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Problem sets

A.1 The prisoners’ dilemma

I’m an apple farmer who hates apples but loves broccoli. You’re a

broccoli farmer who hates broccoli but loves apples. The obvious

solution to this sad state of affairs is for us to trade – I ship you a box of

my apples and you ship me a box of your broccoli. Win-win.

But I might try to get clever by shipping an empty box. Instead of

cooperating, I “defect”. I still get my broccoli from you (assuming you

don’t defect) and get to keep my apples. You, thinking through this

scenario, realize that you’re better off defecting as well; at least you’ll

get to keep your broccoli. But then, nobody gets what we want; we’re

both worse off. The best thing to do in this D O N AT I O N G A M E seems to

be to defect.

It’s a bit of a mystery, then, why people cooperate at all. The answer

may lie in the fact that we engage in many rounds of the game. If you

get a reputation for cooperating, others may be willing to cooperate as

well, leading to overall better outcomes for all involved.

The donation game is an instance of a classic game-theory thought

experiment called the P R I S O N E R ’ S D I L E M M A. A prisoner’s dilemma is

a type of game involving two players in which each player is individ-

ually incentivized to choose a particular action, even though it may

not result in the best global outcome for both players. The outcomes

are commonly specified through a payoff matrix, such as the one in

Table A.1.

Player 2
Cooperate Defect

Player 1
Cooperate (3, 3) (−2, 5)

Defect (5, −2) (0, 0)

Table A.1: Example payoff matrix for
a prisoner’s dilemma. This particular
payoff matrix corresponds to a donation
game in which providing the donation
(of apples or broccoli, say) costs 2 unit
and receiving the donation provides a
benefit of 5 units.

To read the matrix, Player 1’s actions are outlined at the left and

Player 2’s actions at the top. The entry in each box corresponds to a

payoff to each player, depending on their respective actions. For in-

stance, the top-right box indicates the payoff when Player 1 cooperates

and Player 2 defects. Player 1 receives a payoff of −2 and Player 2 re-

ceives a payoff of 5 in that case.

To see why a dilemma arises, consider the possible actions taken
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by Player 1. If Player 2 cooperates, then Player 1 should defect rather

than cooperating, since the payoff from defecting is higher (5 > 3).

If Player 2 defects, then Player 1 should again defect since the payoff

from defecting is higher (0 > −2). The same analysis applies to Player

2. Therefore, both players are incentivized to defect. However, the

payoff from both players defecting (each getting 0) is objectively worse

for both players than the payoff from both players cooperating (each

getting 3).

An I T E R AT E D P R I S O N E R ’ S D I L E M M A is a multi-round prisoner’s

dilemma, where the number of rounds is not known.1 A S T R AT E G Y 1 If the number of rounds is known
by the players ahead of time, players
are again incentivized to defect for
all rounds. We will not delve into
the reasoning here, as that is outside
the scope of this course, but it is an
interesting result!

specifies what action to take based on a history of past rounds of a

game. We can (and will) represent a history as a list of pairs of actions

(cooperate or defect) taken in the past, and a strategy as a function

from histories to actions.

For example, a simple strategy is to ignore the histories and always

defect. We call that the “nasty” strategy. More optimistic is the “patsy”

strategy, which always cooperates.

Whereas the above analysis showed both players are incentivized

to defect in a single-round prisoner’s dilemma (leading to the nasty

strategy), that is no longer necessarily the case if there are multiple

rounds. Instead, more complicated strategies can emerge as players

can take into account the history of their opponent’s plays and their

own. A particularly effective strategy – effective because it leads to

cooperation, with its larger payoffs – is T I T- F O R- TAT. In the tit-for-tat

strategy, the player starts off by cooperating in the first round, and then

in later rounds chooses the action that the other player just played,

rewarding the other player’s cooperation by cooperating and punishing

the other player’s defection by defecting.

In this problem set, you’ll complete a simulation of the iterated

prisoner’s dilemma that allows for testing different payoff matrices and

strategies.

A.2 Higher-order functional programming

This assignment focuses on programming in the higher-order func-

tional programming paradigm, with special attention to the idiomatic

use of higher-order functions like map, fold, and filter. In doing so,

you will exercise important features of functional languages, such as

recursion, pattern matching, and list processing.
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A.3 Bignums and RSA encryption

Cryptography is the science of methods for storing or transmitting

messages securely and privately.

Cryptographic systems typically use keys for encryption and decryp-

tion. An encryption key is used to convert the original message (the

plaintext) to coded form (the ciphertext). A corresponding decryption

key is used to convert the ciphertext back to the original plaintext.

In traditional cryptographic systems, the same key is used for both

encryption and decryption, which must be kept secret. Two parties

can exchange coded messages only if they share the secret key. Since

anyone who learned that key would be able to decode the messages,

keys must be carefully guarded and transmitted only under tight se-

curity, for example, couriers handcuffed to locked, tamper-resistant

briefcases!

Figure A.1: Whitfield Diffie (1944–) and
Martin Hellman (1948–), co-inventors of
public-key cryptography, for which they
received the Turing Award in 2015.

In 1976, Diffie and Hellman initiated a new era in cryptography with

their discovery of a new approach: public-key cryptography. In this

approach, the encryption and decryption keys are different from each

other. Knowing the encryption key cannot help you find the decryp-

tion key. Thus, you can publish your encryption key publicly – on the

web, say – and anyone who wants to send you a secret message can use

it to encode a message to send to you. You do not have to worry about

key security at all, for even if everyone in the world knew your encryp-

tion key, no one could decrypt messages sent to you without knowing

your decryption key, which you keep private to yourself. You used

public-key encryption when you set up your CS51 git repositories: the

command ssh-keygen generated a public encryption key and private

decryption key for you. You uploaded the public key and (hopefully)

kept the private key to yourself.

The best known public-key cryptosystem is due to computer sci-

entists Rivest, Shamir, and Adelman, and is known by their initials,

RSA. The security of your web browsing probably depends on RSA en-

cryption. The system relies on the fact that there are fast algorithms

for exponentiation and for testing prime numbers, but no known fast

algorithms for factoring extremely large numbers. In this problem set

you will complete an implementation of a version of the RSA system.

(If you’re interested in some of the mathematics behind RSA, see Sec-

tion ??. However, an understanding of that material is not needed to

complete the problem set.)

Crucially, RSA requires manipulation of very large integers, much

larger than can be stored, for instance, as an OCaml int value. OCaml’s

int type has a size of 63 bits, and therefore can represent integers be-

tween −262 and 262 −1. These limits are available as OCaml constants
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min_int and max_int:

# min_int, max_int ;;

- : int * int = (-4611686018427387904, 4611686018427387903)

The int type can then represent integers with up to 18 or so digits, that

is, integers in the quintillions, but RSA needs integers with hundreds of

digits.

Computer representations for arbitrary size integers are tradition-

ally referred to as B I G N U M S. In this assignment, you will be imple-

menting bignums, along with several operations on bignums, includ-

ing addition and multiplication. We provide code that will use your

bignum implementation to implement the RSA cryptosystem. Once

you complete your bignum implementation, you’ll be able to encrypt

and decrypt messages using this public-key cryptosystem, and dis-

cover a hidden message that we’ve provided encoded in this way.

A.4 Symbolic differentiation

Solving an equation like x2 = x + 1 N U M E R I C A L LY yields a particu-

lar number as an approximation to the solution for x, for instance,

1.618. Solving the equation S Y M B O L I C A L LY yields an expression repre-

senting the solution exactly, for instance, 1+p5
2 . (The golden ratio! See

Exercise 8.) The earliest computing devices were used to calculate nu-

merically. Charles Babbage envisioned his analytical engine as a device

for calculating numeric tables, and Ada Lovelace’s famous program for

Babbage’s analytical engine numerically calculated Bernoulli numbers.

Figure A.2: A rare daguerrotype of Ada
Lovelace (Augusta Ada King, Countess
of Lovelace, 1815–1852) by Antoine
Claudet, taken c. 1843, around the
time she was engaged in writing her
notes on the Babbage analytical engine.
(Menabrea and Lovelace, 1843)

But Lovelace (Figure A.2) was perhaps the first computer scientist

to have the revolutionary idea that computers could be used for much

more than numerical calculations.

The operating mechanism. . . might act upon other things besides num-

ber, were objects found whose mutual fundamental relations could be

expressed by those of the abstract science of operations, and which

should be also susceptible of adaptations to the action of the operating

notation and mechanism of the engine. Supposing, for instance, that

the fundamental relations of pitched sounds in the science of harmony

and of musical composition were susceptible of such expression and

adaptations, the engine might compose elaborate and scientific pieces

of music of any degree of complexity or extent. (Menabrea and Lovelace,

1843, page 694)

One of the applications of the power of computers to transcend nu-

merical calculation, which Lovelace immediately saw, was to engage in

mathematics symbolically rather than numerically.

It seems to us obvious, however, that where operations are so indepen-

dent in their mode of acting, it must be easy by means of a few simple

https://url.cs51.io/5fq
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provisions and additions in arranging the mechanism, to bring out a

double set of results, viz. – 1st, the numerical magnitudes which are the

results of operations performed on numerical data. (These results are

the primary object of the engine). 2ndly, the symbolical results to be

attached to those numerical results, which symbolical results are not

less the necessary and logical consequences of operations performed

upon symbolical data, than are numerical results when the data are

numerical. (Menabrea and Lovelace, 1843, page 694–5)

Figure A.3: John McCarthy (1927–2011),
one of the founders of (and coiner
of the term) artificial intelligence.
His LISP programming language was
widely influential in the history of
programming languages. He was
awarded the Turing Award in 1971.

The first carrying out of symbolic mathematics by computer arose

over a hundred years later, in the work of Turing-Award-winning

computer scientist John McCarthy (Figure A.3). In the summer of 1958,

McCarthy made a major contribution to the field of programming

languages. With the objective of writing a program that performed

symbolic differentiation (that is, the process of finding the derivative

of a function) of algebraic expressions in an effective way, he noticed

that some features that would have helped him to accomplish this task

were absent in the programming languages of that time. This led him

to the invention of the programming language LISP (McCarthy, 1960)

and other ideas, such as the concept of list processing (from which

LISP derives its name), recursion, and garbage collection, which are

essential to modern programming languages.

McCarthy saw that the power of higher-order functional program-

ming, together with the ability to manipulate structured data, make

it possible to carry out such symbolic mathematics in an especially

elegant manner. However, it was Jean Sammet (Figure A.4) who first

envisioned a full system devoted to symbolic mathematics more gen-

erally. Her FORMAC system (Sammet, 1993) ushered in a wave of

symbolic mathematics systems that have made good on Lovelace’s

original observation. Nowadays, symbolic differentiation of algebraic

expressions is a task that can be conveniently accomplished on mod-

ern mathematical packages, such as Mathematica and Maple.

Figure A.4: Jean Sammet (1928–2017),
head of the FORMAC project to build
“the first widely available programming
language for symbolic mathematical
computation to have significant prac-
tical usage” (Sammet, 1993). She was
awarded the Augusta Ada Lovelace
Award in 1999 and the Computer Pi-
oneer Award in 2009 for her work on
FORMAC and (with Admiral Grace
Hopper) the programming language
COBOL.

This assignment focuses on using abstract data types to design

your own mini-language – a mathematical expression language over

which you’ll perform symbolic mathematics by computing derivatives

symbolically.

A.5 Ordered collections

In this assignment you will use modules to define several useful ab-

stract data types (ADT). The particular ADTs that you’ll be implement-

ing are ordered collections (as implemented through binary search

trees) and priority queues (as implemented through binary search

trees and binary heaps).

An ordered collection is a collection of elements that have an in-

https://web.archive.org/web/20080309214223/http://www.awc-hq.org/lovelace/1989.htm
https://web.archive.org/web/20080309214223/http://www.awc-hq.org/lovelace/1989.htm
https://www.computer.org/web/awards/pioneer-jean-sammet
https://www.computer.org/web/awards/pioneer-jean-sammet
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trinsic ordering to them. Natural operations on ordered collections

include insertion of an element, deletion of an element, searching for

an element, and access to the minimum and maximum elements. Pri-

ority queues constitute a special case of ordered collection in which

the only operations are insertion of an element and extraction of the

minimum element.

A.6 The search for intelligent solutions

In this assignment, you will apply your knowledge of OCaml modules

and functors to complete the implementation of a program for solving

search problems, a core problem in the field of artificial intelligence.

In the course of working on this assignment, you’ll implement a more

efficient queue module using two stacks; create a higher-order functor

that abstracts away details of search algorithms and puzzle imple-

mentations; and compare, visualize, and analyze the performance of

various search algorithms on different puzzles.

A.6.1 Search problems

The field of A RT I F I C I A L I N T E L L I G E N C E pursues the computational

emulation of behaviors that in humans are indicative of intelligence.

A hallmark of intelligent behavior is the ability to figure out how to

achieve some desired goal. Let’s consider an idealized version of

this behavior – puzzle solving. A puzzle can be in any of a variety of

S TAT E S. The puzzle starts in a specially designated I N I T I A L S TAT E,

and we desire to reach a G OA L S TAT E by finding a sequence of M OV E S

that, when executed starting in the initial state, reach the goal state.

Figure A.5 provides some examples of this sort of puzzle – peg solitaire,

the 8-puzzle, and a maze puzzle.

1

23

4
5
6

7
8

(a) (b) (c)

Figure A.5: Some puzzles based on
search for a goal state. (a) the peg
solitaire puzzle; (b) the sliding-tile 8
puzzle; (c) a maze puzzle.

A good example is the 8 puzzle, depicted in Figure A.6. (You may

know it better as the 15 puzzle, its larger 4 by 4 version.) A 3 by 3 grid of

numbered tiles, with one tile missing, allows sliding of a tile adjacent to

the empty space. The goal state is to be reached by repeated moves of

this sort. But which moves should you make?

https://url.cs51.io/0jl
https://url.cs51.io/6ya
https://url.cs51.io/13be4e
https://url.cs51.io/6ya
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Figure A.6: The 8 puzzle: (a) an initial
state, (b) the goal state, (c-f) the states
resulting from moving up, down,
left, and right from the initial state,
respectively.

Solving goal-directed problems of this sort requires a S E A RC H

among all the possible move sequences for one that achieves the

goal. You can think of this search process as a walk of a S E A RC H T R E E,

where the nodes in the tree are the possible states of the puzzle and the

directed edges correspond to moves that change the state from one to

another. Figure A.7 depicts a small piece of the tree corresponding to

the 8 puzzle.
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Figure A.7: A snippet from the search
tree for the 8 puzzle.

To solve a puzzle of this sort, you maintain a collection of states to

be searched, which we will call the pending collection. The pending

collection is initialized with just the initial state. You can then take a

state from the pending collection and test it to see if it is a goal state. If

so, the puzzle has been solved. But if not, this state’s N E I G H B O R states

– states that are reachable in one move from the current state – are

added to the pending collection (or at least those that have not been

visited before) and the search continues.

To avoid adding states that have already been visited before, you’ll
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need to keep track of a set of states that have already been visited,

which we’ll call the visited set, so you don’t revisit one that has already

been visited. For instance, in the 8 puzzle, after a down move, you don’t

want to then perform an up move, which would just take you back to

where you started. (The standard OCaml Set library will be useful here

to keep track of the set of visited states.)

Of course, much of the effectiveness of this process depends on the

order in which states are taken from the collection of pending states as

the search proceeds. If the states taken from the collection are those

most recently added to the collection (last-in, first-out, that is, as a

stack), the tree is being explored in a D E P T H - F I R S T manner. If the

states taken from the collection are those least recently added (first-in,

first-out, as a queue), the exploration is B R E A D T H - F I R S T. Other orders

are possible, for instance, the states might be taken from the collection

in order of how closely they match the goal state (using some metric

of closeness). This regime corresponds to B E S T- F I R S T or G R E E DY

S E A RC H.

A.7 Refs, streams, and music

In this problem set you will work with two new ideas: First, we provide

a bit of practice with imperative programming, emphasizing mutable

data structures and the interaction between assignment and lexical

scoping. Since this style of programming is probably most familiar to

you, this portion of the problem set is brief. Second, we introduce lazy

programming and its use in modeling infinite data structures. This

part of the problem set is more extensive, and culminates in a project

to generate infinite streams of music.

A.8 Force-directed graph drawing

You’ll be familiar with graph drawings, those renderings of nodes and

edges between them that depict all kinds of networks – both physical

and virtual. These drawings are ubiquitous, in large part because of

their fabulous utility. Examples date from as early as the Middle Ages

(see Figure A.8(a)), when they were used to depict family trees and

categorizations of vices and virtues. These days, they are used to depict

everything from molecular interactions to social networks.

To gain the best benefit from visualizing graphs through a graph

drawing, the nodes and edges must be laid out well. In this problem

set, you’ll complete the implementation of a system for force-directed

graph layout. A modern example of what can be done with force-

directed graph drawing is provided in Figure A.8(b). If you’d like to get

https://url.cs51.io/25x
https://url.cs51.io/8nb
https://url.cs51.io/60r
https://url.cs51.io/6c0
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(a) (b)

Figure A.8: Two sample graph draw-
ings several hundred years apart.
(a) A graph drawing from the 14th
century with nodes depicting logi-
cal propositions in an argument and
edges depicting relations among
them. From Kruja et al. (2001). (b)
Snapshot of a dynamic interactive force-
directed graph drawing built using D3
(https://mbostock.github.io/d3/talk/
20111116/force-collapsible.html), from
the D3 gallery.

a sense of what can be done with force-directed graph drawing, you

can play around with the graph visualization from which this snapshot

came. In carrying out this project, you’ll be making use of the object-

oriented programming paradigm supported by OCaml.

A note of assuagement: Although this problem set document uses

a lot of physics terminology, you really don’t need to know any physics

whatsoever to do the problem set. All of the physics-related code is in

portions of the code-base (graphdraw.ml and controls.ml) that we

have provided for you and that you won’t need to modify.

A.8.1 Background

A G R A P H is a mathematical object defined as a set of N O D E S and

E D G E S connecting the nodes. As an example, consider a set of four

nodes (numbered 0 to 3) connected with edges cyclically, 0 to 1, 1 to

2, 2 to 3, and 3 to 0, plus an extra edge from 0 to 2. A G R A P H D R AW-

I N G is a depiction of a graph in two (or sometimes three) dimensions

indicating the nodes in the graph by graphical symbols of various

sorts (circles, squares, and the like) and edges by lines drawn between

the nodes. Other aspects of the graph are also typically manifested in

graphical properties. For instance, groups of nodes might be aligned

horizontally or vertically, or grouped with a zone box surrounding

them, or laid out symmetrically or in a hub-and-spoke motif.

For the example four-node graph just presented, if we depict the

nodes as small circles, placed more or less randomly on a drawing

“canvas”, we might get a graph drawing like Figure A.9(a). It’s not par-

ticularly visually pleasing.

