


A

Final project: Implementing MiniML

The culminative final project for CS51 is the implementation of a

small subset of an OCaml-like language. Unlike the problem sets, the

final project is more open-ended, and we expect you to work more

independently, using the skills of design, abstraction, testing, and

debugging that you’ve learned during the course.

A.1 Overview

Unlike OCaml and the ML programming language it was derived from,

the language you will be implementing includes only a subset of con-

structs, has only limited support for types (including no user-defined

types), and does no type inference (enforcing type constraints only at

run-time). On the other hand, the language is “Turing-complete”, as

expressive as any other programming language in the sense specified

by the Church-Turing thesis. Because the language is so small, we refer

to it as MiniML (pronounced “minimal”).

The implementation of this OCaml subset MiniML is in the form of

an interpreter for expressions of the language written in OCaml itself,

a M E TAC I RC U L A R I N T E R P R E T E R. Actually, you will implement a series

of interpreters that vary in the semantics they manifest. The first is

based on the substitution model (Chapter 13); the second a dynami-

cally scoped environment model (Chapter 19); and the third, a version

of the second implementing one or more extensions of your choosing,

with lexical scoping being a simple and highly recommended option.

This chapter builds on the idea of specifying the semantics of a pro-

gramming language and implementing that specification begun in

Chapters 13 and 19. The exercises herein are to test your understand-

ing. We recommend that you do the exercises, but you won’t be turning

them in and we won’t be supplying answers. The S TAG E S provide a

sequence of nine stages to implement the MiniML interpreter. It’s the

result of working on these stages that you will be turning in and on

https://url.cs51.io/r0y
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which the project grade will be based.

This project specification is divided into three sections (correspond-

ing to the section numbers marked below):

Substitution model (Section A.2) Implementation of a MiniML inter-

preter using the substitution semantics for the language.

Dynamic scoped environment model (Section A.3) Implementation of

a MiniML interpreter using the environment model and manifesting

dynamic scoping.

Extensions (Section A.4) Implementation of one or more extensions

to the basic MiniML language of your choosing. Special attention is

paid below to an extension to the environment model manifesting

lexical scoping (Section A.4.2).

A.1.1 Grading and collaboration

As with all the individual problem sets in the course, your project is to

be done individually, under the course’s standard rules of collabora-

tion. (The sole exception is described in Section A.6.) You should not

share code with others, nor should you post public questions about

your code on Piazza. If you have clarificatory questions about the

project assignment, you can post those on Piazza and if appropriate

we will answer them publicly so the full class can benefit from the

clarification.

The final project will be graded based on correctness of the imple-

mentation of the first two stages; design and style of the submitted

code; and scope of the project as a whole (including the extensions) as

demonstrated by a short paper describing your extensions, which is

assessed for both content and presentation.

It may be that you are unable to complete all the code stages of the

final project. You should make sure to keep versions at appropriate

milestones so that you can always roll back to a working partial project

to submit. Using git will be especially important for this version

tracking if used properly.

Some students or groups might prefer to do a different final project

on a topic of their own devising. For students who have been doing

exceptionally well in the course to date, this may be possible. See

Section A.6 for further information.

A.1.2 A digression: How is this project different from a problem

set?

We frequently get questions about the final project of the following

sort: Do I need to implement X? Am I supposed to handle Y? Is it a
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sufficient extension to do Z? Should I provide tests for W? Is U the right

way to handle V? Do I have to discuss P in the writeup?

The final project description doesn’t specify answers to many ques-

tions of this sort. This is not an oversight; it is a pedagogical choice.

In the world of software design and development, there are an infi-

nite number of choices to make, and there are often no right answers,

merely tradeoffs. Part of the point of the course is that there are many

ways to implement software for a particular purpose, and they are not

all equally good. (See Section 1.2.) The final project is the place in the

course where you are most clearly on your own to deploy the ideas

from the course to make these choices and demonstrate your best un-

derstanding of the tradeoffs involved. By implementing X, you may not

have time to test Y. By implementing only Z, you may be able to do so

with a more elegant or generalizable approach. By adding tests for W,

you may not have time to fully discuss P in the writeup. So it goes.

