completed! *)

# failwith "shouldn't happen!" ;;

val test_communication : (unit -> int) -> (unit -> int) -> int =

<fun>

Using this version of the test, the race condition is avoided, and the

calculation completes properly.

# test_communication task_long task_short ;;

[4.5455 task_short: starts]

[4.5455 task_long : starts]

[4.6456 task_short: ends]

[4.7457 task_long : ends]

- : int = 3

20.5 Futures

The structure of this small example, in which a thread is forked to

allow it to compute a return value that is needed in the future, is so

common that it deserves its own abstraction, a kind of value dubbed
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a F U T U R E. This abstraction is implemented via two functions: The

future function takes a task to be carried out for its return value, and

returns a “future value”. We can later use the force function to force

the future value to be extracted when available. A module signature

can help clarify the needed functionality:

# module type FUTURE =

# sig

# type 'result future

#

# (* future fn x -- Forks a new thread within which `fn`
# is applied to `x`. Immediately returns a `future`
# which can be used to synchronize with the thread

# and extract the result. *)

# val future : ('arg -> 'result) -> 'arg -> 'result future

#

# (* force fut -- Causes the calling thread to wait until the

# thread computing the future value `fut` is done and then

# returns its value. *)

# val force : 'result future -> 'result

# end ;;

module type FUTURE =

sig

type 'result future

val future : ('arg -> 'result) -> 'arg -> 'result future

val force : 'result future -> 'result

end

There are multiple ways to implement this functionality, but we’ll

use the shared value method from the previous example. In this imple-

mentation, a future value (an element of the future type) is a record

that contains the thread identifier in which the future task is being car-

ried out and the mutable variable for communicating the result back to

the calling thread.

# module Future : FUTURE =

# struct

# type 'result future = {tid : Thread.t;

# value : 'result option ref}

#

# let future (f : 'arg -> 'result) (x : 'arg) : 'result future =

# let r : 'result option ref = ref None in

# let t = Thread.create (fun () -> r := Some (f x)) ()

# in {tid = t; value = r}

#

# let force (f : 'result future) : 'result =

# Thread.join f.tid;

# match !(f.value) with

# | Some v -> v

# | None -> failwith "impossible!"

# end ;;

module Future : FUTURE
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With the future abstraction in hand, the test_communication

example above can be greatly simplified.

# let test_future taskA taskB =

# let futureA = Future.future taskA () in

# let resultB = taskB () in

# Future.force futureA + resultB ;;

val test_future : (unit -> int) -> (unit -> int) -> int = <fun>

# test_future task_long task_short ;;

[6.3619 task_short: starts]

[6.3619 task_long : starts]

[6.4620 task_short: ends]

[6.5620 task_long : ends]

- : int = 3

This is hardly more complicated than the sequential version (test_-

sequential) that we started with above, requiring only the simple

addition of the highlighted future call.

Exercise 196

Exercise 96 concerned implementing a fold operation over binary trees defined by

# type 'a bintree =
# | Empty
# | Node of 'a * 'a bintree * 'a bintree ;;
type 'a bintree = Empty | Node of 'a * 'a bintree * 'a bintree

Define a version of the fold operation, foldbt_conc, that performs the recursive folds of
the left and right subtrees concurrently, making use of futures to ensure that results are
available when needed.

20.6 Futures are not enough

The sharing of mutable data across two concurrent threads is a valu-

able ability. It implements a kind of communication channel between

the threads. But managing this communication is complex. We’ve al-

ready seen this in the context of a thread’s “return value”. The calling

thread mustn’t read the shared variable that will be storing the called

thread’s return value until the latter has completed its computation

and updated the return value. Managing this ordering is the whole

point of the future/force abstraction.

Sharing mutable data across threads is a useful technique well

beyond just allowing for return values to be communicated.

1. Threads may have need for coordinating data manipulation beyond

the mere passing of a return value. For instance, think of multiple

threads manipulating a shared database.

2. In the case of threads that are not intended to terminate, the whole

notion of a return value is inapplicable. Importantly, not all con-

current computations are intended to terminate. Indeed, one of the
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benefits of concurrency as a programming concept is that it allows

multiple threads of nonterminating computation to interact. We

still need to manage the interaction so that the concurrent com-

putations satisfy the various dependencies among them without

dangerous race conditions.