Much more attractive layouts can be generated by thinking of the

positions at which the nodes are to be placed as physical M A S S E S sub-

https://mbostock.github.io/d3/talk/20111116/force-collapsible.html
https://mbostock.github.io/d3/talk/20111116/force-collapsible.html
https://mbostock.github.io/d3/talk/20111116/force-collapsible.html
https://mbostock.github.io/d3/talk/20111116/force-collapsible.html


386 P RO G R A M M I N G W E L L

(a) (b) (c) (d)

Figure A.9: Four different drawings of
the same graph. (a) Nodes randomly
placed. (b) With fixed length spring
constraints between nodes connected
by edges. (c) With fixed length spring
constraints between nodes connected
by outside edges, plus a horizontal
alignment constraint on nodes 0 and 1
and a vertical alignment constraint on
nodes 0 and 3. (d) An overconstrained
layout with the constraints from (c) but
with all of the edge constraints from (b),
including the fixed length constraint
between 0 and 2.

ject to various kinds of F O RC E S. The forces encourage the satisfying

of graphical constraints, such as nodes being a particular distance

from each other, or far away from each other, or horizontally or verti-

cally aligned. For instance, if we imagine a spring with a certain R E S T

L E N G T H connecting two masses, those masses will have forces push-

ing them towards each other if they are farther apart than the rest

length or away from each other if they are closer together than the rest

length. (See Figure A.10 for a visual depiction.) According to Hooke’s

law, the force applied is directly proportional to the difference between

the current distance and the rest length.

We can use this kind of mass-spring physical system to help with

graph layout. We imagine that there is a mass for each node initially

placed at the locations shown in Figure A.9(a), and for each edge in the

graph there is a Hooke’s law spring of a given rest length, 80 pixels, say,

connecting the masses representing the nodes at the end of the edge.

We refer to a force-generating element like the Hooke’s law spring as

a C O N T RO L. If we physically simulate how the forces on the masses

generated by the controls would work, eventually the masses will come

to rest at locations different from where they started, and indeed, if

we place the graph nodes at those locations, we get exactly the layout

in Figure A.9(b). Notice how all of the edge-connected nodes are the

same length apart from each other – as it turns out, 80 pixels apart.

This methodology for graph layout is called F O RC E - D I R E C T E D

G R A P H L AYO U T based on its use of simulated forces to move the nodes

and edges around. The method can be generalized to much more ex-

pressive graphical constraints than just establishing fixed distances

between nodes with Hooke’s-law springs. For instance, we can have

force-generating controls that push masses to be in horizontal align-

ment, or vertical alignment. Using these controls, we can generate

layouts like the one in Figure A.9(c). Care must be taken however. If we

add too many controls in ways that overconstrain the physical system,

the result of finding the resting positions may not fully satisfy any of

the constraints, leading to unattractive layouts as in Figure A.9(d).
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(a) (b) (c)

Figure A.10: A Hooke’s law spring
connecting two masses (labeled 0
and 1) and its generated forces. The
pale red bar indicates the spring’s rest
length. (a) The spring at rest. No forces
on the masses. (b) When the spring is
stretched (the masses are farther apart
than the spring’s rest length), forces
(red arrows) are applied to the two
masses pushing them towards each
other. (c) Conversely, when the spring
is compressed (the masses are closer
together than the spring’s rest length),
forces are applied to the two masses
pushing them away from each other.

A.9 Simulating an infectious process

Imagine an infection among a population of people where the agent

is transmitted from infected people to susceptible people nearby.

The time course of such a process depends on many factors: How

infectious is the agent? How much mixing is there of the population?

How nearby must people get to be subject to infection? How long does

recovery take? Is immunity conferred?

To get a sense of how such factors affect the overall course of the

infection, we can simulate the process, with configurable parameters

to control these and other aspects of the simulation.

A.9.1 The simulation

In this simulation, a population of people can be in one of several

states:

• Susceptible – The person has not been infected or has been infected

but is no longer immune.

• Infected – The person is infected and is therefore infectious and can

pass the infection on to susceptibles nearby.

• Recovered – The person was infected but recovered and has immu-

nity from further infection for a period of time.

• Deceased – The person was infected but did not recover.

(In the field of epidemiology, this kind of simulation is known as an

SIRD model for obvious reasons.)

The simulation proceeds through a series of time steps. At each

time step members of the population move on a two-dimensional grid

to nearby squares. (How far they move – how many squares in each

direction – is a configurable parameter.) Each person’s status updates

after they’ve moved. A susceptible person in the vicinity of infecteds

may become infected. (This depends on how large a vicinity is con-

sidered to be “nearby” and how infectious each of the people in that

vicinity are.) An infected person after a certain number of time steps

may recover or die. (The relative proportion depends on a mortality

parameter.) A recovered person after a certain number of time steps

may lose immunity, becoming susceptible again.

https://url.cs51.io/mkz
https://url.cs51.io/mkz
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Mathematical background and notations

In this book, we make free use of a wide variety of mathematical con-

cepts and associated notations, some of which may be unfamiliar to

readers. Facility with learning and using notation is an important skill

to develop. In this chapter, we describe some of the notations we use,

both for reference and to help build this facility.

B.1 Functions

Mathematics is full of functions, and of notations for defining them. In

this section we present a menagerie of function-related notations.

B.1.1 Defining functions with equations

A standard technique is to define functions using a set of equations.

Each of the equations provides a part of the definition based on a

particular subset of the possible argument values of the function. For

instance, consider the factorial function, which we’ll denote with the

symbol “fact”. It is defined by these two equations:

fact(0) = 1

fact(n) = n · fact(n −1) for n > 0

Sometimes the cases are depicted overtly using a large brace:

fact(n) =
{

1 for n = 0

n · fact(n −1) for n > 0

A ‘for’ or ‘where’ clause after an equation provides further con-

straint on the applicability of that equation. In the case at hand, the

second equation applies only when the argument n is greater than 0.

In equational definitions, each equation must apply disjointly. If there

were two equations that applied to a particular input, it would be un-

clear which of the two to use. These further constraints can guarantee

disjointness and remove ambiguity.
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B.1.2 Notating function application

In the factorial example, we used the familiar mathematical notation

for applying a function to an argument – naming the function followed

by its argument in parentheses: fact(n).

Functions
Objective To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class's profit, p will depend on 11, the number of tickets sold.

profit = $5 . (number of tickets) - $500 or p = 511 - 500
The equation p = 511 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.

domain D {O, I, 2, ... }.

The range is the set of profits that are possible, including "negative profits,"
or losses, if too few tickets are sold.

range R = {-500, -495, -490, ...}.
If we call this profit function p. we can use arrow notation and write

the rule P: 11 -7 511 - 500,

which is read "the function P that assigns 511 - 500 to II" or "the function P
that pairs 11 with 511 - 500." We could also use functional notation:

P(I1) = 511 500
which is read "P of 11 equals 511 - 500" or "the value of P at 11 is 511 - 500."

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function.

Example 1 List the range of
g: x -7 4 + 3x - x2

if the domain D = {-I, 0, I, 2}.

Solution In 4 + 3x - x2 replace x with each
member of D to find the members
of the range R.
:. R = {O, 4, 6} Answer

x 4 + 3x -./

-I 4 + 3(-1) (-1)2 = 0

0 4 + 3(0) - 02 = 4

I 4 + 3(1) - 12 = 6

2 4 + 3(2) - 22 = 6

Note that the function g in Example I assigns the number 6 to both I
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example I, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

g(2) = 6,
which is read "g of 2 equals 6" or "the value of g at 2 is 6." Note that g(2)
is 110t the product of g and 2. It names the number that g assigns to 2.
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Figure B.1: A snippet from a typical
middle school algebra textbook (Brown
et al., 2000, page 379), introducing
standard mathematical function
application notation.

Some time in your primary education, perhaps in middle school,

you were taught this standard mathematical notation for applying a

function to one or more arguments. In Figure B.1, a snapshot from

a middle school algebra textbook shows where this notation is first

taught: “We could also use functional notation: P (n) = 5n − 500,

which is read ‘P of n equals 5n −500.’” In this notation, functions can

take one or more arguments, notated by placing the arguments in

parentheses and separated by commas following the function name.

This notation is so familiar that it’s hard to imagine that someone had

to invent it. But someone did. In fact, it was the 18th century Swiss

mathematician Leonhard Euler (Figure B.2) who in 1734 first used

this notation (Figure B.3). Since then, it has become universal. At this

point, the notation is so familiar that it is impossible to see f (1,2,3)

without immediately interpreting it as the application of the function f

to arguments 1, 2, and 3.

Figure B.2: Leonhard Euler (1707–1783)
invented the familiar parenthesized
notation for function application.

It is thus perhaps surprising that OCaml doesn’t use this notation

for function application. Instead, it follows the notational convention

proposed by the Princeton mathematician and logician Alonzo Church

in his so-called lambda calculus (Section B.1.4), a logic of functions. In

the lambda calculus, functions and their application are so central (in-

deed, there’s basically nothing else in the logic) that the addition of the

parentheses in the function application notation is too onerous. In-

stead, Church proposed merely prefixing the function to its argument.

Instead of f (1), Church’s notation would have f 1. Instead of f (g (1)),

f (g 1).

B.1.3 Alternative mathematical notations for functions and

their application

Despite the ubiquity of Euler’s notation, mathematicians use a variety

of different notations for functions and their application.

http://bit.ly/1MBOT85
http://bit.ly/1MBOT85
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Figure B.3: The first known instance of
the now standard function application
notation, in a 1734 paper by Leonhard
Euler. Note the f

( x
a + c

)
. The function is

even named f !

Certainly, mathematics uses different conventions for denoting

operations than any given programming language. In the second fact

equation, for instance, a center dot · is used for multiplication instead

of the * more common in programming languages. In other cases,

simple juxtaposition is used for multiplication, as in 3x2 where the jux-

taposition of the 3 and the x2 indicates that they are to be multiplied.

The details of these notations are often left unspecified in mathemat-

ical writing, reflecting the reality that mathematics is written to be

read by people, people with sufficient common knowledge with the

author to know the background assumptions or to figure them out

from context. We don’t have such a privilege with computers, so nota-

tions are typically more carefully explicated in programming language

documentation.

The kind of thing that the argument must be (what computer sci-

entists would call its “type”) is often left implicit in mathematical

notation. In the factorial example, we didn’t state explicitly that the

argument of factorial must be a nonnegative integer, yet the definition

is only appropriate for that case. Negative integers are not provided

a well-founded definition for instance, nor are noninteger numbers.

Again, the omission of these requirements is based on an assumption

of shared context with the reader. So as not to have to make that as-

sumption, computer programs that implement function definitions

make use of type constraints (whether explicit or inferred) or invariant

assertions or (as a last resort) documentation to capture these assump-

tions.

The entire set of equations defines a single function, so that in

converting definitions of this sort to code, they will typically end up in

a single function definition. The individual equations correspond to

different cases, which will likely be manifest by conditionals or case

statements (such as OCaml match expressions).

Of course, the more standard notation for the factorial function is a
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( f (x)+ g (x))′ = f ′(x)+ g ′(x)

( f (x)− g (x))′ = f ′(x)− g ′(x)

( f (x) · g (x))′ = f ′(x) · g (x)+ f (x) · g ′(x)(
f (x)

g (x)

)′
= ( f ′(x) · g (x)− f (x) · g ′(x))

g (x)2

(sin f (x))′ = f ′(x) ·cos f (x)

(cos f (x))′ = f ′(x) ·~sin f (x)

(ln f (x))′ = f ′(x)

f (x)

( f (x)h)′ = h · f ′(x) · f (x)h−1

where h contains no variables

( f (x)g (x))′ = f (x)g (x) ·
(

g ′(x) · ln f (x)+ f ′(x) · g (x)

f (x)

)
(n)′ = 0 where n is any constant

(x)′ = 1

Figure B.4: Rules for taking deriva-
tives for a variety of expression types.
(Reproduced from Figure ??.)

postfix exclamation mark (!):

0! = 1

n! = n · (n −1)! for n > 0

The point is that the Euler notation is not the only one that can be or is

used for function application. Here are some more examples:

• Frequently, superscripts are used to denote function application,

for instance, as in Figure ?? (reproduced here as Figure B.4), where a

superscript prime symbol specifies the derivative function.

• Newton’s notation for derivatives, for example, d
d x x3, provides yet

another example of a nonstandard notation for a function appli-

cation. Here, the function being applied is again the derivative

function, this time as depicted by the compound notation d
d x , its

argument the expression x3.1 1 For the notation cognoscenti, what’s
really going on in this notation is that
the d

d x is both a binding construct,
binding the x as the argument to an
anonymous function that is (in Church’s
lambda calculus notation) λx.x3 and a
function application of the derivative
function.

• In Chapter 13, a specific notation is used to express the substitution

function, a function over a variable (x) and two expressions (P

and Q) that returns the expression P with all free occurrences of x

replaced by Q. That function is not notated by the Euler notation
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(say, subst(x,P ,Q)) but rather with a special notation employing

brackets and arrows P [x 7→ Q]. Nonetheless, it’s still just a function

applied to some arguments.

The notational profligacy of mathematics – especially having many

different notations for functions – hides a lot of commonality shared

among mathematical processes. Don’t be confused; despite all the

notations, they’re all just functions.

B.1.4 The lambda notation for functions

Part of the notation for defining functions equationally involves giving

them a name. For instance, the A B S O LU T E VA LU E function can be

defined equationally as

abs(n) =
√

n2

One of the contributions of Church’s lambda calculus is a notation

for defining functions directly, without bestowing a name. In fact, the

expression on the right hand side of the equation,
p

n2, almost serves

this purpose already, by specifying the function from n to
p

n2. There

are two problems in using bare expressions like
p

n2 to specify func-

tions. First, how is the reader to know that the expression is intended

to specify a function rather than a number ? That is, how are we to real-

ize that the use of n is meant generically, and not as standing for some

particular number? Second, if the expression makes use of multiple

variables, how is the reader supposed to determine which variable

represents the input to the function? In the case of
p

n2, there is only

one option, since the expression makes use of only one variable. But

for other expressions, like m ·n2, it is unclear if the input is intended to

be m or n.

Church introduced his lambda notation to solve these problems.

He prefixes the expression with a Greek lambda (λ), followed by the

variable that is serving as the input to the function, followed by a

period. Table B.1 provides some examples.

The lambda notation for specifying anonymous functions will be

familiar to OCaml programmers; it appears in OCaml as well, though

under a different concrete syntax. The keyword fun plays the role of λ

and the operator -> plays the role of the period. In fact, the ability to

define anonymous functions, so central to functional programming

languages, is inherited directly from the lambda notation that gives its

name to Church’s calculus.

As shown in Table B.1, each of the examples above could be

rephrased in OCaml. You may recognize the last of these as an example

of a curried function (Section 6.2).
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λn.
p

n2 The function from n to
p

n2, that is, the absolute

value function, or, in OCaml:

fun n -> sqrt(n *. n)

λn.(m ·n2) the function from n to m · n2, so that m is implicitly

being viewed as a constant:

fun n -> m *. (n *. n)

λm.(m ·n2) the function from m to m · n2, so that n is implicitly

being viewed as a constant:

fun m -> m *. (n *. n)

λm.λn.(m ·n2) the function from m to a function from n to m ·n2:

fun m -> fun n -> m *. (n *. n)

Table B.1: A few functions in lambda
notation, with their English glosses and
their approximate OCaml equivalents.

When there’s a need for specifying mathematical functions directly,

unnamed, we will take advantage of Church’s lambda notation, espe-

cially in Chapter 14.

B.2 Summation

In Section 14.5.2, we make use of the following identity for calculating

the sum of all integers from 1 to n

n∑
i=1

i = n · (n +1)

2

which was graphically demonstrated to hold in Figure 14.6. Here we

provide a more traditional algebraic proof.

Define the sum in question to be S:

S =
n∑

i=1
i

We can think of this sum as adding all the values from 1 to n, or con-

versely, all the numbers from n to 1, that is all the values of (n − i +1):

S =
n∑

i=1
(n − i +1)

Adding these two together,

2S =
n∑

i=1
i +

n∑
i=1

(n − i +1)

but the two sums can be brought together as a single sum and simpli-

fied:

2S =
n∑

i=1
(i + (n − i +1))

=
n∑

i=1
(n +1)
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Now we’re just summing up n instances of n +1, that is, multiplying n

and n +1:

2S = n · (n +1)

so that

S = n · (n +1)

2

For Gauss’s problem, where n is 100, he presumably calculated
100·101

2 = 5050.

B.3 Logic

The logic of propositions, boolean logic, underlies the bool type. In-

formally, propositions are conceptual objects that can be either true or

false. Propositions can be combined or transformed with various oper-

ations. The C O N J U N C T I O N of two propositions p and q is true just in

case both p and q are true, and false otherwise. The D I S J U N C T I O N is

true just in case either p or q (or both) are true. The N E G AT I O N of p is

true just in case p is not true (that is, p is false). Conjunction, disjunc-

tion, and negation thus correspond roughly to the English words “and”,

“or”, and “not”, respectively, and for that reason, we sometimes speak

of the “and” of two boolean values, or their “or”. (See Figure B.5.)

p q p and q p or q not p

true true true true false

true false false true false

false true false true true

false false false false true

Figure B.5: The three boolean operators
defined.

There are other operations on boolean values considered in logic –

for instance, the conditional, glossed by “if . . . then . . . ”; or the exclusive

“or” – but these three are sufficient for our purposes. For more back-

ground on propositional logic, see Chapter 9 of the text by Lewis and

Zax (2019).

B.4 Geometry

The S L O P E of a line between two points x1, y1 and x2, y2 is the ratio

of their vertical difference and their horizontal difference, y2−y1
x2−x1

. (See

Figure B.7.)

right angle

B

AC

a

b

c

hypotenuse

Figure B.6: A right triangle. Angle C is a
right angle. The opposite side, of length
c, is the hypotenuse. By Pythagorus’s
theorem, a2 +b2 = c2.

A R I G H T T R I A N G L E is a triangle one of whose edges is a right (90◦)

angle. (See Figure B.7.) The side opposite the right angle is called the

H Y P OT E N U S E. P Y T H AG O RU S ’ S T H E O R E M holds that the sum of the

squares of the adjacent sides’ lengths is the square of the length of the

hypotenuse.

(x1, y1)

(x2, y2)

x2 � x1

y2 � y1

�
(x2 � x1)2 + (y2 � y1)2

Figure B.7: Two points, given by a pair
of their x (horizontal) and y (vertical)
coordinates. The slope of the line
between them is

y2−y1
x2−x1

. The distance
between them, as per the Pythagorean

theorem, is
√

(x2 −x1)2 + (y2 − y1)2.

Pythagorus’s theorem can be used to determine the D I S TA N C E

between two points specified with Cartesian (x-y) coordinates. As

depicted in Figure B.7, by Pythagorus’s theorem, we can square the

differences in each dimension, sum the squares, and take the square

root.
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The ratio of the circumference of a circle and its diameter is (non-

trivially, and perhaps surprisingly) a constant, conventionally called π

(read, “pi”), and approximately 3.1416. This constant is also the ratio

of the area of a circle to the area of a square whose side is the circle’s

radius. Thus, using the nomenclature of Figure B.8, c = πd = 2πr and

A =πr 2.

r

dA

c

o

Figure B.8: Geometry of the circle at
origin o of radius r , diameter d = 2r ,
circumference c, and area A.