Perhaps the most important of the major tradeoffs is that between

spending time to make improvements to the CS51 final project soft-

ware and writeup and spending time on other non-CS51 efforts. Be-

cause choices made in negotiating this tradeoff don’t fall solely within

the environment of CS51, it is inherently impossible for course staff

to give you advice on what to do. You’ll have to decide whether your

time is better spent, say, systematizing your unit tests for the project, or

working on the final paper in your Gen Ed course; further augmenting

your implementation of int arithmetic to handle bignums, or studying

for the math midterm that the instructor fatuously scheduled during

reading period; generating further demonstrations of the mutable ar-

ray extension you added by implementing a suite of in-place sorting

algorithms, or wrangling members of the student organization you find

yourself running because the president is awol.

With the final project, you are on your own. Not for issues of clari-

fication of this project description, where the course staff stand ready

to help on Piazza and in office hours. But on deontic issues, issues of

what’s better or worse, what you “should” do or mustn’t, what is re-

quired or forbidden. This is a kind of freedom, and like all freedoms,

it is not without consequences, but they are consequences you must

inevitably reconcile on your own.

A.2 Implementing a substitution semantics for MiniML

You’ll start your implementation with a substitution semantics for

MiniML. The abstract syntax of the language is given by the following

type definition:
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type unop =

| Negate ;;

type binop =

| Plus

| Minus

| Times

| Equals

| LessThan ;;

type varid = string ;;

type expr =

| Var of varid (* variables *)

| Num of int (* integers *)

| Bool of bool (* booleans *)

| Unop of unop * expr (* unary operators *)

| Binop of binop * expr * expr (* binary operators *)

| Conditional of expr * expr * expr (* if then else *)

| Fun of varid * expr (* function def'ns *)

| Let of varid * expr * expr (* local naming *)

| Letrec of varid * expr * expr (* rec. local naming *)

| Raise (* exceptions *)

| Unassigned (* (temp) unassigned *)

| App of expr * expr ;; (* function app'ns *)

These type definitions can be found in the partially implemented

Expr module in the files expr.ml and expr.mli. You’ll notice that

the module signature requires additional functionality that hasn’t

been implemented, including functions to find the free variables in

an expression, to generate a fresh variable name, and to substitute

expressions for free variables, as well as to generate various string

representations of expressions.

Exercise 200

Write a function exp_to_concrete_string : expr -> string that converts an
abstract syntax tree of type expr to a concrete syntax string. The particularities of what
concrete syntax you use is not crucial so long as you do something sensible along the
lines we’ve exemplified. (This function will actually be quite helpful in later stages.)

To get things started, we also provide a parser for the MiniML lan-

guage, which takes a string in a concrete syntax and returns a value of

this type expr; you may want to extend the parser in a later part of the

project (Section A.4.3).1 The compiled parser and a read-eval-print 1 The parser that we provide makes use
of the OCaml package menhir, which
is a parser generator for OCaml. You
should have installed it as per the setup
instructions provided at the start of the
course by running the following opam
command:

% opam install -y menhir

The menhir parser generator will be
discussed further in Section A.4.3.

loop for the language are available in the following files:

evaluation.ml The future home of anything needed to evaluate ex-

pressions to values. Currently, it provides a trivial “evaluator”

eval_t that merely returns the expression unchanged.

miniml.ml Runs a read-eval-print loop for MiniML, using the

Evaluation module that you will complete.
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miniml_lex.mll A lexical analyzer for MiniML. (You should never need

to look at this unless you want to extend the parser.)

miniml_parse.mly A parser for MiniML. (Ditto.)

What’s left to implement is the Evaluation module in

evaluation.ml.