A standard example of this kind of concurrent nonterminating

computation is the ATM. ATMs are computers that run a program

that interacts with bank patrons to allow them to manipulate their

bank accounts in various ways. The bank accounts constitute a shared

database of mutable data. And because banks have multiple geograph-

ically distributed ATMs, multiple instances of the program are running

concurrently, and potentially transforming the same shared data, the

balances of the various accounts.

To demonstrate the problem, let’s think of a bank as having multiple

accounts each of which is an instance of an account class defined as

follows:

# class account (initial_balance : int) =

# object

# val mutable balance = initial_balance

#

# method balance = balance

#

# method deposit (amt : int) : unit =

# balance <- balance + amt

#

# method withdraw (amt : int) : int =

# if balance >= amt then begin

# balance <- balance - amt;

# amt

# end else 0

# end ;;

class account :

int ->

object

val mutable balance : int

method balance : int

method deposit : int -> unit

method withdraw : int -> int

end

The deposit and withdraw methods both potentially affect the value

of the mutable balance variable. The withdraw function, in particular,

verifies that the balance is sufficient to cover the withdrawal amount,

updates the balance accordingly, and returns the amount to be dis-

pensed (0 if the balance is insufficient).

Now what happens when we try multiple concurrent withdrawals

from the same account? To simulate such an occurrence, the following

test_wds function carries out withdrawals of $75 and $50 in separate
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threads (call them “thread A” and “thread B” for ease of reference) from

a single account with initial balance of $100, using a future for the

larger withdrawal. To track what goes on, the test function returns

the amount dispensed in thread A and thread B, along with the final

balance in the account.

# let test_wds () =

# let acct = new account 100 in

# let threadA_ftr = Future.future acct#withdraw 75 in

# let threadB = acct#withdraw 50 in

# let threadA = (Future.force threadA_ftr) in

# threadA, threadB, acct#balance ;;

val test_wds : unit -> int * int * int = <fun>

What behavior would we like to see in this case? One or the other

of the two withdrawals, whichever comes first, should see a sufficient

balance, dispense the requested amount, and update the balance

accordingly. The other attempted withdrawal should see a reduced

and insufficient balance and dispense no funds. In particular, if task A

completes first, the two accounts should see withdrawals of $75 and $0

respectively, leaving a balance of $25, that is, the simulation function

should return the triple (75, 0, 25). If task B completes first, the two

accounts should see withdrawals of $0 and $50 respectively, leaving a

balance of $50, that is, the simulation function should return the triple

(0, 50, 50). Let’s try it.

# test_wds () ;;

- : int * int * int = (0, 50, 50)

In order to experiment with the possibility of interleavings of the

various components of the withdrawals, we make two changes to the

withdrawal simulation. First, we divide the balance update

balance <- balance - amt

into two parts: the computation of the updated balance and the up-

date of the balance variable itself:

let updated = balance - amt in

balance <- updated

Doing so separates the reading of the shared balance from its writing,

allowing interposition of other threads in between.

Second, we introduce some random delays at various points in

the computation: before the withdrawal first executes, immediately

after the balance check, and after computing the updated balance just

before carrying out the update. For this purpose, we use a function

random_delay, which pauses a thread for a randomly selected time

interval.
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# let random_delay (max_delay : float) : unit =

# Thread.delay (Random.float max_delay) ;;

val random_delay : float -> unit = <fun>

Updating the withdrawal function to insert these delays, we have

method withdraw (amt : int) : int =

random_delay 0.004;

if balance >= amt then begin

random_delay 0.001;

let updated = balance - amt in

random_delay 0.001;

balance <- updated;

amt

end else 0 ;;

valid? first second balance count

75 50 −25 29
75 50 50 27
75 50 25 26

✓ 75 0 25 11
✓ 0 50 50 7

Figure 20.5: Table of outcomes from
multiple runs of simultaneous with-
drawals. Each row represents a possible
outcome, with columns showing the
amount dispensed for the first with-
drawal, the amount dispensed for the
second withdrawal, the final balance,
and the number of times this outcome
occurred in 100 trials. Only the check-
marked trials are valid in respecting
dependencies.