The area of a rectangle is the product of its width w and height h,

that is, A = wh. The area of a triangle (Figure B.9) is half the area of its

circumscribing rectangle, that is, 1
2 wh. Alternatively, if we know the

lengths of its three sides (a, b, and c), but not its width and height, we

can use H E RO N ’ S F O R M U L A, which makes use of the S E M I P E R I M E T E R

s of the triangle, a length that is half of its perimeter: s = 1
2 (a +b + c).

The area is then

A =
√

s · (s −a) · (s −b) · (s − c)

Figure B.9: A triangle and a circum-
scribing rectangle, with labeled edge
lengths.

B.5 Sets

A set is a collection of distinct (physical or mathematical) objects.

An E X T E N S I O N A L set definition (given by an explicit list of its mem-

bers) is notated by listing the elements in braces separated by commas,

as, for instance, {1,2,3,4}. Obviously, this notation only works for finite

sets, although infinite sets can be informally indicated with ellipses (as

{1,2,3, . . .}) in cases where the rule for filling in the remaining elements

is sufficiently obvious to the reader.

An I N T E N S I O N A L set definition (given by describing all members

of the set rather than listing them) is notated by placing in braces a

schematic element of the set, followed by a vertical bar, followed by a

description of the range of any variables in the schema. For instance,

the set of all even numbers might be { x | x mod 2 = 0}, read “the set of

all x such that x is evenly divisible by 2.” Similarly, the set of all squares

of prime numbers would be { x2 | x is prime}. (Note the combination

of mathematical notation and natural language, a typical instance of

“code switching” in mathematical writing.)

The E M P T Y S E T, notated ∅ or {}, is the set containing no members.

Certain standard operations on sets are notated with infix operators:

Union: s ∪ t is the U N I O N of sets s and t , that is, the set containing all

the elements that are in either of the two sets;

Intersection: s ∩ t is the I N T E R S E C T I O N, containing just the elements

that are in both of the sets;

Difference: s − t is the set D I F F E R E N C E, all elements in s except for

those in t ; and

https://en.wikipedia.org/wiki/Code-switching
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Membership: x ∈ s specifies M E M B E R S H I P, stating that x is a member

of the set s.

By way of example, the following are all true statements, expressed in

this notation:

{1,2,3}∪ {3,4} = {1,2,3,4}

{1,2,3}∩ {3,4} = {3}

{1,2,3}− {3,4} = {1,2}

3 ∈ {1,2,3}

3 ̸∈ {2,4,6}

Note the use of a slash through a symbol to indicate its N E G AT I O N:

̸∈ for ‘is not a member of’.

B.6 Equality and identity

There are different notions of I D E N T I T Y used in mathematical no-

tation. The = symbol typically connotes two values being the same

“semantically”. The ≡ symbol connotes a stronger notion of syntactic

identity, so that x ≡ y means that x and y are (that is, represent) the

same syntactic entity (variable say) rather than that they have the same

value (in whatever context that might be appropriate). For instance,

consider these equations found in the definition of substitution:

x[x 7→ P ] = P

y[x 7→ P ] = y where x ̸≡ y

Recall that P [x 7→ Q] specifies the expression P with all free occur-

rences of x replaced by the expression Q (with care taken not to

capture any free occurrences of x in Q). Here x and y are variables

(metavariables) ranging over expressions that may themselves be

(object-level) variables. The notation x ̸≡ y indicates that the variable

y that constitutes the expression being substituted into is a different

variable from the variable x that is being substituted for.





C

A style guide

This guide provides some simple rules of good programming style,

both general and OCaml-specific, developed for the Harvard course

CS51. The rules presented here tend to follow from a small set of un-

derlying principles.1 1 This style guide is reworked from a
long line of style guides for courses at
Princeton, University of Pennsylvania,
and Cornell, including Cornell CS
312, U Penn CIS 500 and CIS 120, and
Princeton COS 326. All this shows the
great power of recursion. (Also, the
joke about recursion was stolen from
COS 326. (Also, the joke about the joke
about recursion was stolen from Greg
Morrisett. I think. See the Preface.))

Consistency Similar decisions should be made within similar contexts.

Brevity “Everything should be made as simple as possible, but no

simpler.” (attr. Albert Einstein)

Clarity Code should be chosen so as to communicate clearly to the

human reader.

Transparency Appearance should summarize and reflect structure.

Like all rules, those below are not to be followed slavishly. Rather, they

should be seen as instances of these underlying principles. These

principles may sometimes be in conflict, in which case judgement is

required in finding the best way to write the code. This is one of the

many ways in which programming is an art, not (just) a science.

This guide is not complete. For more recommendations, from the

OCaml developers themselves, see the official OCaml guidelines.

Figure C.1: Yes, coding style is impor-
tant.

https://url.cs51.io/zhl
https://url.cs51.io/zhl
https://url.cs51.io/8yx
https://url.cs51.io/h19
https://url.cs51.io/8o4
https://url.cs51.io/iwa
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C.1 Formatting

Formatting concerns the layout of the text of a program on the screen

or page, such issues as vertical alignments and indentation, line

breaks, and whitespace. To allow for repeatable formatting, code is

typically presented with a fixed-width font in which all characters

including spaces take up the same horizontal pitch.

C.1.1 No tab characters

You may feel inclined to use tab characters (A S C I I 0x09) to align text.

Do not do so; use spaces instead. The width of a tab is not uniform

across all renderings, and what looks good on your machine may look

terrible on another’s, especially if you have mixed spaces and tabs.

Some text editors map the tab key to a sequence of spaces rather than

a tab character; in this case, it’s fine to use the tab key.

C.1.2 80 column limit

No line of code should extend beyond 80 characters long. Using more

than 80 columns typically causes your code to wrap around to the next

line, which is devastating to readability.

C.1.3 No needless blank lines

The obvious way to stay within the 80 character limit imposed by the

rule above is to press the enter key every once in a while. However,

blank lines should only be used at major logical breaks in a program,

for instance, between value declarations, especially between function

declarations. Often it is not necessary to have blank lines between

other declarations unless you are separating the different types of

declarations (such as modules, types, exceptions, and values). Unless

function declarations within a let block are long, there should be no

blank lines within a let block. There should absolutely never be a

blank line within an expression.

C.1.4 Use parentheses sparely

Parentheses have many purposes in OCaml, including constructing

tuples, specifying the unit value, grouping sequences of side-effect

expressions, forcing higher precedence on an expression for parsing,

and grouping structures for functor arguments. Clearly, parentheses

must be used with care, as they force the reader to disambiguate the

intended purpose of the parentheses, making code more difficult to

https://url.cs51.io/0mr
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understand. You should therefore only use parentheses when neces-

sary or when doing so improves readability.

✗ let x = function1 (arg1) (arg2) (function2 (arg3)) (arg4)

✓ let x = function1 arg1 arg2 (function2 arg3) arg4

On the other hand, it is often useful to add parentheses to help

indentation algorithms, as in this example:

✗ let x = "Long line ..."

^ "Another long line..."

✓ let x = ("Long line ..."

^ "Another long line...")

Similarly, wrapping match expressions in parentheses helps avoid a

common (and confusing) error that you get when you have a nested

match expression. (See Section 10.3.2 for an example.)

Parentheses should never appear on a line by themselves, nor

should they be the first visible character; parentheses do not serve

the same purpose as brackets do in C or Java.

C.1.5 Delimiting code used for side effects

Imperative programs will often have sequences of expressions to be

evaluated primarily for side effect rather than value. When delimiting

the scope of such sequences, use begin 〈〉 end rather than parentheses,

for instance,

✗ if condition then

(do this;

do that;

do the other)

else

(do something else entirely;

do this too);

do in any case

✓ if condition then begin

do this;

do that;

do the other

end else begin

do something else entirely;

do this too

end;

do in any case
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C.1.6 Spacing for operators and delimiters

Infix operators (arithmetic operators like + and *, the typing operator

:, type forming operators like * and ->, etc.) should be surrounded by

spaces. Delimiters (like the list item delimiter ; and the tuple element

delimiter ,) are followed but not preceded by a space.

✓ let f (x : int) : int * int = 3 * x - 1, 3 * x + 1 ;;

✗ let f (x: int): int*int = 3* x-1, 3* x+1 ;;

Judgement can be applied to vary from these rules for clarity’s sake,

for instance, when emphasizing precedence.

✓ let f (x : int) : int * int = 3*x - 1, 3*x + 1 ;;

When expressions with operators get overly long, it may be desir-

able to add line breaks. Such line breaks should tend to be placed just

before, rather than just after, operators, so as to highlight the operator

at the beginning of the next line.

✓ let price = base * (100 + tax_pct) / 100 ;;

✗ let price = base *
(100 + tax_pct) /

100 ;;

✓ let price = base

* (100 + tax_pct)

/ 100 ;;

It’s better to place breaks at operators higher in the abstract syntax tree,

to emphasize the structure.

✗ let price = base * (100

+ tax_pct) / 100 ;;

In the case of delimiters, however, line breaks should occur after the

delimiter.

✗ let r = { product = "Dynamite"

; company = "Acme"

; price = base * (100 + tax_pct) / 100} ;;

✓ let r = {product = "Dynamite";

company = "Acme";

price = base * (100 + tax_pct) / 100} ;;

Of course, keep in mind that understanding of the code might be

enhanced by restructuring the code and naming partial results:

✓ let tax = base * tax_pct / 100 ;;

let price = base + tax ;;
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C.1.7 Indentation

Indentation should be used to encode the block structure of the code

as described in the following sections. It is typical to indent by two xor

four spaces. Choose one system for indentation, and be consistent

throughout your code.

Indenting if expressions Indent if expressions using one of the

following methods, depending on the sizes of the expressions. For very

short then and else branches, a single line may be sufficient.

✓
if exp1 then veryshortexp2 else veryshortexp3

When the branches are too long for a single line, move the else onto its

own line.

✓
if exp1 then exp2

else exp3

This style lends itself nicely to nested conditionals.

✓
if exp1 then shortexp2

else if exp3 then shortexp4

else if exp5 then shortexp6

else exp8

For very long then or else branches, the branch expression can be

indented and use multiple lines.

✓
if exp1 then

longexp2

else shortexp3

✓
if exp1 then

longexp2

else

longexp3

Some use an alternative conditional layout, with the then and else

keywords starting their own lines.

✗
if exp1

then exp2

else exp3

This approach is less attractive for nested conditionals and long

branches, though for unnested cases it can be acceptable.

https://url.cs51.io/w7v
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Indenting let expressions Indent the body of a let expression the

same as the let keyword itself.

✓ let x = definition in

code_that_uses_x

This is an exception to the rule of further indenting subexpression

blocks to manifest the nesting structure.

✗ let x = definition in

code_that_uses_x

The intention is that let definitions be thought of like mathematical

assumptions that are listed before their use, leading to the following

attractive indentation for multiple definitions:

let x = x_definition in

let y = y_definition in

let z = z_definition in

block_that_uses_all_the_defined_notions

Indenting match expressions Indent match expressions so that the

patterns are aligned with the match keyword, always including the

initial (optional) |, as follows:

match expr with

| first_pattern -> ...

| second_pattern -> ...

Some disfavor aligning the arrows in a match, arguing that it makes

the code harder to maintain. However, where there is strong paral-

lelism among the patterns, this alignment (and others) can make the

parallelism easier to see, and hence the code easier to understand. Use

your judgement.

C.2 Documentation

C.2.1 Comments before code

Comments go above the code they reference. Consider the following:

✗ let sum = List.fold_left (+) 0

(* Sums a list of integers. *)

✓ (* Sums a list of integers. *)

let sum = List.fold_left (+) 0

The latter is the better style, although you may find some source code

that uses the first. Comments should be indented to the level of the

line of code that follows the comment.

https://url.cs51.io/iwa
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C.2.2 Comment length should match abstraction level

Long comments, usually focused on overall structure and function

for a program, tend to appear at the top of a file. In that type of com-

ment, you should explain the overall design of the code and reference

any sources that have more information about the algorithms or data

structures. Comments can document the design and structure of a

class at some length. For individual functions or methods, comments

should state the invariants, the non-obvious, or any references that

have more information about the code. Avoid comments that merely

restate the code they reference or state the obvious. All other com-

ments in the file should be as short as possible; after all, brevity is the

soul of wit. Rarely should you need to comment within a function;

expressive variable naming should be enough.

C.2.3 Multi-line commenting

There are several styles for demarcating multi-line comments in

OCaml. Some use this style:

(* This is one of those rare but long comments

* that need to span multiple lines because

* the code is unusually complex and requires

* extra explanation. *)

let complicated_function () = ...

arguing that the aligned asterisks demarcate the comment well when

it is viewed without syntax highlighting. Others find this style heavy-

handed and hard to maintain without good code editor support (for

instance, emacs Tuareg mode doesn’t support it well), leading to this

alternative:

(* This is one of those rare but long comments

that need to span multiple lines because

the code is unusually complex and requires

extra explanation.

*)

let complicated_function () = ...

Whichever you use, be consistent.

C.3 Naming and declarations

C.3.1 Naming conventions

Table C.1 provides the naming convention rules that are followed by

OCaml libraries. You should follow them too. Some of these naming

conventions are enforced by the compiler; these are shown in boldface

below. For example, it is not possible to have the name of a variable

start with an uppercase letter.

https://url.cs51.io/xe1
https://url.cs51.io/xe1
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Token Convention Example

Variables and functions Symbolic or initial lower case. Use

underscores for multiword names.

get_item

Constructors Initial upper case. Use embedded caps

for multiword names. Historical

exceptions are true and false.

Node, EmptyQueue

Types All lower case. Use underscores for

multiword names.

priority_queue

Module Types Initial upper case. Use embedded caps

for multiword names, or (as we do

here) use all uppercase with

underscores.

PriorityQueue or PRIORITY_QUEUE

Modules Initial upper case. Use embedded caps

for multiword names.

PriorityQueue

Functors Initial upper case. Use embedded caps

for multiword names.

PriorityQueue

Table C.1: Naming conventions

C.3.2 Use meaningful names

Variable names should describe what the variables are for, in the form

of a word or sequence of words. Proper naming of a variable can be the

best form of documentation, obviating the need for any further doc-

umentation. By convention (Table C.1) the words in a variable name

are separated by underscores (multi_word_name), not (ironically)

distinguished by camel case (multiWordName).

✓ let local_date = Unix.localtime (Unix.time ()) ;;

let total_cost = quantity * price_each ;;

✗ let d = Unix.localtime (Unix.time ()) ;;

let c = n * at ;;

The length of a variable name is roughly correlated with how long a

reader of the code will have to remember its use. In short let blocks,

one letter variable names can sometimes be appropriate. The defini-

tion

fun the_optional_number -> the_optional_number <> None

is not better than

fun x -> x <> None

(Of course, this function can be specified even more compactly as (<>)

None.)

Often it is the case that a function used in a fold, filter, or map is

named f. Here is an example with appropriate variable names:
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let local_date = Unix.localtime (Unix.time ()) in

let minutes = date.Unix.tm_min in

let seconds = date.Unix.tm_min in

let f n = (n mod 3) = 0 in

List.filter f [minutes; seconds]

Take advantage of the fact that OCaml allows the prime character ’

in variable names. Use it to make clear related functions:

let reverse (lst : 'a list) =

let rec reverse' remaining accum =

match remaining with

| [] -> accum

| hd :: tl -> reverse' tl (hd :: accum) in

reverse' lst [] ;;

C.3.3 Constants and magic numbers

M AG I C N U M B E R S are explicit values sprinkled in code that are used

without explanation, as 1.0625 in the following code:

✗ let total_cost = (quantity *. price_each) *. 1.0625 ;;

Magic numbers are inscrutable, a nightmare for readers of the code.

Instead, give those constants an expressive name. If these defined con-

stants are global, we use the naming convention of using a variable in

all uppercase letters except for an initial lowercase ‘c’ (for “constant”).

✓ let cTAX_RATE = .0625 ;;

(* ... some time later ... *)

let total_cost = (quantity *. price_each) *. (1. +. cTAX_RATE)

;;

Not only is this more explanatory – we understand that the final mul-

tiplication is to account for taxes – it allows for a single point of code

change if the tax rate changes.

C.3.4 Function declarations and type annotations

Top-level functions and values should be declared with explicit type

annotations to allow the compiler to verify the programmer’s inten-

tions. Use spaces around :, as with all operators.

✗ let succ x = x + 1

✓ let succ (x : int) : int = x + 1

When a function being declared has multiple arguments with compli-

cated types, so that the declaration doesn’t fit nicely on one line,

✗ let rec zip3 (x : 'a list) (y : 'b list) (z : 'c list) : ('a * 'b *
'c) list option =

...
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one of the following indentation conventions can be used:

✓ let rec zip3 (x : 'a list)

(y : 'b list)

(z : 'c list)

: ('a * 'b * 'c) list option =

...

✓ let rec zip3

(x : 'a list)

(y : 'b list)

(z : 'c list)

: ('a * 'b * 'c) list option =

...

C.3.5 Avoid global mutable variables

Mutable values, on the rare occasion that they are necessary at all,

should be local to functions and almost never declared as a structure’s

value. Making a mutable value global causes many problems. First,

an algorithm that mutates the value cannot be ensured that the value

is consistent with the algorithm, as it might be modified outside the

function or by a previous execution of the algorithm. Second, having

global mutable values makes it more likely that your code is nonreen-

trant. Without proper knowledge of the ramifications, declaring global

mutable values can easily lead not only to bad design but also to incor-

rect code.

C.3.6 When to rename variables

You should rarely need to rename values: in fact, this is a sure way to

obfuscate code. Renaming a value should be backed up with a very

good reason. One instance where renaming a variable is both common

and reasonable is aliasing modules. In these cases, other modules used

by functions within the current module are aliased to one or two letter

variables at the top of the struct block. This serves two purposes: it

shortens the name of the module and it documents the modules you

use. Here is an example:

module H = Hashtbl

module L = List

module A = Array

...

C.3.7 Order of declarations in a module

When declaring elements in a file (or nested module) you first alias

the modules you intend to use, then declare the types, then define

exceptions, and finally list all the value declarations for the module.
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Separating each of these sections with a blank line is good practice

unless the whole is quite short. Here is an example:

module L = List

type foo = int

exception InternalError

let first list = L.nth list 0

Every declaration within the module should be indented the same

amount.

C.4 Pattern matching

C.4.1 No incomplete pattern matches

Incomplete pattern matches are flagged with compiler warnings,

and you should avoid them. In fact, it’s best if your code generates no

warnings at all. Even if you “know” that a certain match case can never

occur, it’s better to record that knowledge by adding the match case

with an action that raises an appropriate error.

C.4.2 Pattern match in the function arguments when possible

Tuples, records, and algebraic datatypes can be deconstructed using

pattern matching. If you simply deconstruct a function argument

before you do anything else substantive, it is better to pattern match in

the function argument itself. Consider these examples:

✗ let f arg1 arg2 =

let x = fst arg1 in

let y = snd arg1 in

let z = fst arg2 in

...

✓ let f (x, y) (z, _) =

...

✗ let f arg1 =

let x = arg1.foo in

let y = arg1.bar in

let baz = arg1.baz in

...

✓ let f {foo = x; bar = y; baz} =

...