Start by familiarizing yourself with the code. You should be able to

compile miniml.ml and get the following behavior.2 2 In building the project, you may find
that you get a warning of the form:

+ menhir -ocamlc ’ocamlfind ocamlc
-thread -strict-sequence
-package graphics
-package CS51Utils -w
A-4-33-40-41-42-43-34-44’
-infer miniml_parse.mly

Warning: 15 states have
shift/reduce conflicts.

Warning: one state has
reduce/reduce conflicts.

Warning: 198 shift/reduce
conflicts were arbitrarily
resolved.

Warning: 18 reduce/reduce
conflicts were arbitrarily
resolved.

You can safely ignore this message
from the parser generator, which is
reporting on some ambiguities in the
MiniML grammar that it has resolved
automatically.

# ocamlbuild -use-ocamlfind miniml.byte

Finished, 13 targets (12 cached) in 00:00:00.

# ./miniml.byte

Entering miniml.byte...

<== 3 ;;

Fatal error: exception Failure("exp_to_abstract_string

not implemented")

Stage 201

Implement the function exp_to_abstract_string : expr ->

string to convert abstract syntax trees to strings representing their

structure and test it thoroughly. If you did Exercise 200, the experience

may be helpful here, and you’ll want to also implement exp_to_-

concrete_string : expr -> string for use in later stages as well.

The particularities of what concrete syntax you use to depict the ab-

stract syntax is not crucial – we won’t be checking it – so long as you do

something sensible along the lines we’ve exemplified.

After this (and each) stage, it would be a good idea to commit the

changes and push to your remote repository as a checkpoint and

backup.

Once you write the function exp_to_abstract_string, you should

have a functioning read-eval-print loop, except that the evaluation

part doesn’t do anything. (The R E P L calls the trivial evaluator eval_t,

which essentially just returns the expression unchanged.) Conse-

quently, it just prints out the abstract syntax tree of the input concrete

syntax:

# ./miniml.byte

Entering miniml.byte...

<== 3 ;;

==> Num(3)

<== 3 4 ;;

==> App(Num(3), Num(4))

<== (((3) ;;

xx> parse error
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<== let f = fun x -> x in f f 3 ;;

==> Let(f, Fun(x, Var(x)), App(App(Var(f), Var(f)), Num(3)))

<== let rec f = fun x -> if x = 0 then 1 else x * f (x - 1) in f 4 ;;

==> Letrec(f, Fun(x, Conditional(Binop(Equals, Var(x), Num(0)), Num(1),

Binop(Times, Var(x), App(Var(f), Binop(Minus, Var(x), Num(1)))))),

App(Var(f), Num(4)))

<== Goodbye.

Exercise 202

Familiarize yourself with how this “almost” R E P L works. How does eval_t get called?
What does eval_t do and why? What’s the point of the Env.Val in the definition? Why
does eval_t take an argument _env : Env.env, which it just ignores? (These last two
questions are answered a few paragraphs below. Feel free to read ahead.)

To actually get evaluation going, you’ll need to implement a substi-

tution semantics, which requires completing the functions in the Expr

module.

Stage 203

Start by writing the function free_vars in expr.ml, which takes an

expression (expr) and returns a representation of the free variables

in the expression, according to the definition in Figure 13.3. Test this

function completely.

Stage 204

Next, write the function subst that implements substitution as defined

in Figure 13.4. In some cases, you’ll need the ability to define new fresh

variables in the process of performing substitutions. You’ll see we call

for a function new_varname to play that role. Looking at the gensym

function that you wrote in lab might be useful for that. Once you’ve

written subst make sure to test it completely.