Here is a typical outcome from this simulation.

# test_wds () ;;

- : int * int * int = (75, 50, -25)

If we run the simulation many times, we see (Figure 20.5) that the

result is quite variable. Certainly, there are many occurrences (about

half) showing the desired behavior, with either $75 or $50 dispensed

and a final balance of $25 or $50, respectively. But we also see plenty

of instances where both withdrawals go through, dispensing both $75

and $50, leaving a final balance of $−25. Or $25. Or $50. The use of

future ensures that the return value dependency is properly obeyed,

but the various dependencies having to do with the updates to and

uses of the account’s balance are uncontrolled. Different interleavings

of these operations can yield different results. Let’s examine a few of

the many possible interleavings.

First, thread A (the $75 withdrawal) may execute fully before thread

B (the $50 withdrawal) begins. That is, they may execute sequentially.

This interleaving is depicted in Figure 20.6. In this representation of

the two threads executing, the executed lines of thread A are on the

left, thread B on the right. We assume that each line of code executes

atomically, with the order of the numbered lines indicating the order

in which they are executed in the concurrent computation. The el-

lipses (· · · ) indicate code lines that were not executed since they fell in

the non-chosen branch of a conditional. In line 1, the balance test in

thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. let updated = balance - amt in
3. balance <- updated;
4. amt
5. · · · if balance >= amt then begin

· · ·
6. end else 0

Figure 20.6: An unproblematic (essen-
tially sequential) interleaving of the
threads.
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thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. let updated = balance - amt in
3. if balance >= amt then begin
4. let updated = balance - amt in
5. balance <- updated;
6. amt
7. · · · balance <- updated;
8. amt

· · ·

Figure 20.7: A problematic interleaving
of the threads.

thread A is evaluated. Since the balance is initially 100, and the with-

drawal amount is 75, the condition holds and lines 2-4 in the then

branch are executed. Line 3 in particular updates the shared balance

to 25, so that in line 5 when thread B tests the balance, the test fails

and the second withdrawal does not complete (line 6). In summary,

the $75 withdrawal attempt succeeds, dispensing the $75, and the $50

withdrawal attempt fails, leaving a balance of $25.

Of course, if thread B had executed fully before thread A, the cor-

responding result would have occurred, dispensing only the $50 and

leaving a balance of $50.

But other results are also possible. For instance, consider the in-

terleaving in Figure 20.7. Each thread verifies the balance as being

adequate and computes its updated value before the other performs

the balance update. Both threads go on to update the balance (lines

5 and 7); since thread B updates the balance later, its balance value,

$50, overwrites thread A’s $25 balance, so the final balance is $50. In

summary, both attempted withdrawals succeed, dispensing both $75

and $50, leaving a surprising $50 balance. Sure enough, Figure 20.5

indicates that such outcomes were actually attested in the simulations.

Exercise 197

Construct an interleaving in which both withdrawals succeed, leaving a balance of $25.

Exercise 198

Construct an interleaving in which both withdrawals succeed, leaving a balance of $−25.

As Figure 20.5 shows, and these possible interleavings explain,

there are important dependencies that are not being respected in the

concurrent implementation of the account operations. A solution to

this problem of controlling data dependencies requires further tools.

20.7 Locks

To gain better control over the interleavings, we introduce a new ab-

straction, the L O C K. The underlying idea is that while a thread is ex-

ecuting the withdrawal method, it ought to be the only thread with

access to the balance it is manipulating. Just as you might lock your

door to prevent others from using your car, you might want to lock
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some data to prevent others from manipulating it. OCaml provides a

simple interface to a locking mechanism called M U T E X L O C K S in its

Mutex library. The name comes from the idea of mutual exclusion;

other threads should be excluded from certain regions of code when a

lock is in force.

To create a mutex lock for a given datum – the mutable balance, say,

in the ATM example – we use Mutex.create.

# let balance_lock = Mutex.create () ;;

val balance_lock : Mutex.t = <abstr>

As shown, this creates a lock of type Mutex.t. We can then lock

and unlock the lock as needed with the functions Mutex.lock and

Mutex.unlock.