See also the discussion of extraneous match expressions in let

definitions in Section C.4.4.
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C.4.3 Pattern match with as few match expressions as necessary

Rather than nesting match expressions, you can sometimes combine

them by pattern matching against a tuple. Of course, this doesn’t

work if one of the nested match expressions matches against a value

obtained from a branch in another match expression. Nevertheless, if

all the values are independent of each other you should combine the

values in a tuple and match against that. Here is an example:

✗ let d = Date.fromTimeLocal (Unix.time ()) in

match Date.month d with

| Date.Jan -> (match Date.day d with

| 1 -> print "Happy New Year"

| _ -> ())

| Date.Mar -> (match Date.day d with

| 14 -> print "Happy Pi Day"

| _ -> ())

| Date.Oct -> (match Date.day d with

| 10 -> print "Happy Metric Day"

| _ -> ())

✓ let d = Date.fromTimeLocal (Unix.time ()) in

match Date.month d, Date.day d with

| Date.Jan, 1 -> print "Happy New Year"

| Date.Mar, 14 -> print "Happy Pi Day"

| Date.Oct, 10 -> print "Happy Metric Day"

| _ -> ()

(This example also provides a case where aligning arrows improves

clarity by emulating a table.)

C.4.4 Misusing match expressions

The match expression is misused in two common situations. First,

match should never be used with single atomic values in place of an if

expression. (That’s why if exists.) For instance,

✗ match e with

| true -> x

| false -> y

✓ if e then x else y

and

✗ match e with

| c -> x (* c is a constant value *)

| _ -> y

✓ if e = c then x else y
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(Using a match to match against several atomic values may, however,

be preferable to nested conditionals.)

Second, a separate match expression should not be used when

an enclosing expression (like a let, fun, function) allows pattern-

matching itself:

✗ let x = match expr with

| y, z -> y in

...

✓ let x, _ = expr in

...

C.4.5 Avoid using too many projection functions

Frequently projecting a value from a record or tuple causes your code

to become unreadable. This is especially a problem with tuple projec-

tion because the value is not documented by a mnemonic name. To

prevent projections, you should use pattern matching with a function

argument or a value declaration. Of course, using projections is okay as

long as use is infrequent and the meaning is clearly understood from

the context.

✗ let v = some_function () in

let x = fst v in

let y = snd v in

x + y

✓ let x, y = some_function () in

x + y

Don’t use List.hd or List.tl at all The functions hd and tl are used

to deconstruct list types; however, they raise exceptions on certain

arguments. You should never use these functions. In the case that you

find it absolutely necessary to use these (something that probably

won’t ever happen), you should explicitly handle any exceptions that

can be raised by these functions.

C.5 Verbosity

C.5.1 Reuse code where possible

The OCaml standard library has a great number of functions and

data structures. Unless told otherwise, use them! Become familiar

with the contents of the Stdlib module. Often students will recode

List.filter, List.map, and similar functions. A more subtle situa-

tion for recoding is all the fold functions. Functions that recursively

walk down lists should make vigorous use of List.fold_left or

https://url.cs51.io/jya
https://url.cs51.io/3wq
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List.fold_right. Other data structures often have a fold function;

use them whenever they are available. (In some exercises, we will ask

you to implement some constructs yourself rather than relying on a

library function. In such cases, we’ll specify that using library functions

is not allowed.)

C.5.2 Do not abuse if expressions

Remember that the type of the condition in an if expression is bool.

There is no reason to compare boolean values against boolean literals.

✗ if e = true then x else y

✓ if e then x else y

In general, the type of an if expression can be any ’a, but in the

case that the type is bool, you should probably not be using if at all.

Consider the following:

✗ ✓

if e then true else false e

if e then false else true not e

if e then e else false e

if x then true else y x || y

if x then y else false x && y

if x then false else y not x && y

Also problematic is overly complex conditions such as extraneous

negation.

✗ if not e then x else y

✓ if e then y else x

The exception here is if the expression y is very long and complex, in

which case it may be more readable to have it placed at the end of the

if expression.

C.5.3 Don’t rewrap functions

Don’t fall for the misconception that functions passed as arguments

have to start with fun or function, which leads to the extraneous

rewrapping of functions like this:

✗ List.map (fun x -> sqrt x) [1.0; 4.0; 9.0; 16.0]

Instead, just pass the function directly.
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✓ List.map sqrt [1.0; 4.0; 9.0; 16.0]

You can even do this when the function is an infix binary operator,

though you’ll need to place the operator in parentheses.

✗ List.fold_left (fun x y -> x + y) 0

✓ List.fold_left (+) 0

C.5.4 Avoid computing values twice

When computing values more than once, you may be wasting CPU

time (a design consideration) and making your program less clear (a

style consideration) and harder to maintain (a consideration of both

design and style). The best way to avoid computing things twice is to

create a let expression and bind the computed value to a variable

name. This has the added benefit of letting you document the purpose

of the value with a well-chosen variable name, which means less com-

menting. On the other hand, not every computed sub-value needs to

be let-bound.

✗ f (calc_score (if cond then val1 else val2))

(calc_score (if cond then val1 else val2))

✓ let score = calc_score (if cond then val1 else val2) in

f score score

C.6 Other common infelicities

Here is a compilation of some other common infelicities to watch out

for:

✗ ✓

x :: [] [x]

length + 0 length

length * 1 length

big_expression * big_expression let x = big_expression in x * x

if x then f a b c1 else f a b c2 f a b (if x then c1 else c2)

String.compare x y = 0 x = y

String.compare x y < 0 x < y

String.compare y x < 0 x > y
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Solutions to selected exercises

Solution to Exercise 3 〈nounphrase〉

〈noun〉

party

〈nounphrase〉

〈nounphrase〉

〈noun〉

tea

〈adjective〉

mad

Solution to Exercise 4 There are three structures given the rules pro-

vided, corresponding to eaters of flying purple people, flying eaters of

purple people, and flying purple eaters of people.

Solution to Exercise 6

1. +

6~-

4

2. ~-

+

64
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3. +

6/

~-

4

20

4. *

+

43

5

5. *

5+

34

6. *

5+

0+

43

Solution to Exercise 7 Among the concrete expressions of the abstract

syntax trees are these, though others are possible.

1. ~- (1 + 42)

2. 84 / (0 + 42)

3. 84 + 0 / 42 or 84 + (0 / 42)

Solution to Exercise 8 The value of the golden ratio is about 1.618.

Here’s the calculation using OCaml’s R E P L.

# (1. +. sqrt 5.) /. 2. ;;

- : float = 1.6180339887498949

Note the consistent use of floating point literals and operators, without

which you’d get errors like this:

# (1. + sqrt 5.) /. 2. ;;

Line 1, characters 1-3:
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1 | (1. + sqrt 5.) /. 2. ;;

^^

Error: This expression has type float but an expression was

expected of type

int

Solution to Exercise 9 The fourth and seventh might have struck you

as unusual.

Why does 3.1416 = 314.16 /. 100. turn out to be false? Float-

ing point arithmetic isn’t exact, so that the division 314.16 /. 100.

yields a value that is extremely close to, but not exactly, 3.1416, as

demonstrated here:

# 314.16 /. 100. ;;

- : float = 3.14160000000000039

Why is false less than true? It turns out that all values of a type are

ordered in this way. The decision to order false as less than true was

arbitrary. Universalizing orderings of values within a type allows for the

ordering operators to be polymorphic, which is quite useful, although

it does lead to these arbitrary decisions.

Solution to Exercise 10 Only the third of these typings holds, as shown

by the R E P L.

1. # (3 + 5 : float) ;;

Line 1, characters 1-6:

1 | (3 + 5 : float) ;;

^^^^^

Error: This expression has type int but an expression was expected

of type

float

2. # (3. + 5. : float) ;;

Line 1, characters 1-3:

1 | (3. + 5. : float) ;;

^^

Error: This expression has type float but an expression was

expected of type

int

3. # (3. +. 5. : float) ;;

- : float = 8.

4. # (3 : bool) ;;

Line 1, characters 1-2:

1 | (3 : bool) ;;

^

Error: This expression has type int but an expression was expected

of type

bool
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5. # (3 || 5 : bool) ;;

Line 1, characters 1-2:

1 | (3 || 5 : bool) ;;

^

Error: This expression has type int but an expression was expected

of type

bool

6. # (3 || 5 : int) ;;

Line 1, characters 1-2:

1 | (3 || 5 : int) ;;

^

Error: This expression has type int but an expression was expected

of type

bool

Solution to Exercise 11 Since the unit type has only one value, there

is only one such typing:

() : unit

Solution to Exercise 12 The types of succ, string_of_int, and not

are respectively int -> int, int -> string, and bool -> bool. You

can verify the typings at the R E P L.

# succ ;;

- : int -> int = <fun>

# string_of_int ;;

- : int -> string = <fun>

# not ;;

- : bool -> bool = <fun>

Solution to Exercise 13 No good comes of applying a function of type

float -> float to an argument of type bool.

# sqrt true ;;

Line 1, characters 5-9:

1 | sqrt true ;;

^^^^

Error: This expression has type bool but an expression was expected

of type

float

Solution to Exercise 14 As it turns out, the let construct itself has

low precedence so that the body of the let extends as far as it can.

Evaluating the expression without the parentheses demonstrates this,

as otherwise it would have generated an unbound variable error for the

second radius.

# 3.1416 *. let radius = 2.

# in radius *. radius ;;

- : float = 12.5664
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Nonetheless, the parentheses arguably improve readability, and they

can help autoindenters that implement a less nuanced view of OCaml

syntax.

Solution to Exercise 15 The most direct approach uses two let bind-

ing for the two sides:

# let side1 = 1.88496 in

# let side2 = 2.51328 in

# sqrt (side1 *. side1 +. side2 *. side2) ;;

- : float = 3.1416

However, by taking advantages of pattern-matching over pairs, which

will be introduced later in Section 7.2, a single let that binds both

variables using pattern matching is arguably more elegant:

# let side1, side2 = 1.88496, 2.51328 in

# sqrt (side1 *. side1 +. side2 *. side2) ;;

- : float = 3.1416

Solution to Exercise 16 Simply dropping the parentheses solves the

problem, since let has relatively low precedence, as described in

Exercise 14.

# let s = "hi ho " in

# s ^ s ^ s ;;

- : string = "hi ho hi ho hi ho "

Solution to Exercise 17 As shown in the solution to Exercise 16, the

R E P L infers the type string for s.

Solution to Exercise 18

1. let x = 3 in

let y = 4 in

y * y ;;

2. let x = 3 in

let y = x + 2 in

y * y ;;

3. let x = 3 in

let y = 4 + (let z = 5 in z) + x in

y * y ;;

Solution to Exercise 19 The value for price at the end is 5. Surprise!

# let tax_rate = 0.05 ;;

val tax_rate : float = 0.05

# let price = 5. ;;

val price : float = 5.

# let price = price * (1. +. tax_rate) ;;

Line 1, characters 12-17:
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1 | let price = price * (1. +. tax_rate) ;;

^^^^^

Error: This expression has type float but an expression was

expected of type

int

# price ;;

- : float = 5.

What was probably intended was

# let tax_rate = 0.05 ;;

val tax_rate : float = 0.05

# let price = 5. ;;

val price : float = 5.

# let price = price *. (1. +. tax_rate) ;;

val price : float = 5.25

# price ;;

- : float = 5.25

with a final value of price of 5.25. Thank goodness for strong static

typing, so that the R E P L was able to warn us of the error, rather than,

for instance, silently rounding the result or some such problematic

“correction” of the code.

Solution to Exercise 20 You can get the effect of this definition of

a global variable area by making use of local variables for pi and

radius by making sure to define the local variables within the global

definition:

# let area =

# let radius = 4. in

# let pi = 3.1416 in

# pi *. radius ** 2. ;;

val area : float = 50.2656

This way, the global let is at the top level.

Solution to Exercise 21

1. 2 : int

2. 2 : int

3. This sequence of tokens doesn’t parse, as - is a binary infix opera-

tor.

4. "OCaml" : string

5. "OCaml" : string

6. The expression evaluates to a function (unnamed) of type string

-> string.
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7. Again, the expression evaluates to a function of type float ->

float -> float (the exponentiation function).

Solution to Exercise 22 A function that squares its floating point

argument is

# fun x -> x *. x ;;

- : float -> float = <fun>

and one to repeat a string is

# fun s -> s ^ s ;;

- : string -> string = <fun>

Solution to Exercise 23

1. let foo (b : bool) (n : int) : bool = ...

2. let foo (f : float -> int) (x : float) : bool = ...

3. let foo (b : bool) (f : int -> bool) : int = ...

Solution to Exercise 24 Typing them into the R E P L reveals their types,

string and float -> float, respectively.

1. # let greet y = "Hello" ^ y in greet "World!" ;;

- : string = "HelloWorld!"

2. # fun x -> let exp = 3. in x ** exp ;;

- : float -> float = <fun>

Solution to Exercise 25

# let square (x : float) : float =

# x *. x ;;

val square : float -> float = <fun>

Solution to Exercise 26

# let abs (n : int) : int =

# if n > 0 then n else ~- n ;;

val abs : int -> int = <fun>

Solution to Exercise 27 The type for string_of_bool is bool ->

string. It can be defined as

# let string_of_bool (condition : bool) : string =

# if condition then "true" else "false" ;;

val string_of_bool : bool -> string = <fun>

A common stylistic mistake (discussed in Section C.5.2) is to write the

test as if condition = true then..., but there’s no need for the

comparison. What goes in the test part of a conditional is a boolean,

and condition is already one.
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Solution to Exercise 28 Using the compact notation:

# let even (n : int) : bool =

# n mod 2 = 0 ;;

val even : int -> bool = <fun>

(Did you try

# let even (n : int) : bool =

# if n mod 2 = 0 then true else false ;;

val even : int -> bool = <fun>

instead? That works, but the conditional is actually redundant. Re-

member, boolean expressions aren’t limited to use in the test part of

conditionals. Such extraneous conditionals are considered poor style.)

Using the explicit, desugared notation:

# let even : int -> bool =

# fun n -> n mod 2 = 0 ;;

val even : int -> bool = <fun>

Dropping the typing information, the R E P L still infers the correct

type.

# let even =

# fun n -> n mod 2 = 0 ;;

val even : int -> bool = <fun>

Nonetheless, the edict of intention argues for retaining the explicit

typing information.

Solution to Exercise 32 There are many possibilities. Here are some I

find especially nice.

1. let rec odd_terminate (n : int) : int =

if n < 0 then odd_terminate (~- n)

else if n = 1 then 0

else odd_terminate (n - 2) ;;

2. let rec small_terminate (n : int) : int =

if n = 5 then 0

else small_terminate (n + 1) ;;

3. let rec zero_terminate (n : int) : int =

if n = 0 then 0

else zero_terminate (n * 2) ;;

4. let rec true_terminate (b : bool) : bool =

b || (true_terminate b) ;;

Solution to Exercise 33 The most straightforward recursive solution is

simply
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# let rec fib (i : int) : int =

# if i = 1 then 0

# else if i = 2 then 1

# else fib (i - 1) + fib (i - 2) ;;

val fib : int -> int = <fun>

Foreshadowing the discussion of error handling in Chapter 10, the

following definition verifies an assumption on the argument, before

calculating the number recursively.

# let rec fib (i : int) : int =

# assert (i >= 1);

# if i = 1 then 0

# else if i = 2 then 1

# else fib (i - 1) + fib (i - 2) ;;

val fib : int -> int = <fun>

As an alternative for the three way condition, a match statement might

be clearer:

# let rec fib (i : int) : int =

# match i with

# | 1 -> 0

# | 2 -> 1

# | _ -> assert (i >= 1);

# fib (i - 1) + fib (i - 2) ;;

val fib : int -> int = <fun>

Solution to Exercise 34

# let fewer_divisors (n : int) (bound : int) : bool =

# let rec divisors_from (start : int) : int =

# if start > n / 2 then 1

# else divisors_from (start + 1)

# + (if n mod start = 0 then 1 else 0) in

# bound > divisors_from 1 ;;

val fewer_divisors : int -> int -> bool = <fun>

Solution to Exercise 35

1. bool * int

2. bool * bool

3. int * int

4. float * int

5. float * int

6. int * int

7. (int -> int) * (int -> int)

Solution to Exercise 36
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# true, true ;;

- : bool * bool = (true, true)

# true, 42, 3.14 ;;

- : bool * int * float = (true, 42, 3.14)

# (true, 42), 3.14 ;;

- : (bool * int) * float = ((true, 42), 3.14)

# (1, 2), 3, 4 ;;

- : (int * int) * int * int = ((1, 2), 3, 4)

# succ, 0, 42 ;;

- : (int -> int) * int * int = (<fun>, 0, 42)

# fun (f, n) -> 1 + f (1 + n) ;;

- : (int -> int) * int -> int = <fun>

Solution to Exercise 37

# let div_mod (x : int) (y : int) : int * int =

# x / y, x mod y ;;

val div_mod : int -> int -> int * int = <fun>

Solution to Exercise 39

# let snd (pair : int * int) : int =

# match pair with

# | _x, y -> y ;;

val snd : int * int -> int = <fun>

Solution to Exercise 40

# let addpair (x, y : int * int) : int =

# x + y ;;

val addpair : int * int -> int = <fun>

# let fst (x, _y : int * int) : int = x ;;

val fst : int * int -> int = <fun>

Solution to Exercise 42 Only expressions 1, 3, 6, and 7 are well-

formed, as revealed by the R E P L.

1. # 3 :: [] ;;

- : int list = [3]

2. # true :: false ;;

Line 1, characters 8-13:

1 | true :: false ;;

^^^^^

Error: This variant expression is expected to have type bool list

There is no constructor false within type list

3. # true :: [false] ;;

- : bool list = [true; false]

4. # [true] :: [false] ;;

Line 1, characters 11-16:

1 | [true] :: [false] ;;

^^^^^

Error: This variant expression is expected to have type bool list

There is no constructor false within type list
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5. # [1; 2; 3.1416] ;;

Line 1, characters 7-13:

1 | [1; 2; 3.1416] ;;

^^^^^^

Error: This expression has type float but an expression was

expected of type

int

6. # [4; 2; -1; 1_000_000] ;;

- : int list = [4; 2; -1; 1000000]

7. # ([true], false) ;;

- : bool list * bool = ([true], false)

Solution to Exercise 43 The length function is of type int list ->

int; it expects an int list argument. However, we’ve applied it to

an argument of type int list list, that is, a list of integer lists. The

types are inconsistent, and OCaml reports the type mismatch.

Solution to Exercise 44

# let rec sum (lst : int list) : int =

# match lst with

# | [] -> 0

# | hd :: tl -> hd + sum tl ;;

val sum : int list -> int = <fun>

It’s natural to return the additive identity 0 for the empty list to simplify

the recursion.

This function can also be implemented using the techniques of

Chapter 8 as a single fold.

Solution to Exercise 45

# let rec prod (lst : int list) : int =

# match lst with

# | [] -> 1

# | hd :: tl -> hd * prod tl ;;

val prod : int list -> int = <fun>

It’s natural to return the multiplicative identity 1 for the empty list to

simplify the recursion.

This function can also be implemented using the techniques of

Chapter 8 as a single fold.