You’re actually quite close to having your first working interpreter

for MiniML. All that is left is writing a function eval_s (the ‘s’ is for

substitution semantics) that evaluates an expression using the substitu-

tion semantics rules. (Those rules are, conveniently, described in detail

in Chapter 13, and summarized in Figure 13.5.) The eval_s func-

tion walks an abstract syntax tree of type expr, evaluating subparts

recursively where necessary and performing substitutions when ap-

propriate. The recursive traversal bottoms out when it gets to primitive

values like numbers or booleans or in applying primitive functions like

the unary or binary operators to values. It is at this point that the eval-

uator can see if the operators are being applied to values of the right

type, integers for the arithmetic operators, for instance, or integers or

booleans for the comparison operators.

For consistency with the environment semantics that you will im-

plement later as the function eval_d, both eval_t and eval_s take



F I N A L P RO J E C T: I M P L E M E N T I N G M I N I M L 367

a second argument, an environment, even though neither evaluator

needs an environment. Thus your implementation of eval_s can just

ignore the environment.

We’d also like the various evaluation functions eval_t, eval_s,

eval_d, and (if implemented) eval_l to all have the same return type

as well. Looking ahead, the lexically-scoped environment semantics

implemented in eval_l must allow for the result of evaluation to go

beyond the simple expression values we’ve used so far. In particular,

for the lexical environment semantics, we’ll want to add closures as

a new sort of value, as described in Section A.4.2. We’ve provided a

variant type Env.value that allows for both the simple expression

values of the sort that eval_s and eval_d generate and for closures,

which only the environment-based lexical-scoped evaluator needs to

generate. For consistency, then, you should make sure that eval_s,

as well as the later evaluation functions, are of type Expr.expr ->

Env.env -> Env.value. This will ensure that your code is consistent

with our unit tests as well. You’ll note that the eval_t evaluator that

we provide already does this. In order to be type-consistent, it takes an

extra env argument that it doesn’t need or use, and it converts its expr

argument to the value type by adding the Env.Val value constructor

for that type. (This may help with Exercise 202.)

Stage 205

Implement the eval_s : Expr.expr -> Env.env -> Env.value

function in evaluation.ml. (You can hold off on completing the

implementation of the Env module for the time being. That comes into

play in later sections.) We recommend that you implement it in stages,

from the simplest bits of the language to the most complex. You’ll want

to test each stage thoroughly using unit tests as you complete it. Keep

these unit tests around so that you can easily unit test the later versions

of the evaluator that you’ll develop in future sections.

Using the substitution semantics, you should be able to handle

evaluation of all of the MiniML language. If you want to postpone

handling of some parts while implementing the evaluator, you can

always just raise the EvalError exception, which is intended just

for this kind of thing, when a MiniML runtime error occurs. Another

place EvalError will be useful is when a runtime type error occurs, for

instance, for the expressions 3 + true or 3 4 or let x = true in y.

Now that you have implemented a function to evaluate expressions,

you can make the R E P L loop worthy of its name. Notice at the bottom

of evaluation.ml the definition of evaluate, which is the function

that the R E P L loop in miniml.ml calls. Replace the definition with the

one calling eval_s and the R E P L loop will evaluate the read expres-
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sion before printing the result. It’s more pleasant to read the output

expression in concrete rather than abstract syntax, so you can replace

the exp_to_abstract_string call with a call to exp_to_concrete_-

string. You should end up with behavior like this:

# miniml_soln.byte

Entering miniml_soln.byte...

<== 3 ;;

==> 3

<== 3 + 4 ;;

==> 7

<== 3 4 ;;

xx> evaluation error: (3 4) bad redex

<== (((3) ;;

xx> parse error

<== let f = fun x -> x in f f 3 ;;

==> 3

<== let rec f = fun x -> if x = 0 then 1 else x * f (x - 1) in f 4 ;;

xx> evaluation error: not yet implemented: let rec

<== Goodbye.

Some things to note about this example:

• The parser that we provide will raise an exception

Parsing.Parse_error if the input doesn’t parse as well-formed

MiniML. The R E P L handles the exception by printing an appropri-

ate error message.