The mutex locks work as follows. When Mutex.lock is called on a

lock, the lock is first verified to be in its unlocked state. If so, the lock

switches to the locked state and computation proceeds.6 But if not, 6 Crucially, the testing for unlocked
status and the subsequent locking
occur atomically, so that other threads
can’t interleave between them. How
this is accomplished, the subject of
fundamental research in concurrent
computation, is well beyond the scope
of this text.

the thread in which the call was made is suspended until such time as

the lock becomes unlocked, presumably by a call to Mutex.unlock in

another thread.

Inserting the locks in the ATM example, we would have a withdraw

method like this:

method withdraw (amt : int) : int =

Mutex.lock balance_lock;

if balance >= amt then begin

balance <- balance - amt;

amt

end else 0;

Mutex.unlock balance_lock ;;

The code between the locking and unlocking is the C R I T I C A L R E G I O N,

a computation that must be carried out atomically from the point of

view of the resource that is being locked. In this case, the entire body of

the withdraw method is a critical region.

Now consider the previous problematic case of Figure 20.7 – in

which thread B’s withdrawal code begins executing partway through

thread A’s withdrawal code – except now with the locking implementa-

tion above. As seen in Figure 20.8, thread A now begins by establishing

the balance lock in step 1. When the first step of thread B executes at

the intermediate point within thread A’s execution (after step 3) and

attempts to itself acquire the balance lock, the lock causes thread B to

suspend until such time as the lock becomes available, which is not

until thread A releases the lock at step 6. The delay in thread B changes

the interleaving to a safe one, like that of Figure 20.6.
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thread A ($75 withdrawal) thread B ($50 withdrawal)

1. Mutex.lock balance_lock;
2. if balance >= amt then begin
3. let updated = balance - amt in

Mutex.lock balance_lock;
4. balance <- updated; =====⇒ thread B suspended
5. amt

· · ·
6. Mutex.unlock balance_lock;
7. Mutex.lock balance_lock;
8. if balance >= amt then begin
9. let updated = balance - amt in

10. balance <- updated;
11. amt

· · ·
12. Mutex.unlock balance_lock;

Figure 20.8: The problematic interleav-
ing, corrected by the use of locks.

20.7.1 Abstracting lock usage

This idiom – wrapping a critical region with a lock at the beginning and

an unlock at the end – captures the stereotypical use of locks.

In this idiom, the lock is explicitly unlocked after the need for the

lock is over. The unlocking is crucial; without it, other threads would

be permanently prevented from carrying out their own computations

requiring the lock. We can codify the importance of matching the locks

and unlocks by way of an abstracted function that wraps a computa-

tion with the lock and its corresponding unlock. We call the function

with_lock:

# (* with_lock l f -- Run thunk `f` in context of acquired lock `l`,
# unlocking on return *)

# let with_lock (l : Mutex.t) (f : unit -> 'a) : 'a =

# Mutex.lock l;

# let result = f () in

# Mutex.unlock l;

# result ;;

val with_lock : Mutex.t -> (unit -> 'a) -> 'a = <fun>

If we stick with using with_lock, we never need to worry that we will

perform a lock without the matching unlock, in keeping with the edict

of prevention.

Or will we? What would happen if the computation of f () raised

an exception of some sort? The body of the let will never be per-

formed, and the lock will not be unlocked! (Of course, that possibility

also held for the withdraw method just above.) We’ll want to fix that by

adjusting with_lock to make sure to handle exceptions properly, fur-

ther manifesting the edict of prevention. We leave that for an exercise.

Exercise 199

Define a version of with_lock that handles exceptions by making sure to unlock the
lock.

Using with_lock, the withdraw method becomes

method withdraw (amt : int) : int =
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with_lock balance_lock (fun () ->

if balance >= amt then begin

balance <- balance - amt;

amt

end else 0) ;;

With this modified implementation of accounts, the simulation of

many trials of simultaneous deposits performs much better, with only

valid results, as depicted in Figure 20.9.

valid? first second balance count

✓ 0 50 50 51
✓ 75 0 25 49

Figure 20.9: Rerunning the test of
simultaneous withdrawals, with locking
in place, all trials now respect the
dependencies, though the results can
still vary depending on which of the two
withdrawals in each trial happens to
occur first.

20.8 Deadlock
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