Solution to Exercise 46

# let rec sums (lst : (int * int) list) : int list =

# match lst with

# | [] -> []

# | (x, y) :: tl -> (x + y) :: sums tl ;;

val sums : (int * int) list -> int list = <fun>
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Solution to Exercise 47

# let rec inc_all lst =

# match lst with

# | [] -> []

# | hd :: tl -> (succ hd) :: inc_all tl ;;

val inc_all : int list -> int list = <fun>

Solution to Exercise 48

# let rec square_all lst =

# match lst with

# | [] -> []

# | hd :: tl -> (hd * hd) :: square_all tl ;;

val square_all : int list -> int list = <fun>

Solution to Exercise 49

# let rec append (x : int list) (y : int list)

# : int list =

# match x with

# | [] -> y

# | hd :: tl -> hd :: (append tl y) ;;

val append : int list -> int list -> int list = <fun>

Solution to Exercise 50

# let rec concat (sep : string) (lst : string list)

# : string =

# match lst with

# | [] -> ""

# | [hd] -> hd

# | hd :: tl -> hd ^ sep ^ (concat sep tl) ;;

val concat : string -> string list -> string = <fun>

Solution to Exercise 51

# let tesseract = power 4 ;;

val tesseract : int -> int = <fun>

If your definition was longer, you’ll want to review the partial applica-

tion discussion.

Solution to Exercise 52

# let double_all = map (( * ) 2) ;;

val double_all : int list -> int list = <fun>

Solution to Exercise 53

# let rec fold_left (f : int -> int -> int)

# (init : int)

# (xs : int list)

# : int =

# match xs with

# | [] -> init

# | hd :: tl -> fold_left f (f init hd) tl ;;

val fold_left : (int -> int -> int) -> int -> int list -> int =

<fun>
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Solution to Exercise 54 The definition analogous to the one using

fold_right is

# let length lst = fold_left (fun tlval _hd -> 1 + tlval) 0 lst

# ;;

val length : int list -> int = <fun>

but again this can be further simplified by partial application:

# let length = fold_left (fun tlval _hd -> 1 + tlval) 0 ;;

val length : int list -> int = <fun>

Solution to Exercise 55 A simple solution is to use fold_left itself to

implement reduce:

# let reduce (f : int -> int -> int) (list : int list) : int =

# match list with

# | hd :: tl -> List.fold_left f hd tl ;;

Lines 2-3, characters 0-36:

2 | match list with

3 | | hd :: tl -> List.fold_left f hd tl...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

[]

val reduce : (int -> int -> int) -> int list -> int = <fun>

This approach has the disadvantage that applying reduce to the empty

list yields an unintuitive “Match failure” error message. Looking ahead

to Section 10.3 on handling such errors explicitly, we can raise a more

appropriate exception, the Invalid_argument exception.

# let reduce (f : int -> int -> int) (list : int list) : int =

# match list with

# | hd :: tl -> List.fold_left f hd tl

# | [] -> raise (Invalid_argument "reduce: empty list") ;;

val reduce : (int -> int -> int) -> int list -> int = <fun>

Solution to Exercise 56 The filter function can be implemented

directly as a recursive function by extracting the common elements of

the four example functions (evens, odds, positives, and negatives)

and abstracting over their differences:

# let rec filter (test : int -> bool)

# (lst : int list)

# : int list =

# match lst with

# | [] -> []

# | hd :: tl -> if test hd then hd :: filter test tl

# else filter test tl ;;

val filter : (int -> bool) -> int list -> int list = <fun>

Looking ahead to the next chapter, it can also be implemented using

polymorphic fold_right (from the List module):
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# let filter (test : int -> bool)

# : int list -> int list =

# List.fold_right (fun elt accum ->

# if test elt then elt :: accum

# else accum)

# [] ;;

val filter : (int -> bool) -> int list -> int list = <fun>

(You may want to revisit this latter solution after reading Chapter 9.)

Solution to Exercise 57 A first stab, maximizing partial application:

# let evens = filter (fun n -> n mod 2 = 0) ;;

val evens : int list -> int list = <fun>

# let odds = filter (fun n -> n mod 2 <> 0) ;;

val odds : int list -> int list = <fun>

# let positives = filter ((<) 0) ;;

val positives : int list -> int list = <fun>

# let negatives = filter ((>) 0) ;;

val negatives : int list -> int list = <fun>

The last two may be a bit confusing: Why ((<) 0) for the positives?

Don’t we want to accept only those that are greater than 0? The < func-

tion is curried with its left-side argument before its right-side argu-

ment, so that the function ((<) 0) is equivalent to fun x -> 0 < x,

that is, the function that returns true for positive integers. Nonethe-

less, the expression ((<) 0) doesn’t “read” that way, which is a good

argument for not being so cute and using instead the slightly more

verbose but transparent

# let positives = filter (fun n -> n > 0) ;;

val positives : int list -> int list = <fun>

# let negatives = filter (fun n -> n < 0) ;;

val negatives : int list -> int list = <fun>

Clarity trumps brevity.

Solution to Exercise 58 A list can be reversed by repeatedly append-

ing elements at the end of the accumulating reversal. A fold_right

implements this solution.

# let reverse (lst : int list) : int list =

# List.fold_right (fun elt accum -> accum @ [elt])

# lst [] ;;

val reverse : int list -> int list = <fun>

Alternatively, we can start at the left.

# let reverse (lst : int list) : int list =

# List.fold_left (fun accum elt -> elt :: accum)

# [] lst ;;

val reverse : int list -> int list = <fun>

Taking advantage of partial application, we have
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# let reverse : int list -> int list =

# List.fold_left (fun accum elt -> elt :: accum)

# [] ;;

val reverse : int list -> int list = <fun>

# reverse [1; 2; 3] ;;

- : int list = [3; 2; 1]

Solution to Exercise 59 We want to repeatedly “cons” the elements of

the first list onto the second. A fold_right will work for this purpose.

But there’s a subtlety here. The :: to combine an element and a list is

a value constructor, not a function. As such, it can’t be passed as an

argument. We can construct a function that does the same thing, for

instance, fun elt lst -> elt :: lst, but conveniently, the List

module already provides such a function, naturally named cons, which

we use here.

# let append (xs : int list) (ys : int list) : int list =

# List.fold_right List.cons xs ys ;;

val append : int list -> int list -> int list = <fun>

Solution to Exercise 60

# let rec odds_evens (lst : 'a list) : 'a list * 'a list =

# match lst with

# | [] -> [], []

# | [a] -> [a], []

# | odds_head :: evens_head :: tail ->

# let odds_tail, evens_tail = odds_evens tail in

# (odds_head :: odds_tail), (evens_head :: evens_tail) ;;

val odds_evens : 'a list -> 'a list * 'a list = <fun>

Solution to Exercise 61 The odds_evens function is typed as odds_-

evens : ’a list -> (’a list * ’a list). Note the polymorphic

type.

Solution to Exercise 62 Taking advantage of partial application:

# let sum =

# List.fold_left (+) 0 ;;

val sum : int list -> int = <fun>

Solution to Exercise 63

# let luhn (nums : int list) : int =

# let odds, evens = odds_evens nums in

# let s = sum ((List.map doublemod9 odds) @ evens) in

# 10 - (s mod 10) ;;

val luhn : int list -> int = <fun>

Solution to Exercise 64 Here are some possible solutions, with com-

mentary on how to think through the problems.



430 P RO G R A M M I N G W E L L

1. You were asked to construct an expression that bears a particular

type as inferred by OCaml. The constraint that there be “no explicit

typing annotations” was intended to prevent trivial solutions such

as this:

# let (f : bool * bool -> bool) =

# fun _ -> true in

# f ;;

- : bool * bool -> bool = <fun>

or even

# ((fun _ -> failwith "") : bool * bool -> bool) ;;

- : bool * bool -> bool = <fun>

where the explicit type annotation does the work. The structure of

the code does little (respectively, nothing) to manifest the requested

type.

A simple solution relies on the insight that the required type is just

the uncurried version of the type for the (&&) operator.

# let f (x, y) =

# x && y in

# f ;;

- : bool * bool -> bool = <fun>

A typical approach to this problem is to use a top-level let defini-

tion of a function, such as this:

# let f (x, y) = x && y ;;

val f : bool * bool -> bool = <fun>

Strictly speaking, this is not an expression of OCaml that returns a

value, but rather a top-level command that names a value, though

the value is of the appropriate type. The value itself can be con-

structed as a self-contained expression either by using a local

let...in (as above) or an anonymous function:

# fun (x, y) -> x && y ;;

- : bool * bool -> bool = <fun>

2. In these problems that ask for a function of a given type, it makes

sense to start by building the first line of a let definition of the func-

tion with its arguments: let f x = ... and then figure out how

to force x and the result to be of the right types. Here, x should be

an ’a list, so we better not operate nontrivially on any of its el-

ements. Let’s match against the list as would typically happen in a

recursive function. This provides the skeleton of the code:



S O LU T I O N S TO S E L E C T E D E X E RC I S E S 431

let f xs =

match xs with

| [] -> ...

| h :: t -> ... in

f ;;

Now, we need to make sure the result type is bool list, taking care

not to further instantiate ’a. We can insert any values of the right

type as return values, but to continue the verisimilitude, we use the

empty list for the first case and a recursive call for the second. (Note

the added rec to allow the recursive call.)

# let rec f xs =

# match xs with

# | [] -> []

# | _h :: t -> true :: (f t) in

# f ;;

- : 'a list -> bool list = <fun>

Of course, no recursion is really necessary. For instance, even some-

thing as simple as the following does the job (ignoring the inexhaus-

tive match warning).

# fun [] -> [true] ;;

Line 1, characters 0-16:

1 | fun [] -> [true] ;;

^^^^^^^^^^^^^^^^

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:
_::_

- : 'a list -> bool list = <fun>

3. A natural approach is to apply the first argument (a function) to a

pair composed of the second and third arguments, thereby enforc-

ing that the first argument is of type ’a * ’b -> ..., viz.,

# let f g a b =

# g (a, b) in

# f ;;

- : ('a * 'b -> 'c) -> 'a -> 'b -> 'c = <fun>

but this by itself does not guarantee that the result type of the func-

tion is ’a. Rather, f types as (’a * ’b -> ’c) -> ’a -> ’b ->

’c. (It’s the curry function from lab!) We can fix that by, say, com-

paring the result with a known value of the right type, namely a.

# let f g a b =

# if g (a, b) = a then a else a in

# f ;;

- : ('a * 'b -> 'a) -> 'a -> 'b -> 'a = <fun>
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4. Again, we start with a let definition that just lays out the types of

the arguments in a pattern, and then make sure that each compo-

nent has the right type. One of many possibilities is

# let f (i, a, b) alst =

# if i = 0 && (List.hd alst) = a then [b] else []

# in f ;;

- : int * 'a * 'b -> 'a list -> 'b list = <fun>

5. We force the argument to be a bool by placing it in the test part of a

conditional, and return the only value that we can.

# fun b -> if b then () else () ;;

- : bool -> unit = <fun>

6. We want to construct a polymorphic, higher-order function that

takes arguments of type ’a and ’a -> ’b; let’s call this function

f. Notice that the argument of type ’a -> ’b is also a function;

let’s call this argument function g. Conveniently, the input to the

argument function g is of the same type as the first input to the

higher-order function f, that is, of type ’a. Analogously, the output

of the argument function g is of the same type as the output of the

higher-order function f, that is, of type ’b. We can thus simply

apply g to the first argument of f and return the result:

# let f x g = g x ;;

val f : 'a -> ('a -> 'b) -> 'b = <fun>

The function f is the reverse application function!

# ( |> ) ;;

- : 'a -> ('a -> 'b) -> 'b = <fun>

7. This question is deceptively simple. The trick here is that the func-

tion is polymorphic in both its inputs and outputs, yet the argu-

ments and return type may be different. In fact, we circumvent this

issue by simply not returning a value at all. There are two ways to

approach this:

(a) Raise an exception (to be introduced in Section 10.3) instead of

returning:

# let f x y =

# if x = y then failwith "true" else failwith "false" ;;

val f : 'a -> 'a -> 'b = <fun>

(b) Recur indefinitely to prevent a return:

# let rec f x y =

# if x = y then f x y else f x y ;;

val f : 'a -> 'a -> 'b = <fun>

or even more elegantly:
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# let rec f x y = f y x ;;

val f : 'a -> 'a -> 'b = <fun>

Solution to Exercise 65 All that needs to be changed from the

monomorphic version in the preceding chapter is the typing infor-

mation in the header. The definition itself naturally works polymorphi-

cally.

# let rec fold (f : 'a -> 'b -> 'b)

# (xs : 'a list)

# (init : 'b)

# : 'b =

# match xs with

# | [] -> init

# | hd :: tl -> f hd (fold f tl init) ;;

val fold : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

# let rec filter (test : 'a -> bool)

# (lst : 'a list)

# : 'a list =

# match lst with

# | [] -> []

# | hd :: tl -> if test hd then hd :: filter test tl

# else filter test tl ;;

val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

Solution to Exercise 66

1. Since x is an argument of a float operator, it is of type float. The

result is also of type float. Thus f is of function type float ->

float, as can be easily verified in the R E P L:

# let f x =

# x +. 42. ;;

val f : float -> float = <fun>

2. The function f is clearly of a function type taking two (curried)

arguments, that is, of type ... -> ... -> .... The argument g is

also a function, apparently from integers to some result type ’a, so f

is of type (int -> ’a) -> int -> ’a.

# let f g x =

# g (x + 1) ;;

val f : (int -> 'a) -> int -> 'a = <fun>

3. The argument type for f, that is, the type of x, must be a list, say, ’a

list. The result type can be gleaned from the two possible return

values x and h. Since h is an element of x, it must be of type ’a.

Thus the return type is both ’a and ’a list. But there is no type

that matches both. Thus, the expression does not type.
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# let f x =

# match x with

# | [] -> x

# | h :: t -> h ;;

Line 4, characters 12-13:

4 | | h :: t -> h ;;

^

Error: This expression has type 'a but an expression was expected

of type

'a list

The type variable 'a occurs inside 'a list

4. The result type for f must be the same as the type of a since it re-

turns a in one of the match branches. Since x is matched as a list, it

must be of list type. So far, then, we have f of type ... list -> ’a

-> ’a. The elements of x (such as h) are apparently functions, as

shown in the second match branch where h is applied to something

of type ’a and returning also an ’a; so h is of type’a -> ’a. The

final typing is f : (’a -> ’a) list -> ’a -> ’a.

# let rec f x a =

# match x with

# | [] -> a

# | h :: t -> h (f t a) ;;

val f : ('a -> 'a) list -> 'a -> 'a = <fun>

5. The match tells us that the first argument x is a pair, whose element

w is used as a bool; we’ll take the type of the element z to be ’a. The

second argument y is applied to z (of type ’a) and returns a bool

(since the then and else branches of the conditional tell us that y z

and w are of the same type). Thus the type of f is given by the typing

f : bool * ’a -> (’a -> bool) -> bool.

let f x y =

match x with

| (w, z) -> if w then y z else w ;;

6. We can see that we apply y to x twice. There’s nothing else in this

function that would indicate a specific typing, so we know our

function is polymorphic. Let’s say the type of y is ’a. We know that

since we can apply x to two arguments of type ’a, and there are no

constraints on the output type of x, x must be of type ’a -> ’a ->

’b. Since f returns x y y, we know the output type of f must be the

same as the output type of x. The final typing is thus f : (’a ->

’a -> ’b) -> ’a -> ’b.

# let f x y =

# x y y ;;

val f : ('a -> 'a -> 'b) -> 'a -> 'b = <fun>
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7. This definition does not type. The argument y is here applied as a

function, so its type must be of the form ’a -> ’b. Yet the function

y can take y as an argument. This implies that ’a, the type of the in-

put to y, must be identical to ’a -> ’b, the type of y itself. There is

no finite type satisfying that constraint. A type cannot be a subpart

of itself.

# let f x y =

# x (y y) ;;

Line 2, characters 5-6:

2 | x (y y) ;;

^

Error: This expression has type 'a -> 'b

but an expression was expected of type 'a

The type variable 'a occurs inside 'a -> 'b

8. The code matches x with option types formed with Some or None, so

we know that x must be of type ’a option for some ’a. We also see

that when deconstructing x into Some y, we perform subtraction

on y in the recursive function call: f (Some (y - 1)). We can thus

conclude y is of type int, and can further specify x to be of type

int option. Finally, note that the case None | Some 0 -> None

is the sole terminal case in this recursive function. Because this

case returns None, we know that if f terminates, f returns None. Our

function f therefore outputs a value of type ’a option. We cannot

infer a more specific type for ’a because we always return None and

thus have no constraints on ’a. The final typing is thus as follows: f

: int option -> ’a option.

# let rec f x =

# match x with

# | None

# | Some 0 -> None

# | Some y -> f (Some (y - 1)) ;;

val f : int option -> 'a option = <fun>

9. Since x is in the condition of an if statement (if x then ...), we

know that x must be of type bool. We also can see that both return

paths of the code return a list; these lists contain x, so we know f

returns a bool list. Since y appears in the list [not x; y], we

therefore know y must be of type bool as well. This gives us the

overall typing of f : bool -> bool -> bool list.

# let f x y =

# if x then [x]

# else [not x; y] ;;

val f : bool -> bool -> bool list = <fun>

Solution to Exercise 67 To implement map f lst with a fold, we can

start with the empty list and at each step cons on f applied to each
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element of the lst. Here are two solutions, implemented using fold_-

left and fold_right, respectively.

let map (f : 'a -> 'b) (lst : 'a list) : 'b list =

List.fold_right (fun elt accum -> f elt :: accum)

lst [] ;;

let map (f : 'a -> 'b) (lst : 'a list) : 'b list =

List.fold_left (fun accum elt -> accum @ [f elt])

[] lst ;;

The latter can be simplified through use of partial application to

let map (f : 'a -> 'b) : 'a list -> 'b list =

List.fold_left (fun accum elt -> accum @ [f elt]) [] ;;

Solution to Exercise 68 An implementation of fold_right solely in

terms of a single call to map over the same list is not possible. The type

of fold_right makes clear that the output may be of any type. But map

always returns a list. So a single call to map cannot generate the range

of answers that fold_right can.

One can use map in an implementation of fold_right in a trivial

way, for instance, by vacuously mapping the identity function over

the list argument of fold_right before doing the real work, but that

misses the point of the question, which asks that the implementation

use only a call to List.map.

Solution to Exercise 69 We approach this problem similarly to how we

implemented filter. The distinction here is that the base case returns

two empty lists rather than one, so we have to deconstruct the tuple

created by the recursive function call. This results in two output lists –

the yeses and the nos – so we simply pass the current element into the

test function and append to the appropriate output list according to

the result.

# let rec partition (test : 'a -> bool)

# (lst : 'a list)

# : 'a list * 'a list =

# match lst with

# | [] -> [], []

# | hd :: tl ->

# let yeses, nos = partition test tl in

# if test hd then hd :: yeses, nos

# else yeses, hd :: nos ;;

val partition : ('a -> bool) -> 'a list -> 'a list * 'a list =

<fun>

Solution to Exercise 70

# let rec interleave (n : 'a) (lst : 'a list)

# : 'a list list =
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# match lst with

# | [] -> [[n]]

# | x :: xs -> (n :: x :: xs)

# :: List.map (fun l -> x :: l)

# (interleave n xs) ;;

val interleave : 'a -> 'a list -> 'a list list = <fun>

# let rec permutations (lst : 'a list) : 'a list list =

# match lst with

# | [] -> [[]]

# | x :: xs -> List.concat (List.map (interleave x)

# (permutations xs)) ;;

val permutations : 'a list -> 'a list list = <fun>

Solution to Exercise 71 We start by providing implementations for sum

and prods making use of the higher-order polymorphic list processing

functions of the List module.