• The evaluator can raise an exception Evaluation.EvalError at

runtime if a (well-formed) MiniML expression runs into problems

when being evaluated.

• You might also raise Evaluation.EvalError for parts of the eval-

uator that you haven’t (yet) implemented, like the tricky let rec

construction in the example above.

Stage 206

After you’ve changed evaluate to call eval_s, you’ll have a complete

working implementation of MiniML. As usual, you should save a snap-

shot of this using a git commit and push so that if you have trouble

down the line you can always roll back to this version to submit it.

A.3 Implementing an environment semantics for MiniML

The substitution semantics is sufficient for all of MiniML because it is

a pure functional programming language. But binding constructs like
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let and let rec are awkward to implement, and extending the lan-

guage to handle references, mutability, and imperative programming

is impossible. For that, you’ll extend the language semantics to make

use of an environment that stores a mapping from variables to their

values, as described in Chapter 19. We’ve provided a type signature for

environments. It stipulates types for environments and values, and

functions to create an empty environment (which we’ve already imple-

mented for you), to extend an environment with a new B I N D I N G, that

is, a mapping of a variable to its (mutable) value, and to look up the

value associated with a variable.

The implementation of environments for the purpose of this project

follows that described in Section 19.5. We make use of an environment

that allows the values to be mutable:

type env = (varid * value ref) list

This will be helpful in the implementation of recursion.

Stage 207

Implement the various functions involved in the Env module and test

them thoroughly.

How will these environments be used? Atomic literals – like numer-

als and truth values – evaluate to themselves as usual, independently

of the environment. But to evaluate a variable in an environment, we

look up the value that the environment assigns to it and return that

value.

A slightly more complex case involves function application, as in

this example:

(fun x -> x + x) 5

The abstract syntax for this expression is an application of one expres-

sion to another. Recall the environment semantics rule for applications

from Figure 19.1:

E ⊢ P Q ⇓∣∣∣∣∣∣∣
E ⊢ P ⇓ fun x -> B

E ⊢Q ⇓ vQ

E {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

According to this rule, to evaluate an application P Q in an environ-

ment E ,

1. Evaluate P in E to a value vP , which should be a function of the

form fun x -> B . If vP is not a function, raise an evaluation error.
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2. Evaluate Q in the environment E to a value vQ .

3. Evaluate B in the environment obtained by extending E with a

binding of x to vQ .

The formal semantics rule translates to what is essentially pseudocode

for the interpreter.

In the example: (1) fun x -> x + x is already a function, so evalu-

ates to itself. (2) The argument 5 also evaluates to itself. (3) The body x

+ x is thus evaluated in an environment that maps x to 5.

For let expressions, a similar evaluation process is used. Recall the

semantics rule:

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet )

We’ll apply this rule in evaluating an expression like

let x = 3 * 4 in x + 1 ;;

To evaluate this expression in, say, the empty environment, we first

evaluate (recursively) the definition part in the same empty envi-

ronment, presumably getting the value 12 back. We then extend the

environment to associate that value with the variable x to form a new

environment, and then evaluate the body x + 1 in the new environ-

ment. In turn, evaluating x + 1 involves recursively evaluating x and

1 in the new environment. The latter is straightforward. The former

involves just looking up the variable in the environment, retrieving

the previously stored value 12. The sum can then be computed and

returned as the value of the entire let expression.

Don’t be surprised that this dynamically scoped evaluator exhibits

all of the divergences from the substitution-based evaluator that were

discussed in Section 19.2.1. For instance, the evaluator will return

different values for certain expressions; it will allow let-bound vari-

ables to be used recursively; and it will fail on simple curried functions.

That’s fine. Indeed, it’s a sign you’ve implemented the dynamic scope

regime correctly. But it does motivate implementation of a lexical-

scoped version of the evaluator described below.