# let sum = List.fold_left (+) 0 ;;

val sum : int list -> int = <fun>

# let prods = List.map (fun (x, y) -> x * y) ;;

val prods : (int * int) list -> int list = <fun>

The composition function @+ is simply

# let (@+) f g x = f (g x) ;;

val ( @+ ) : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

We can use it to implement the weighted_sum function and test it out:

# let weighted_sum = sum @+ prods ;;

val weighted_sum : (int * int) list -> int = <fun>

# weighted_sum [(1, 3); (2, 4); (3, 5)] ;;

- : int = 26

Solution to Exercise 72 The R E P L response in the solution to Exer-

cise 71 reveals the polymorphic type of compose as (’a -> ’b) ->

(’c -> ’a) -> ’c ->’b, or equivalently but more intuitively, (’b ->

’c) -> (’a -> ’b) -> (’a -> ’c).

Solution to Exercise 73 The typings are hd : ’a list -> ’a and tl

: ’a list -> ’a list, as attested by the R E P L:

# List.hd ;;

- : 'a list -> 'a = <fun>

# List.tl ;;

- : 'a list -> 'a list = <fun>

Solution to Exercise 74 That design decision undoubtedly was based

on thinking ahead about partial application.

By placing the list argument first, partial application can be used to

generate a function that returns the n-th element of a particular list,

for example
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# let pi_digit = List.nth [3;1;4;1;5;9] ;;

val pi_digit : int -> int = <fun>

# pi_digit 0 ;;

- : int = 3

# pi_digit 2 ;;

- : int = 4

Solution to Exercise 75 We can first check for the additional anoma-

lous condition.

# let rec nth_opt (lst : 'a list) (n : int) : 'a option =

# if n < 0 then None

# else

# match lst with

# | [] -> None

# | hd :: tl ->

# if n = 0 then Some hd

# else nth_opt tl (n - 1) ;;

val nth_opt : 'a list -> int -> 'a option = <fun>

Alternatively, the check could have been done inside the second match

statement. Why might this be the dispreferred choice?

Solution to Exercise 76

# let rec last_opt (lst : 'a list) : 'a option =

# match lst with

# | [] -> None

# | [elt] -> Some elt

# | _ :: tl -> last_opt tl ;;

val last_opt : 'a list -> 'a option = <fun>

Solution to Exercise 77 Here’s a solution that peforms all list calcula-

tions directly, making no use of the List library. Can you simplify this

using the List library?

# let variance (lst : float list) : float option =

# let rec sum_length (lst : float list) : float * int =

# match lst with

# | [] -> 0., 0

# | hd :: tl -> let sum, len = sum_length tl in

# hd +. sum, 1 + len in

# let sum, length = sum_length lst in

# if length < 2

# then None

# else let flength = float length in

# let mean = sum /. flength in

# let rec residuals (lst : float list) : float =

# match lst with

# | [] -> 0.

# | hd :: tl -> (hd -. mean) ** 2.

# +. residuals tl in

# Some (residuals lst /. (flength -. 1.)) ;;

val variance : float list -> float option = <fun>
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Solution to Exercise 79 If the first two patterns are [], [] and _, _,

the third branch of the match can never be reached. The R E P L gives an

appropriate warning to that effect:

# let rec zip_opt' (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list option =

# match xs, ys with

# | [], [] -> Some []

# | _, _ -> None

# | xhd :: xtl, yhd :: ytl ->

# match zip_opt' xtl ytl with

# | None -> None

# | Some ztl -> Some ((xhd, yhd) :: ztl) ;;

Line 7, characters 2-24:

7 | | xhd :: xtl, yhd :: ytl ->

^^^^^^^^^^^^^^^^^^^^^^

Warning 11 [redundant-case]: this match case is unused.

val zip_opt' : 'a list -> 'b list -> ('a * 'b) list option = <fun>

Solution to Exercise 80 The function can be implemented as:

# let zip_safe (x : 'a list)

# (y : 'b list)

# : ('a * 'b) list =

# try

# zip x y

# with

# Invalid_argument _msg -> [] ;;

val zip_safe : 'a list -> 'b list -> ('a * 'b) list = <fun>

However, this approach to handling anomalous conditions in zip uses

in-band error signaling, which we’d always want to avoid; the error

value also happens to be the value returned by the non-error call zip

[] [].

Solution to Exercise 81

# let rec fact (n : int) : int =

# if n < 0 then

# raise (Invalid_argument "fact: arg less than zero")

# else if n = 0 then 1

# else n * fact (n - 1) ;;

val fact : int -> int = <fun>

Solution to Exercise 83

1. # let f x y =

# Some (x + y) ;;

val f : int -> int -> int option = <fun>

2. # let f g =

# Some (1 + g 3) ;;

val f : (int -> int) -> int option = <fun>
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3. # let f x g = g x ;;

val f : 'a -> ('a -> 'b) -> 'b = <fun>

or

# let f = ( |> ) ;;

val f : 'a -> ('a -> 'b) -> 'b = <fun>

4. # let rec f xl yl =

# match xl, yl with

# | (Some xhd :: xtl), (Some yhd :: ytl)

# -> (xhd, yhd) :: f xtl ytl

# | (None :: _), _

# | _, (None :: _)

# | [], _

# | _, [] -> [] ;;

val f : 'a option List.t -> 'b option List.t -> ('a * 'b) List.t =

<fun>

Solution to Exercise 84

1. No type exists for f. Assume that the type of f is some instantiation

of the function type ’a -> ’b. Since the first match clause returns

f, the result type ’b of f must be the entire type ’a -> ’b of f itself.

But a type can’t contain itself as a subpart. So no type for f exists.

2. The type of f is bool -> bool * bool. In fact, f always returns the

same value, the pair true, true.

Solution to Exercise 85 Taking advantage of the fact that f always

returns the same value:

let f (b : bool) = true, true ;;

Note that the explicit typing of b is required to force the function type

to be bool -> bool * bool instead of ’a -> bool * bool.

Solution to Exercise 87 The R E P L provides the answer:

# ( |> ) ;;

- : 'a -> ('a -> 'b) -> 'b = <fun>

Solution to Exercise 88

# let ( |> ) arg func = func arg ;;

val ( |> ) : 'a -> ('a -> 'b) -> 'b = <fun>

Making the types explicit:

# let ( |> ) (arg : 'a) (func : 'a -> 'b) : 'b =

# func arg ;;

val ( |> ) : 'a -> ('a -> 'b) -> 'b = <fun>

Solution to Exercise 89 There are only six card types, so one might be

inclined to just have an enumerated type with six constructors:
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type card =

| KSpades

| QSpades

| JSpades

| KDiamonds

| QDiamonds

| JDiamonds ;;

The inelegance of this approach should be clear.

The crucial point here is that the information be kept in a structured

form (as specified in the problem), clearly keeping separate informa-

tion about the suit and the value of a card. This calls for enumerated

types for suits and values.

The type for cards can integrate a suit and a value, either by pairing

them or putting them into a record. Here, we take the latter approach.

type suit = Spades | Diamonds ;;

type cardval = King | Queen | Jack ;;

type card = {suit : suit; cardval : cardval} ;;

Note that the field names and type names can be identical, since they

are in different namespaces.

Using ints for the suits and card values, for instance,

type card = {suit : int; cardval : int} ;;

is inferior as the convention for mapping between int and card suit

or value is obscure. At best it could be made clear in documentation,

but the enumerated type makes it clear in the constructors themselves.

Further, the int approach allows ints that don’t participate in the

mapping, and thus doesn’t let the language help with catching errors.

We have carefully ordered the constructors from better to worse

and ordered the record components from higher to lower order so that

comparisons on the data values will accord with the “better” relation,

as seen in the solution to Problem 91.

Solution to Exercise 90 The better function is supposed to take two

cards and return a truth value, so if the arguments are taken curried,

then

better : card -> card -> bool

Alternatively, but less idiomatically, the function could be uncurried:

better : card * card -> bool

Solution to Exercise 91 The following oh-so-clever approach works

if you carefully order the constructors and fields from best to worst

and higher order (suit) before lower order (cardval), as is done in the

solution to Problem 89.
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let better (card1 : card) (card2 : card) : bool =

card1 < card2 ;;

This relies on the fact that the < operator has a kind of ad hoc poly-

morphism, which works on enumerated and variant types, pairs, and

records inductively to define an ordering on values of those types.

Relying on this property of variant types behooves you to explicitly

document the fact at the type definition so it gets preserved.

To not rely on the ad hoc polymorphism of <, we need a more ex-

plicit definition like this:

let better ({suit = suit1; cardval = cardval1} : card)

({suit = suit2; cardval = cardval2} : card)

: bool =

let to_int v = match v with

| King -> 3

| Queen -> 2

| Jack -> 1 in

if suit1 = suit2 then

(to_int cardval1) > (to_int cardval2)

else suit1 = Spades ;;

though this is hacky since it doesn’t generalize well to adding more

suits. Of course, a separate map of suits to an int value would solve

that problem. Many other approaches are possible.

Solution to Exercise 94

# let str_bintree =

# Node ("red",

# Node ("orange",

# Node ("green",

# Node ("blue", Empty, Empty),

# Node ("indigo", Empty, Empty)),

# Empty),

# Node ("yellow",

# Node ("violet", Empty, Empty),

# Empty)) ;;

val str_bintree : string bintree =

Node ("red",

Node ("orange",

Node ("green", Node ("blue", Empty, Empty),

Node ("indigo", Empty, Empty)),

Empty),

Node ("yellow", Node ("violet", Empty, Empty), Empty))

Solution to Exercise 95

# let rec preorder (t : 'a bintree) : 'a list =

# match t with

# | Empty -> []

# | Node (n, left, right) ->

# n :: preorder left @ preorder right ;;

val preorder : 'a bintree -> 'a list = <fun>
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Solution to Exercise 96 Let’s start with the tree input and the output

of the tree traversal. The third argument to foldbt is a binary tree of

type ’a bintree, say. The result of the traversal is a value of type, say,

’b. Then the first argument, which serves as the return value for empty

trees must also be of type ’b and the function calculating the values for

internal nodes is given the value stored at the node (’a) and the two

recursively returned values and returns a ’b; it must be of type ’a ->

’b -> ’b -> ’b. Overall, the appropriate type for foldbt is

'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b

Solution to Exercise 97 A directly recursive implementation looks like

# let rec foldbt (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# match t with

# | Empty -> emptyval

# | Node (value, left, right) ->

# nodefn value (foldbt emptyval nodefn left)

# (foldbt emptyval nodefn right) ;;

val foldbt : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b =

<fun>

Notice that each time foldbt is recursively called, it passes along

the same first two arguments.The following version of foldbt uses a

local function to avoid this redundancy.

# let foldbt (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# let rec foldbt' t =

# match t with

# | Empty -> emptyval

# | Node (value, left, right) ->

# nodefn value (foldbt' left) (foldbt' right) in

# foldbt' t ;;

val foldbt : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b =

<fun>

Here’s a third slightly less attractive alternative, which introduces a

level of function application indirection and doesn’t take advantage of

the lexical scoping.

# let rec foldbt (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# let foldbt' = foldbt emptyval nodefn in

# match t with

# | Empty -> emptyval
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# | Node (value, left, right) ->

# nodefn value (foldbt' left)

# (foldbt' right) ;;

val foldbt : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b =

<fun>

At least it uses the partial application of foldbt in the definition of

foldbt’.

Solution to Exercise 98 By abstracting out the generic tree walking,

this and other functions can be succinctly implemented. The value of

the sum for an empty tree is 0, and the function to be applied to the

value at a node and the values of the subtrees should just sum up those

three values.

# let sum_bintree =

# foldbt 0 (fun v l r -> v + l + r) ;;

val sum_bintree : int bintree -> int = <fun>

# preorder int_bintree ;;

- : int list = [16; 93; 3; 42]

Solution to Exercise 99

# let preorder tree =

# foldbt [] (fun v l r -> v :: l @ r) tree ;;

val preorder : 'a bintree -> 'a list = <fun>

# preorder int_bintree ;;

- : int list = [16; 93; 3; 42]

Why not partially apply foldbt, as in the sum_bintree example?

Because of the problem with weak type variables noted in Section 9.6.

Solution to Exercise 100

# let find (tree : 'a bintree) (value : 'a) : bool =

# foldbt false

# (fun v l r -> (value = v) || l || r)

# tree ;;

val find : 'a bintree -> 'a -> bool = <fun>

You’ll want to avoid redundant locutions like (l = true) in the sec-

ond to last line. See Section C.5.2 in the style guide.

Solution to Exercise 101 An implementation with the top element

at the end of the list requires walking the whole list to dequeue an

element. We add a function split to perform the walk. To keep track

of the remaining queue elements, split uses an accumulator to add

the elements we walk past. This implementation is considerably more

complicated and requires repeatedly adding elements to the end of the

accumulator, making it far less efficient as well.
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# (* IntQueue -- An implementation of integer queues as

# int lists, where the elements are kept with older

# elements closer to the end of the list. *)

# module IntQueueAlternate =

# struct

# type int_queue = int list

# let empty_queue : int_queue = []

# let enqueue (elt : int) (q : int_queue)

# : int_queue =

# elt :: q

#

# let rec split (q : int_queue) (rest : int_queue) : int *
# int_queue =

# match q with

# | [] -> raise (Invalid_argument

# "dequeue: empty queue")

# | [top] -> top, rest

# | hd :: tl ->

# split tl (rest @ [hd])

#

# let dequeue (q : int_queue) : int * int_queue =

# split q []

# end ;;

module IntQueueAlternate :

sig

type int_queue = int list

val empty_queue : int_queue

val enqueue : int -> int_queue -> int_queue

val split : int_queue -> int_queue -> int * int_queue

val dequeue : int_queue -> int * int_queue

end

Solution to Exercise 102 We specify the signature of the dictionary to

provide only an abstract type and the types of the functions, along with

an exception to raise in case of duplicate keys.

# module type DICTIONARY = sig

# exception KeyAlreadyExists of string

# type ('key, 'value) dictionary

# val empty : ('key, 'value) dictionary

# val add : ('key, 'value) dictionary -> 'key -> 'value

# -> ('key, 'value) dictionary

# val lookup : ('key, 'value) dictionary -> 'key -> 'value option

# end ;;

module type DICTIONARY =

sig

exception KeyAlreadyExists of string

type ('key, 'value) dictionary

val empty : ('key, 'value) dictionary

val add :

('key, 'value) dictionary ->

'key -> 'value -> ('key, 'value) dictionary

val lookup : ('key, 'value) dictionary -> 'key -> 'value option

end
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In this implementation of the signature, dictionaries are represented

as lists of pairs of keys and values. Unlike the implementation in Sec-

tion 11.3, here we take advantage of some List module functions to

simplify the implementation.

# module Dictionary : DICTIONARY = struct

# exception KeyAlreadyExists of string

# type ('key, 'value) dictionary = ('key * 'value) list

# let empty = []

# let add dict key value =

# if List.exists (fun (k, _) -> k = key) dict then

# raise (KeyAlreadyExists "add: duplicate key")

# else

# (key, value) :: dict

# let lookup dict key =

# try Some (snd (List.find (fun (k, _) -> k = key) dict))

# with Not_found -> None

# end ;;

module Dictionary : DICTIONARY

Clearly, dictionaries with duplicate keys canot be constructed using the

Dictionary module.

Solution to Exercise 103 What we were looking for here is the proper

definition of a functor named MakeImaging taking an argument, where

the functor and argument are appropriately signature-constrained.

module MakeImaging (P : PIXEL)

: (IMAGING with type pixel = P.t) =

struct

(* ... the implementation would go here ... *)

end ;;

Typical problems are to leave out the : PIXEL, the : IMAGING, or the

sharing constraint.

Solution to Exercise 104 Applying the functor to the IntPixel mod-

ule is simply

module IntImaging = MakeImaging(IntPixel) ;;

Optionally, signature specifications can be added, so long as appropri-

ate sharing constraints are provided.

Solution to Exercise 105 Here, a local open simplifies things.

let open IntImaging in

depict (const (to_pixel 5000) (100, 100)) ;;

Solution to Exercise 106

module MakeInterval (Point : COMPARABLE)

: (INTERVAL with type point = Point.t) =

struct

(* ... the implementation would go here ... *)

end ;;
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Solution to Exercise 107

module DiscreteTime : (COMPARABLE with type t = int) =

struct

type t = int

type order = Less | Equal | Greater

let compare x y = if x < y then Less

else if x = y then Equal

else Greater

end ;;

Solution to Exercise 108

module DiscreteTimeInterval =

MakeInterval (DiscreteTime) ;;

Solution to Exercise 109

let intersection i j =

if relation i j = Disjoint then None

else let (x, y), (x', y') = endpoints i, endpoints j in

Some (interval (max x x') (min y y')) ;;

Solution to Exercise 110 There are myriad solutions here. The idea is

just to establish a few intervals and then test that you can recover some

endpoints or relations. Here are a few possibilities:

open Absbook ;;

let test () =

let open DiscreteTimeInterval in

let i1 = interval 1 3 in

let i2 = interval 2 6 in

let i3 = interval 0 7 in

let i4 = interval 4 5 in

unit_test (relation i1 i4 = Disjoint) "disjoint\n";

unit_test (relation i1 i2 = Overlaps) "overlaps\n";

unit_test (relation i1 i3 = Contains) "contains\n";

unit_test

(relation (union i1 i2) i4 = Contains) "unioncontains\n";

let i23 = intersection i1 i2 in

un

it_test (let

Some e23 = i23 in endpoints e23 = (2, 3)) "intersection";;

print_endline "tests completed" ;;

Solution to Exercise 111 Since we only need the float functionality for

weight, a simple definition is best.

# type weight = float ;;

type weight = float

Solution to Exercise 112 Since we want all shapes to be one of three

distinct types – either a circle OR an oval OR a fin – we want to use a

disjunctive type here. Variant types get the job done.
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# type shape =

# | Circle

# | Oval

# | Fin ;;

type shape = Circle | Oval | Fin

Solution to Exercise 113 Since we want each object to have two at-

tributes – a weight AND a shape – we want to use conjunction here. We

can construct a record type obj to represent objects. This allows us to

ensure each object has a weight and shape that are of the appropriate

type.