Stage 208

Implement another evaluation function eval_d : Expr.expr ->

Env.env -> Env.value (the ‘d’ is for dynamically scoped environment

semantics), which works along the lines just discussed. Make sure to

test it on a range of tests exercising all the parts of the language.
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A.4 Extending the language

In this final part of the project, you will extend MiniML in one or more

ways of your choosing.

A.4.1 Extension ideas

Here are a few ideas for extending the language, very roughly in or-

der from least to most ambitious. Especially difficult extensions are

marked with ❢ symbols.

1. Add additional atomic types (floats, strings, unit, etc.) and corre-

sponding literals and operators.

2. Modify the environment semantics to manifest lexical scope in-

stead of dynamic scope (Section A.4.2).

3. Augment the syntax by allowing for one or more bits of syntactic

sugar, such as the curried function definition notation seen in let

f x y z = x + y * z in f 2 3 4.

4. Add lists to the language.

5. Add records to the language.

6. Add references to the language, by adding operators ref, !, and :=.

Since the environment is already mutable, you can even implement

this extension without implementing stores and modifying the type

of the eval function, though you may want to anyway.

7. Add laziness to the language (by adding refs and syntactic sugar for

the lazy keyword). If you’ve also added lists, you’ll be able to build

infinite streams.

8. Add better support for exceptions, for instance, multiple different

exception types, exceptions with arguments, exception handling

with try...with....

9. ❢ Add simple compile-time type checking to the language. For this

extension, the language would be extended so that every intro-

duction of a bound variable (in a let, let rec, or fun construct)

is accompanied by its (monomorphic) type. The abstract syntax

would need to be extended to store those types, and you would

write a function to walk the tree to verify that every expression in

the program is well typed. This is a quite ambitious project.

10. ❢❢ Add type inference to the language, so that (as in OCaml) types

are inferred even when not given explicitly. This is extremely ambi-

tious, not for the faint of heart. Do not attempt to do this.
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Most of the extensions (in fact, all except for (2)) require extensions

to the concrete syntax of the language. We provide information about

extending the concrete syntax in Section A.4.3. Many other extensions

are possible. Don’t feel beholden to this list. Be creative!

In the process of extending the language, you may find the need to

expand the definition of what an expression is, as codified in the file

expr.mli. Other modifications may be necessary as well. That is, of

course, expected, but you should make sure that you do so in a manner

compatible with the existing codebase so that unit tests based on the

provided definitions continue to function. The ability to submit your

code for testing should help with this process. In particular, if you have

to make changes to mli files, you’ll want to do so in a way that extends

the signature, rather than restricting it.

Most importantly: It is better to do a great job (clean, elegant de-

sign; beautiful style; well thought-out implementation; evocative

demonstrations of the extended language; literate writeup) on a

smaller extension, than a mediocre job on an ambitious extension.

That is, the scope aspect of the project will be weighted substantially

less than the design and style aspects. Caveat scriptor.

A.4.2 A lexically scoped environment semantics

One possible extension is to implement a lexically scoped environ-

ment semantics, perhaps with some further extensions. Consider the

following OCaml expression, reproduced from Section 19.2.2:

let x = 1 in

let f = fun y -> x + y in

let x = 2 in

f 3 ;;

Exercise 209

What should this expression evaluate to? Test it in the OCaml interpreter. Try this
expression using your eval_s and eval_d evaluators. Which ones accord with OCaml’s
evaluation?

The eval_d evaluator that you’ve implemented so far is dynamically

scoped. The values of variables are governed by the dynamic ordering

in which they are evaluated. But OCaml is lexically scoped. The values

of variables are governed by the lexical structure of the program. (See

Section 19.2.2 for further discussion.) In the case above, when the

function f is applied to 3, the most recent assignment to x is of the

value 2, but the assignment to the x that lexically outscopes f is of the

value 1. Thus a dynamically scoped language calculates the body of f,

x + y, as 2 + 3 (that is, 5) but a lexically scoped language calculates

the value as 1 + 3 (that is, 4).
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The substitution semantics manifests lexical scope, as it should,

but the dynamic semantics does not. To fix the dynamic semantics, we

need to handle function values differently. When a function value is

computed (say the value of f, fun y -> x + y), we need to keep track

of the lexical environment in which the function occurred so that when

the function is eventually applied to an argument, we can evaluate

the application in that lexical environment – the environment when

the function was defined – rather than the dynamic environment – the

environment when the function was called.

The technique to enable this is to package up the function being

defined with a snapshot of the environment at the time of its defini-

tion into a closure. There is already provision for closures in the env

module. You’ll notice that the value type has two constructors, one

for normal values (like numbers, booleans, and the like) and one for

closures. The Closure constructor just packages together a function

with its lexical environment.

Stage 210

(if you decide to do a lexically scoped evaluator in service of your ex-

tension) Make a copy of your eval_d evaluation function and call it

eval_l (the ‘l’ for lexically scoped environment semantics). Modify the

code so that the evaluation of a function returns a closure containing

the function itself and the current environment. Modify the function

application part so that it evaluates the body of the function in the

lexical environment from the corresponding closure (appropriately

updated). As usual, test it thoroughly. If you’ve carefully accumulated

good unit tests for the previous evaluators, you should be able to fully

test this new one with just a single function call.

Do not just modify eval_d to exhibit lexical scope, as this will cause

our unit tests for eval_d (which assume that it is dynamically scoped)

to fail. That’s why we ask you to define the lexically scoped evaluator

as eval_l. The copy-paste recommendation for building eval_l from

eval_d makes for simplicity in the process, but will undoubtedly leave

you with redundant code. Once you’ve got this all working, you may

want to think about merging the two implementations so that they

share as much code as possible. Various of the abstraction techniques

you’ve learned in the course could be useful here.

Implementing recursion in the lexically-scoped evaluator By far the

trickiest bit of implementing lexical scope is the treatment of recur-

sion, so we address it separately. Consider this expression, which

makes use of an (uninteresting) recursive function:

let rec f = fun x -> if x = 0 then x else f (x - 1) in f 2 ;;
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The let rec expression has three parts: a variable name, a definition

expression, and a body. To evaluate it, we ought to first evaluate the

definition part, but using what environment? If we use the incoming

(empty) environment, then what will we use for a value of f when we

reach it? Ideally, we should use the value of the definition, but we don’t

have it yet.

Following the approach described in Section 19.6.1, in the interim,

we’ll extend the environment with a special value, Unassigned, as the

value of the variable being recursively defined. You may have noticed

this special value in the expr type; uniquely, it is never generated by

the parser. We evaluate the definition in this extended environment,

hopefully generating a value. (The definition part better not ever eval-

uate the variable name though, as it is unassigned; doing so should

raise an EvalError. An example of this run-time error might be let

rec x = x in x.) The value returned for the definition can then re-

place the value for the variable name (thus the need for environments

to map variables to mutable values) and the environment can then be

used in evaluating the body.

In the example above, we augment the empty environment with a

binding for f to Unassigned and evaluate fun x -> if x = 0 then

x else f (x - 1) in that environment. Since this is a function, it

is already a value, so evaluates to itself. (Notice how we never had to

evaluate f in generating this value.)

Now the environment can be updated to have f have this function

as a value – not extended (using the extend function) but *actually

modified* by replacing the value stored in the value ref associated

with f in the environment. Finally, the body f 2 is evaluated in this

environment. The body, an application, evaluates f by looking it up in

this environment yielding fun x -> if x = 0 then x else f (x -

1) and evaluates 2 to itself, then evaluates the body of the function in

the prevailing environment (in which f has its value) augmented with a

binding of x to 2.

In summary, a let rec expression like let rec x = D in B is

evaluated via the following five-step process:

1. Extend the incoming environment with a binding of x to

Unassigned; call this extended environment env_x.

2. Evaluate the definition subexpression D in that environment to get a

value v_D.