# type obj = { weight : weight; shape : shape } ;;

type obj = { weight : weight; shape : shape; }

Solution to Exercise 114 In the header of the functor, we want to

explicate the name of the functor and the type of the input module, as

well as any sharing constraint. We want to transform any module of

type BINTREEARG into a module of type BINTREE. We also need to add

sharing constraints so that the types for leaft and nodet in the output

module of type BINTREE are of the same type as the leaft and nodet

in the Element module.

module MakeBintree (Element : BINTREE_ARG)

: (BINTREE with

type leaft = Element.leaft and

type nodet = Element.nodet) =

struct

..... (* the implementation would go here *)

end ;;

Solution to Exercise 115 To define a Mobile with objs as leaves

and weights as nodes, we just need to pass in a module of type

BINTREEARG. This argument module will also have leaves of type obj

and nodes of type weight:

module Mobile = MakeBinTree (struct

type leaft = obj

type nodet = weight

end) ;;

An alternative is to explicitly define the argument values:

module MobileArg =

struct

type leaft = obj

type nodet = weight

end ;;

module Mobile = MakeBintree (MobileArg) ;;

If a module type is given to the argument module, however, there need

to be sharing constraints. So the following won’t work:
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module MobileArg : BINTREE_ARG =

struct

type leaft = obj

type nodet = weight

end ;;

module Mobile = MakeBintree (MobileArg) ;;

It should be

module MobileArg : (BINTREE_ARG with type leaft = obj

and type nodet = weight) =

struct

type leaft = obj

type nodet = weight

end ;;

module Mobile = MakeBintree (MobileArg) ;;

Solution to Exercise 116 The only aspects pertinent to the use of a

module are manifest in the signature. A user need not know how a

module of type BINTREE, say, makes a leaf; a user only needs to know

the signature of the make_leaf function in order to use it. A user in fact

cannot access the implementation details because we’ve constrained

the module to the BINTREE interface Similarly, a user need not know

how the functor MakeBintree works, as implementation details would

not be accessible to the user anyway. So long as a user knows the

functor’s signature, they know if they pass in any module following

the BINTREE_ARG signature, the functor will return a module follwing

the BINTREE signature.

Solution to Exercise 117 We construct the mobile using the make_-

leaf and make_node functions in the Mobile module.

let mobile1 =

let open Mobile in

make_node

1.0

(make_leaf {shape = Oval; weight = 9.0})

(make_node

1.0

(make_leaf {shape = Fin; weight = 3.5})

(make_leaf {shape = Fin; weight = 4.5})) ;;

Solution to Exercise 118 The size function takes in a binary tree

representing a mobile and returns the number of leaves in that tree.

The type is thus Mobile.tree -> int.

Solution to Exercise 119 Notice that we pass in mobile as an ar-

gument to size, only to just pass it in again as the last argument to

Mobile.walk; partial application allows us to simplify as follows:
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let size =

Mobile.walk (fun _leaf -> 1)

(fun _node left_size right_size ->

left_size + right_size) ;;

Solution to Exercise 120 Let’s first think about the signature of

shape_count. We want shape_count to take in a value of type shape

and output an int, so its type is shape -> int, leading to a first line of

let shape_count (s : shape) : int = ...

We’re told we want to use the walk function here. Since the walk func-

tion does the hard work of traversing the Mobile.tree for us, we just

need to pass in the proper arguments to walk in order to construct

the function shape_count. The walk function is of type (leaft ->

’a) -> (nodet -> ’a -> ’a -> ’a) -> tree -> ’a and takes in

two functions, one specifying behavior for leaves and one for nodes.

If we can define these two functions, we can easily define shape. Let’s

start with the function that specifies how we want to count leaves; we

need a function of type leaf -> ’a. The shape_count of a single leaf

should be 1 if the leaf matches the desired shape s and 0 otherwise. We

can construct an anonymous function that achieves this functionality

as follows:

fun leaf -> if leaf.shape = s then 1 else 0

We now want to address the case of nodes. Nodes don’t have shapes

themselves, but rather connect to other subtrees that might. To find

the shape count of a node, we just need to add the shape counts of its

subtrees.

fun _node l r -> l + r ;;

Putting it all together, we get

let shape_count (s : shape) =

Mobile.walk

(fun leaf -> if leaf.shape = s then 1 else 0)

(fun _node left_count right_count ->

left_count + right_count) ;;

Solution to Exercise 121 No, this mobile is not balanced. To deter-

mine whether the mobile is balanced, we can just sum the total weight

on each node. The right subtree connects two submobiles of different

weights (3.5 and 4.5).

Solution to Exercise 122 Again, we can use the walk function here

to avoid traversing the tree directly. We will again need to come up

with two functions to pass into walk, one for the leaves and one for the

nodes. Let’s look at the base case, leaves. A leaf is always balanced, so

we just ned to return Some w, where w is the weight of the leaf.
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fun leaf -> Some leaf.weight

Now, let’s look at the nodes. We want a function of the form nodet ->

’a -> ’a -> ’a, where the first argument is the node itself and the

remaining two are the results of walk on the left subtree and walk on

the right subtree, respectively. We want to ensure our node is balanced:

this requires that the left and right subtrees are each balanced and are

of equal weight. If these conditions are met we want to return If the

subtrees aren’t balanced or are of unequal weight, we want to return

Some w, where w is the sum of the weights of the connector and its

subtrees. We return None otherwise.

fun node left right ->

match left, right with

| Some wt1, Some wt2 ->

if wt1 = wt2 then Some (node +. wt1 +. wt2)

else None

| _, _ -> None) ;;

Putting it all together and passing in our mobile as an argument, we

get:

let balanced (mobile : Mobile.tree) =

Mobile.walk (fun leaf -> Some leaf.weight)

(fun node left right ->

match left, right with

| Some wt1, Some wt2 ->

if wt1 = wt2 then

Some (node +. wt1 +. wt2)

else None

| _, _ -> None)

mobile ;;

Note the redundancy of passing in mobile. We can use partial applica-

tion and arrive at the following final solution:

let balanced =

Mobile.walk (fun leaf -> Some leaf.weight)

(fun node l r ->

match l, r with

| Some wt1, Some wt2 ->

if wt1 = wt2 then

Some (node +. wt1 +. wt2)

else None

| _, _ -> None) ;;

Solution to Exercise 124 Since the + operator is left-associative, the

concrete syntax 3 + 5 + 7 corresponds to the same abstract syntax as

(3 + 5) + 7. The derivation is structured accordingly. The alternate

derivation provided in the exercise corresponds to the evaluation of

the concrete expression 3 + (5 + 7).
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Solution to Exercise 137 Rfun: “A function expression of the form fun

x -> B evaluates to itself.”

Rapp: “To evaluate an application of the form P Q, first evaluate

P to a function value of the form fun x -> B and Q to a value vQ .

Then evaluate the expression resulting from substituting vQ for free

occurrences of x in B to a value vB . The value of the full expression is

then vB .”

Solution to Exercise 139 The derivation starts as usual, until we get to

the highlighted derivation of ((fun y -> f 3) 1)[f 7→ fun x -> y].

Our better understanding of how substitution should work, as codified

in the new substitution rules, tells us that this substitution uses the

third rule, not the second, that is, we get (fun z -> (fun x-> y) 3)

1, using the fresh variable z. The derivation then continues:

let f = fun x -> y in (fun y -> f 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> y ⇓ fun x -> y

(fun z -> (fun x -> y) 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(fun z -> (fun x -> y) 3) ⇓ (fun z -> (fun x -> y) 3)

1 ⇓ 1
(fun x -> 1) 3 ⇓∣∣∣∣∣ fun x -> y ⇓ fun x -> y

y ⇓???
⇓???

⇓???

⇓???

At this point, the derivation breaks down, as the variable y is unbound.

Solution to Exercise 140

(let x = Q in R)[x 7→ P ] = let x = Q[x 7→ P ] in R

(let y = Q in R)[x 7→ P ] = let y = Q[x 7→ P ] in R[x 7→ P ]

where x ̸≡ y and y ̸∈ FV (P )

(let y = Q in R)[x 7→ P ] = let z = Q[x 7→ P ] in R[y 7→ z][x 7→ P ]

where x ̸≡ y and y ∈ FV (P ) and z is a fresh variable

Solution to Exercise 145

# module MergeSort : SORT =

# struct

# let rec split lst =

# match lst with
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# | []

# | [_] -> lst, []

# | first :: second :: rest ->

# let first', second' = split rest in

# first :: first', second :: second'

#

# let rec merge lt xs ys =

# match xs, ys with

# | [], _ -> ys

# | _, [] -> xs

# | x :: xst, y :: yst ->

# if lt x y then x :: (merge lt xst ys)

# else y :: (merge lt xs yst)

#

# let rec sort (lt : 'a -> 'a -> bool)

# (xs : 'a list)

# : 'a list =

# match xs with

# | []

# | [_] -> xs

# | _ -> let first, second = split xs in

# merge lt (sort lt first) (sort lt second)

# end ;;

module MergeSort : SORT

Solution to Exercise 146 The claims in 1, 2, 4, and 5 hold.

Solution to Exercise 147

1. Big-O notation only gives you information about the worst-case

performance as the input size becomes very large. Because of this,

it ignores lower-order terms and constants that may have a large

effect for small inputs. So A may be slower than B for some inputs,

and the statement is false.

2. Since big-O notation provides worst-case performance, and A is

polynomial in big-O, they can be guaranteed that for any input (ex-

cept for a finite set), A will run in polynomial time, so the statement

is true.

3. As a worst-case bound, big-O doesn’t say anything about average-

case performance, so the statement is false.

Solution to Exercise 148 Since length is linear in the length of its

argument, compare_lengths is linear in the sum of the lengths of its

two arguments. But that sum is less than or equal to twice the length

of the longer argument. Thus, compare_lengths is in O(2n), where n

is the length of the longer argument, hence, dropping multiplicative

constants, O(n).

An alternative implementation, which stops the recursion once the

shorter list is exhausted, is linear in the length of the shorter list.
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# let rec compare_lengths xs ys =

# match xs, ys with

# | [], [] -> 0

# | _, [] -> 1

# | [], _ -> -1

# | _xhd :: xtl, _yhd :: ytl -> compare_lengths xtl ytl ;;

val compare_lengths : 'a list -> 'b list -> int = <fun>

# compare_lengths [1] [2;3;4] ;;

- : int = -1

# compare_lengths [1;2;3] [4] ;;

- : int = 1

# compare_lengths [1;2] [3;4] ;;

- : int = 0

Solution to Exercise 150

Todd s (n) = c +Todd s (n −2)

More detail in the equation in terms of constants for different bits is

unnecessary, but benign. Note the n −2, though n −1 yields the same

complexity.

Solution to Exercise 151 Linear – O(n).

Solution to Exercise 152 The O classes are independent of multiplica-

tion or division by constants, so each “triplet” of answers after the first

are equivalent. Since f is O(n), it is also O(n2) etc. for all higher classes.

Thus, all answers from the fifth on are correct.

Solution to Exercise 153 O(n) – linear. The odds and evens function

are both linear and return a list of length linear in n. The append is

linear in the length of the odds list, so also linear in n. The sum is

linear in the length of its argument, which is identical in length to

(and thus linear in) n. The let body is constant time. Summing these

complexities up, we’re left with linear and constant terms, which is

dominated by the linear term. Hence the function is linear.

Solution to Exercise 154 Let’s start with two mutable values of type

int list ref that are structurally equal but physically distinct:

# let lstref1 = ref [1; 2; 3] ;;

val lstref1 : int list ref = {contents = [1; 2; 3]}

# let lstref2 = ref [1; 2; 3] ;;

val lstref2 : int list ref = {contents = [1; 2; 3]}

# lstref1 = lstref2 ;;

- : bool = true

# lstref1 == lstref2 ;;

- : bool = false

Modifying one of them makes them both structurally and physically

unequal:



S O LU T I O N S TO S E L E C T E D E X E RC I S E S 455

# lstref1 := [4; 5] ;;

- : unit = ()

# lstref1 = lstref2 ;;

- : bool = false

# lstref1 == lstref2 ;;

- : bool = false

Now for two values that are physically equal (that is, aliases), and

therefore structurally equal as well:

# let lstref3 = ref [1; 2; 3] ;;

val lstref3 : int list ref = {contents = [1; 2; 3]}

# let lstref4 = lstref3 ;;

val lstref4 : int list ref = {contents = [1; 2; 3]}

# lstref3 = lstref4 ;;

- : bool = true

# lstref3 == lstref4 ;;

- : bool = true

Modifying one of them retains their physical, and hence structural

equality:

# lstref3 := [4; 5] ;;

- : unit = ()

# lstref3 = lstref4 ;;

- : bool = true

# lstref3 == lstref4 ;;

- : bool = true

Solution to Exercise 155 We evaluate the expressions in the R E P L to

show their types and values, ignoring the warnings.

1. # let a = ref 3 in

# let b = ref 5 in

# let a = ref b in

# !(!a) ;;

Line 1, characters 4-5:

1 | let a = ref 3 in

^

Warning 26 [unused-var]: unused variable a.

- : int = 5

2. In this example, a is a reference to b,which is itself a reference to a.

If we take the type of a to be ’a then, b must be of type ’a ref and

a (of type ’a remember) must also be of type ’a ref ref, leading

to an infinite regress of types. The expression is thus not well-typed.

The R E P L reports accordingly.

# let rec a, b = ref b, ref a in

# !a ;;

Line 1, characters 22-27:

1 | let rec a, b = ref b, ref a in

^^^^^

Error: This expression has type 'a ref ref
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but an expression was expected of type 'a

The type variable 'a occurs inside 'a ref ref

3. Note the warning that the inner definition of a is not used; the a

used in the definition of b is the outer one, as required by lexical

scoping. (The R E P L even reports that the inner a is unused.)

# let a = ref 1 in

# let b = ref a in

# let a = ref 2 in

# !(!b) ;;

Line 3, characters 4-5:

3 | let a = ref 2 in

^

Warning 26 [unused-var]: unused variable a.

- : int = 1

4. # let a = 2 in

# let f = (fun b -> a * b) in

# let a = 3 in

# f (f a) ;;

- : int = 12

Solution to Exercise 157

1. Since we’ve just declared p as a reference to the integer 11, p is of

type int ref

# let p = ref 11 ;;

val p : int ref = {contents = 11}

2. Our variable r is a reference to our variable p. We defined p as a

reference to an integer, so r is a reference to this reference, or an int

ref ref.

# let r = ref p ;;

val r : int ref ref = {contents = {contents = 11}}

3. (a) False. We know p is of type int ref. Since we declare s as s =

ref !r, we know that s is a reference to the same value that r

references. Since !r = p, we therefore know s is also a reference

to p, and thus also of type int ref ref. The types of p and r are

therefore not the same.

# let s = ref !r ;;

val s : int ref ref = {contents = {contents = 11}}

# p ;;

- : int ref = {contents = 11}

(b) True. The explanation here is the same as for (1): Since s is a

reference to !r, it’s of type int ref ref, the type of r.

# r ;;

- : int ref ref = {contents = {contents = 11}}
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# s ;;

- : int ref ref = {contents = {contents = 11}}

(c) False. As explained in the solution to (1), p is a reference to 11,

whereas s contains a reference to that reference.

# p ;;

- : int ref = {contents = 11}

# s ;;

- : int ref ref = {contents = {contents = 11}}

(d) True. We see r and s are a reference to the same value – that

is, they both are references to p – they therefore are structurally

equivalent.

# r ;;

- : int ref ref = {contents = {contents = 11}}

# s ;;

- : int ref ref = {contents = {contents = 11}}

4. We know the starting values of p, r, and s: p is a reference to the

integer 11, and s and r are two different references to p.

To find the value of t, let’s track the value of each variable at each

step in 4–6. We first set the dereference of s to equal 14 with the

line !s = 14. We know that since s is a reference to p, as found in

question (2), !s points to the same address as p. When we reassign

!s to 14, we’re thus changing the value at the block of memory to

which p points to store the value 14.

We now set t equivalent to the expression !p + !(!r) + !(!s); in

order to compute this we must first evaluate each of the addends:

• !p: As described above, since s is a reference to p, !s points to

the same address as p; by replacing the value at that block with

14, p is now a reference to the value 14. Dereferencing p with !p

thus gives us the integer 14.

• !(!r): As described in the explanation to (3), we know r is a

reference to p, so !r points to the same address as p. We know

!(!r), therefore, is equal to !p, which we found above to be 14.

• !(!s): Again, s is still a reference to p, so !s would point to

the address as p. By dereferencing s again, with !(!s), we’re

therefore returning the value to which p points, that is, 14.

Putting it all together, we can see that this evaluates to 14 + 14 +

14, so t = 42.

# let t =

# !s := 14;

# !p + !(!r) + !(!s) ;;
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val t : int = 42

# t ;;

- : int = 42

5. Note how similar the code in 7–9 looks to the code in 4–6. Yet there

is in fact one key difference: we’re changing s itself rather than

!s. This means that instead of modifying our reference to p, we’re

replacing it. With the line s := ref 17, we’re declaring an entirely

new reference that points to an instance of the value 17, and setting

s to point to that reference. This effectively severs the tie between s

and p: s points to a to a completely separate reference to a block of

memory containing the value 17, while p continues to point to the

value 14.

As for r, note that while s and r started out structurally equivalent,

they were never physically equivalent. Think back to when we

defined s:

let s = ref !r ;;

When we dereference r with !r, we lose all association with the spe-

cific block of memory to which r refers and are only passed along

the value contained in that block. Thus while s is also a reference

to the value r references – that is, both s and r are references to p –

s and r are in fact distinct references pointing to distinct blocks in

memory. Because s and r are not structurally equivalent, s is still a

reference to p.

Putting it all together, we again evaluate each of the addends in the

expression !p + !(!r) + !(!s); !p and thus !(!r) each evaluate

to 14, while !(!s)) now evaluates to 17. We’re thus left with 14 +

14 + 17, and t = 45.

# let t =

# s := ref 17;

# !p + !(!r) + !(!s) ;;

val t : int = 45

# t ;;

- : int = 45

Solution to Exercise 158 In this solution, we explicitly raise a Failure

exception (a la List.hd and List.tl) when applied to the empty

mutable list:

# let mhead mlst =

# match !mlst with

# | Nil -> raise (Failure "mhead: empty list")

# | Cons (hd, _tl) -> hd ;;

val mhead : 'a mlist_internal ref -> 'a = <fun>
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# let mtail mlst =

# match !mlst with

# | Nil -> raise (Failure "mtail: empty list")

# | Cons (_hd, tl) -> tl ;;

val mtail : 'a mlist_internal ref -> 'a mlist = <fun>

Solution to Exercise 159 We evaluate the expressions in the R E P L to

show their types and values.

1. # let a = ref (Cons (2, ref (Cons (3, ref Nil)))) ;;

val a : int mlist_internal ref =

{contents = Cons (2, {contents = Cons (3, {contents = Nil})})}

2. # let Cons (_hd, tl) = !a in

# let b = ref (Cons (1, a)) in

# tl := !b ;

# mhead (mtail (mtail b)) ;;

Lines 1-4, characters 0-23:

1 | let Cons (_hd, tl) = !a in

2 | let b = ref (Cons (1, a)) in

3 | tl := !b ;

4 | mhead (mtail (mtail b))...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Nil

- : int = 1

Note that the type int mlist_internal ref is equivalent to int

mlist.