3. Mutate env_x so that x now maps to v_D.

4. Evaluate the body subexpression B to get a value v_B.

5. Return v_B.
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A.4.3 The MiniML parser

We provided you with a MiniML parser that converts the concrete

syntax of MiniML to an abstract syntax representation using the expr

type. But to extend the implemented language, you’ll typically need

to extend the parser. Feel free to do so, but make sure that you extend

the language by adding new constructs to the expr type, without

changing the ones that are already given. For instance, if you want to

add support for multiple exceptions, you’ll want to leave the Raise

construct as is (so we can test it with our unit tests) and add your own

new construct, say RaiseExn for the extension.

The parser we provided was implemented using ocamllex and

menhir, programs designed to build lexical analyzers and parser

for programming languages. Documentation for them can be

found at http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.

html, http://cambium.inria.fr/~fpottier/menhir/manual.html,

and tutorial material is available at https://ohama.github.io/

ocaml/ocamllex-tutorial/ and https://dev.realworldocaml.org/

parsing-with-ocamllex-and-menhir.html.

In summary, ocamllex takes a specification of the tokens of a

programming language in a file, in our case miniml_lex.mll. The

ocamlbuild system knows how to use ocamllex to turn such files into

OCaml code for a lexical analyzer in the file miniml_lex.ml. Simi-

larly, a menhir specification of a parser in a file miniml_parse.mly

will be transformed by menhir (automatically with ocamlbuild) to

a parser in miniml_parse.ml. By modifying miniml_lex.mll and

miniml_parse.mly, you can modify the concrete syntax of the MiniML

language, which may be useful for many of the extensions you might

be interested in.

A.5 Submitting the project

Stage 211

Write up your extensions in a short but formal paper describing and

demonstrating any extensions and how you implemented them.

Use Markdown or LATEX format, and name the file writeup.md or

writeup.tex. You’ll submit both the source file and a rendered PDF

file.

In addition to submitting the code implementing MiniML to the

course grading server through the normal process, you should sub-

mit the writeup.md or writeup.tex file and the rendered PDF file

writeup.pdf as well.

Make sure to use git add to track any new files you create for

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://cambium.inria.fr/~fpottier/menhir/manual.html
https://ohama.github.io/ocaml/ocamllex-tutorial/
https://ohama.github.io/ocaml/ocamllex-tutorial/
https://dev.realworldocaml.org/parsing-with-ocamllex-and-menhir.html
https://dev.realworldocaml.org/parsing-with-ocamllex-and-menhir.html
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the final project (such as your writeup or any code files for testing)

before submitting. You can run git status to see if there are any

untracked files in your repository. Finally, remember that you can look

on Gradescope to check that your submissions contains the files you

expect. Unfortunately, we can’t accept any files that are not submitted

on time.

A.6 Alternative final projects

Students who have been doing exceptionally well in the course to date

can petition to do alternative final projects of their own devising, under

the following stipulations:

1. Alternative final projects can be undertaken individually or in

groups of up to four.

2. The implementation language for the project must be OCaml.

3. You will want to talk to course staff about your ideas early to get

initial feedback.

4. You will need to submit a proposal for the project by April 16, 2021.

The proposal should describe what the project goals are, how you

will go about implementing the project, and how the work will be

distributed among the members of the group (if applicable).

5. You will receive notification around April 19, 2021 as to whether

your request has been approved. Approval will be based on perfor-

mance in the course to date and the appropriateness of the project.

6. You will submit a progress report by April 26, 2021, including a

statement of progress, any code developed to date, and any changes

to the expected scope of the project.

7. You will submit the project results, including all code, a demon-

stration of the project system in action, and a paper describing the

project and any results, by May 5, 2021.

8. You will be scheduled to perform a presentation and demonstration

of your project for course staff during reading period.

9. The group as a whole may drop out of the process at any time.

Individual members of the group would then submit instead the

standard final project described here.
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