Solution to Exercise 160

# let mlength (lst : 'a mlist) : int =

# let rec mlength' lst visited =

# if List.memq lst visited then 0

# else

# match !lst with

# | Nil -> 0

# | Cons (_hd, tl) ->

# 1 + mlength' tl (lst :: visited)

# in mlength' lst [] ;;

val mlength : 'a mlist -> int = <fun>

Solution to Exercise 161

# let rec mfirst (n: int) (mlst: 'a mlist) : 'a list =

# if n = 0 then []

# else match !mlst with

# | Nil -> []

# | Cons (hd, tl) -> hd :: mfirst (n - 1) tl ;;

val mfirst : int -> 'a mlist -> 'a list = <fun>

Solution to Exercise 162
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# let rec alternating =

# ref (Cons (1, ref (Cons (2, alternating)))) ;;

val alternating : int mlist =

{contents = Cons (1, {contents = Cons (2, <cycle>)})}

Solution to Exercise 164 Let’s start with insertion. It will be useful

to have an auxiliary function that attempts to insert at a particular

location, carrying out the probing if that location is already used for a

different key.

let rec insert' dct target newvalue loc =

(* fallen off the end of the array; error *)

if loc >= D.size then raise Exit

else

match dct.(loc) with

| Empty ->

(* found an empty slot; fill it *)

dct.(loc) <- Element {key = target;

value = newvalue}

| Element {key; _} ->

if key = target then

(* found an existing pair for key; replace it *)

dct.(loc) <- Element {key = target;

value = newvalue}

else

(* hash collision; reprobe *)

insert' (succ loc) ;;

Now with this auxiliary function, we can implement insertion just by

attempting to insert at the location given by the hash function.

let insert dct target newvalue =

insert' dct target newvalue (D.hash_fn target) ;;

Of course, insert’ is only needed in the context of insert. Why not

make it a local function? Doing so also puts the definition of insert’

in the scope of the arguments of insert. Since these never change

in calls of insert’, we can drop them from the arguments list of

insert’.

let insert dct target newvalue =

let rec insert' loc =

(* fallen off the end of the array; error *)

if loc >= D.size then raise Exit

else

match dct.(loc) with

| Empty ->

(* found an empty slot; fill it *)

dct.(loc) <- Element {key = target;

value = newvalue}

| Element {key; _} ->

if key = target then

(* found an existing pair for key; replace it *)
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dct.(loc) <- Element {key = target;

value = newvalue}

else

(* hash collision; reprobe *)

insert' (succ loc) in

insert' (D.hash_fn target) ;;

Next, we can look at the member function. Using the same approach,

we get

let member dct target =

let rec member' loc =

(* fallen off the end of the array; not found *)

if loc >= D.size then false

else

match dct.(loc) with

| Empty ->

(* found an empty slot; target not found *)

false

| Element {key; _} ->

if key = target then

(* found an existing pair for this key; target found *)

true

else

(* hash collision; reprobe *)

member' (succ loc) in

member' (D.hash_fn target) ;;

Perhaps you see the problem. The code is nearly identical, once the

putative location for the target key is found. The same will be true for

lookup and remove. Rather than reimplement this search process in

each of the functions, we can abstract it into its own function, which

we’ll call findloc. This function returns the (optional) location (index)

where a particular target key is already or should go, or None if no such

location is found.

let findloc (dct : dict) (target : key) : int option =

let rec findloc' loc =

if loc >= D.size then None

else

match dct.(loc) with

| Empty -> Some loc

| Element {key; _} ->

(if key = target then Some loc

else findloc' (succ loc)) in

findloc' (D.hash_fn target) ;;

Using findloc, implementation of the other functions becomes much

simpler.

let member dct target =

match findloc dct target with
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| None -> false

| Some loc ->

match dct.(loc) with

| Empty -> false

| Element {key; _} ->

assert (key = target);

true ;;

let lookup dct target =

match findloc dct target with

| None -> None

| Some loc ->

match dct.(loc) with

| Empty -> None

| Element {key; value} ->

assert (key = target);

Some value ;;

let insert dct target newvalue =

match findloc dct target with

| None -> raise Exit

| Some loc ->

dct.(loc) <- Element {key = target;

value = newvalue} ;;

let remove dct target =

match findloc dct target with

| None -> ()

| Some loc -> dct.(loc) <- Empty ;;

Furthermore, the code is more maintainable because all of the details

of collision handling are localized in the one findloc function. If we

want to change to, say, quadratic probing, only that one function need

be changed.

One might still think that there is more commonality among the

hashtable functions than is even getting captured by findloc. It seems

that in all cases, the result of the call to findloc is being tested for

three cases: (i) no location is available, (ii) an empty location is found,

or (iii) a non-empty location is found with the target key. Rather than

perform this triage in all of the various functions, why not do so in

findloc itself, which can be provided with appropriate functions,

called C A L L B AC K S, for each of the cases. The following version does

just this:

(* findloc dct key cb_unavailable cb_empty cb_samekey --

Finds the proper location for the key in the dct, and

calls the appropriate callback function:

cb_unavailable -- no element available for this key

cb_empty loc -- element available is empty at provided

loc

cb_samekey loc key value -- element available is non-empty

at provided loc and has the given key and value
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*)

let findloc (dct : dict) (target : key)

(cb_unavailable : unit -> 'a)

(cb_empty : int -> 'a)

(cb_samekey : int -> key -> value -> 'a)

: 'a =

let rec findloc' loc =

if loc >= D.size then cb_unavailable ()

else

match dct.(loc) with

| Empty -> cb_empty loc

| Element {key; value} ->

(if key = target then cb_samekey loc key value

else findloc' (succ loc)) in

findloc' (D.hash_fn target) ;;

let member dct target =

findloc dct target

(fun () -> false)

(fun _ -> false)

(fun _ _ _ -> true) ;;

let lookup dct target =

findloc dct target

(fun () -> None)

(fun _ -> None)

(fun _ _ value -> Some value) ;;

let insert dct target newvalue =

let newelt = Element {key = target;

value = newvalue} in

findloc dct target

(fun () -> raise Exit)

(fun loc -> dct.(loc) <- newelt)

(fun loc _ _ -> dct.(loc) <- newelt) ;;

let remove dct target =

findloc dct target

(fun () -> ())

(fun loc -> ())

(fun loc _ _ -> dct.(loc) <- Empty) ;;

Solution to Exercise 167 Here’s a simple implementation keeping an

internal counter of allocations since the last reset.

# module Metered : METERED = struct

# (* internal counter of allocations since last reset *)

# let constructor_count = ref 0

#

# let reset () =

# constructor_count := 0

#

# let count () =

# !constructor_count
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#

# let cons hd tl =

# incr constructor_count;

# hd :: tl

#

# let pair first second =

# incr constructor_count;

# first, second

# end ;;

module Metered : METERED

Solution to Exercise 168

# let rec zip (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list =

# match xs, ys with

# | [], [] -> []

# | [], _

# | _, [] -> raise (Invalid_argument

# "zip: unequal length lists")

# | xhd :: xtl, yhd :: ytl ->

# Metered.cons (Metered.pair xhd yhd) (zip xtl ytl) ;;

val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

Notice that the constructors in the patterns, which are merely used

to deconstruct values, are unchanged. Only the instances used to

construct new values are replaced with their metered counterparts.

Solution to Exercise 169 A metered version of quicksort replaces all

consing and pairing with the metered version. We’ve added a metered

version of append as well.

# module MeteredQuickSort : SORT =

# struct

# (* simplify access to the metering *)

# open Metered

#

# (* append xs ys -- A metered version of the (@) append

# function *)

# let rec append (xs : 'a list) (ys : 'a list) : 'a list =

# match xs with

# | [] -> ys

# | hd :: tl -> cons hd (append tl ys)

#

# (* partition lt pivot xs -- Returns two lists

# constituting all elements in `xs` less than (according

# to `lt`) than the `pivot` value and greater than the

# pivot `value`, respectively *)

# let rec partition lt pivot xs =

# match xs with

# | [] -> pair [] []

# | hd :: tl ->

# let first, second = partition lt pivot tl in
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# if lt hd pivot then pair (cons hd first) second

# else pair first (cons hd second)

#

# (* sort lt xs -- Returns the sorted `xs` according to the

# comparison function `lt` using the Quicksort algorithm *)

# let rec sort (lt : 'a -> 'a -> bool)

# (xs : 'a list)

# : 'a list =

# match xs with

# | [] -> []

# | pivot :: rest ->

# let first, second = partition lt pivot rest in

# append (sort lt first)

# (append (cons pivot [])

# (sort lt second))

# end ;;

module MeteredQuickSort : SORT

With the metered version in hand, we can see the allocations more

clearly.

# Metered.reset () ;;

- : unit = ()

# MeteredQuickSort.sort (<)

# [1; 3; 5; 7; 9; 2; 4; 6; 8; 10] ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8; ...]

# Metered.count () ;;

- : int = 92

Solution to Exercise 171 New versions of the functions use

Lazy.force instead of application to unit and the lazy keyword

instead of wrapping a function. Notice that first is unchanged, as

it delays and forces only through its use of the other functions.

let tail (s : 'a stream) : 'a stream =

match Lazy.force s with

| Cons (_hd, tl) -> tl ;;

let rec smap (f : 'a -> 'b) (s : 'a stream)

: ('b stream) =

lazy (Cons (f (head s), smap f (tail s))) ;;

let rec smap2 f s1 s2 =

lazy (Cons (f (head s1) (head s2),

smap2 f (tail s1) (tail s2))) ;;

let rec first (n : int) (s : 'a stream) : 'a list =

if n = 0 then []

else head s :: first (n - 1) (tail s) ;;

Solution to Exercise 172 We start with a function to form ratios of

successive stream elements.

# let rec ratio_stream (s : float stream) : float stream =

# lazy (Cons ((head (tail s)) /. (head s),
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# ratio_stream (tail s))) ;;

val ratio_stream : float stream -> float stream = <fun>

Now we can generate the stream of ratios for the Fibonacci sequence

and find the required approximation:

# let golden_ratio_approx = ratio_stream (to_float fibs) ;;

val golden_ratio_approx : float stream = <lazy>

# within 0.000001 golden_ratio_approx ;;

- : float = 1.61803444782168193

Solution to Exercise 173

# let rec falses =

# lazy (Cons (false, falses)) ;;

val falses : bool stream = <lazy>

Solution to Exercise 174 As demonstrated by the OCaml R E P L type

inference in the previous exercise, the type of falses is bool stream.

Solution to Exercise 175 Here is a recursive implementation of

trueat:

# let rec trueat n =

# if n = 0 then lazy (Cons (true, falses))

# else lazy (Cons (false, trueat (n - 1))) ;;

val trueat : int -> bool stream = <fun>

Solution to Exercise 176 Here is a recursive implementation of

trueat:

# let circnot : bool stream -> bool stream =

# smap not ;;

val circnot : bool stream -> bool stream = <fun>

Note the use of the smap function and the use of partial application.

Solution to Exercise 177

# let circand : bool stream -> bool stream -> bool stream =

# smap2 (&&) ;;

val circand : bool stream -> bool stream -> bool stream = <fun>

Solution to Exercise 178

# let circnand (s: bool stream) (t: bool stream) : bool stream =

# circnot (circand s t) ;;

val circnand : bool stream -> bool stream -> bool stream = <fun>

Solution to Exercise 179

# class text (p : point) (s : string) : display_elt =

# object (this)

# inherit shape p

# method draw = let (w, h) = G.text_size s in
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# G.set_color this#get_color ;

# G.moveto (this#get_pos.x - w/2)

# (this#get_pos.y - h/2);

# G.draw_string s

# end ;;

class text : point -> string -> display_elt

Solution to Exercise 180 There are many ways of implementing such

functions. Here’s one.

# let mono x = [x + 1] ;;

val mono : int -> int list = <fun>

# let poly x = [x] ;;

val poly : 'a -> 'a list = <fun>

# let need f =

# match f 3 with

# | [] -> []

# | hd :: tl -> hd + 1 :: tl ;;

val need : (int -> int list) -> int list = <fun>

# need mono ;;

- : int list = [5]

# need poly ;;

- : int list = [4]

Solution to Exercise 181 The solution here makes good use of inheri-

tance rather than reimplementation.

# class loud_counter : counter_interface =

# object (this)

# inherit counter as super

# method! bump n =

# super#bump n;

# Printf.printf "State is now %d\n" this#get_state

# end ;;

class loud_counter : counter_interface

The bump method is introduced with a ! to make clear our intention to

override the inherited method, and to avoid a warning.

Solution to Exercise 182

# class type reset_counter_interface =

# object

# inherit counter_interface

# method reset : unit

# end ;;

class type reset_counter_interface =

object

method bump : int -> unit

method get_state : int

method reset : unit

end

Solution to Exercise 183
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# class loud_reset_counter : reset_counter_interface =

# object (this)

# inherit loud_counter

# method reset =

# this#bump (-this#get_state)

# end ;;

class loud_reset_counter : reset_counter_interface

Solution to Exercise 184

{} ⊢ let x = 3 in let y = 5 in x + y

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 3 ⇓ 3
{x 7→ 3} ⊢ let y = 5 in x + y

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 3} ⊢ 5 ⇓ 5
{x 7→ 3;y 7→ 5} ⊢ x + y

⇓∣∣∣∣∣ {x 7→ 3;y 7→ 5} ⊢ x ⇓ 3
{x 7→ 3;y 7→ 5} ⊢ y ⇓ 5

⇓ 8
⇓ 8

⇓ 8
Solution to Exercise 185

{} ⊢ let x = 3 in let x = 5 in x + y

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 3 ⇓ 3
{x 7→ 3} ⊢ let x = 5 in x + x

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 3} ⊢ 5 ⇓ 5
{x 7→ 5} ⊢ x + x

⇓∣∣∣∣∣ {x 7→ 5} ⊢ x ⇓ 5
{x 7→ 5} ⊢ x ⇓ 5

⇓ 10
⇓ 10

⇓ 10
Solution to Exercise 186

• Rfun: “A function expression of the form fun x -> B in an environ-

ment E evaluates to itself.”

• Rapp: “To evaluate an application of the form P Q in an environ-

ment E , first evaluate P in E to a function value of the form fun x
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-> B and Q in E to a value vQ . Then evaluate the expression B in an

environment that augments E with a binding of x to vQ , resulting in

a value vB . The value of the full expression is then vB .”

Solution to Exercise 188 The derivation under a lexical environment

semantics is as follows:

{} ⊢ let x = 1 in let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 1 ⇓ 1
{x 7→ 1} ⊢ let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1} ⊢ fun y -> x + y ⇓ [{x 7→ 1} ⊢ fun y -> x + y]

{x 7→ 1;f 7→ [{x 7→ 1} ⊢ fun y -> x + y]} ⊢ let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1;f 7→ [{x 7→ 1} ⊢ fun y -> x + y]} ⊢ 2 ⇓ 2
{f 7→ [{x 7→ 1} ⊢ fun y -> x + y];x 7→ 2} ⊢ f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{f 7→ [{x 7→ 1} ⊢ fun y -> x + y];x 7→ 2} ⊢ f ⇓ [ {x 7→ 1} ⊢ fun y -> x + y]

{f 7→ [{x 7→ 1} ⊢ fun y -> x + y];x 7→ 2} ⊢ 3 ⇓ 3
{x 7→ 1;y 7→ 3} ⊢ x + y

⇓∣∣∣∣∣ {x 7→ 1;y 7→ 3} ⊢ x ⇓ 1
{x 7→ 1;y 7→ 3} ⊢ y ⇓ 3

⇓ 4
⇓ 4

⇓ 4
⇓ 4

⇓ 4

Notice that the body of the function is evaluated in an environment

constructed by taking the lexical environment of the function (the

first highlight in the derivation above) and augmenting it with the

argument binding to form the environment in which to evaluate the

body (the second highlight). In the lexical environment x has the value

1, so the entire expression evaluates to 4 rather than 5 (as under the

substitution semantics as well).

Solution to Exercise 190 Only (4) evaluates to a different value under

dynamic scoping. Under OCaml’s lexical scoping, the a in the body

of the f function is the lexically containing a that has value 2. The

expression thus has value 12 under lexical scoping:

# let a = 2 in

# let f = (fun b -> a * b) in
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# let a = 3 in

# f (f a) ;;

- : int = 12

Under dynamic scoping, the a in the body of the f function is the

dynamically more recent a with value 3. The value of the expression is

thus 27 under dynamic scoping.

Solution to Exercise 191 Environment semantics rules for true and

false, appropriate for both lexical and dynamic variants, are

E ⊢ true ⇓ true (Rtrue)

E ⊢ false ⇓ false (Rfalse)

Solution to Exercise 192 Environment semantics rules for true and

false, appropriate for both lexical and dynamic variants, are

E ⊢ if C then T else F ⇓∣∣∣∣∣ E ⊢C ⇓ true
E ⊢ T ⇓ vT

⇓ vT

(Rifthen)

E ⊢ if C then T else F ⇓∣∣∣∣∣ E ⊢C ⇓ false
E ⊢ F ⇓ vF

⇓ vF

(Rifelse)

Solution to Exercise 193

E ,S ⊢ ! P ⇓∣∣∣ E ,S ⊢ P ⇓ l ,S′

⇓ S′(l ),S′
(Rderef )

The rule can be glossed “to evaluate an expression of the form ! P in

environment E and store S, evaluate P in E and S to a location l and

new store S′. The result is the value that l maps to in S′ and new store

S′.”

Solution to Exercise 194 The following rule evaluates P to a unit, pass-

ing the side-effected store S′ on for the evaluation of Q. The result of

the sequencing is then the value and store resulting from the evalua-

tion of Q.

E ,S ⊢ P ; Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ (),S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ vQ ,S′′

(Rseq)
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Solution to Exercise 195 We start by taking

let rec x = D in B

to be equivalent to

let x = ref unassigned in (x := D ′); B ′

where for brevity we abbreviate D ′ ≡ D[x 7→ !x], B ′ ≡ B [x 7→ !x], and

U ≡ unassigned.

In order to develop the semantic rule for let rec x = D in B , we

carry out a schematic derivation of its desugared equivalent:

E ,S ⊢ let x = ref U in (x := D ′); B ′

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E ,S ⊢ ref U

⇓∣∣∣ E ,S ⊢U ⇓U ,S

⇓ l ,S{l 7→U }

E {x 7→ l },S{l 7→U } ⊢ (x := D ′); B ′

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E {x 7→ l },S{l 7→U } ⊢ x := D ′

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣

E {x 7→ l },S{l 7→U } ⊢ x ⇓ l ,S{l 7→U }

E {x 7→ l },S{l 7→U } ⊢ D’

⇓∣∣∣ · · ·
⇓ vD ,S′


⇓ (),S′{l 7→ vD }

E {x 7→ l },S′{l 7→ vD } ⊢ B’

⇓∣∣∣ · · ·
⇓ vB ,S′′


⇓ vB ,S′′

⇓ vB ,S′′

This schematic derivation is complete, except for the two highlighted

subderivations for D ′ and B ′ respectively. Thus, we can define a se-

mantic rule for the original construct let rec x = D in B (now

with abbreviations expanded) that incorporates these two subderiva-

tions as premises:

E ,S ⊢ let rec x = D in B ⇓∣∣∣∣∣ E {x 7→ l },S{l 7→ unassigned} ⊢ D[x 7→ !x] ⇓ vD ,S′

E {x 7→ l },S′{l 7→ vD } ⊢ B [x 7→ !x] ⇓ vB ,S′′

⇓ vB ,S′′
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(Rletrec)

This is just the semantic rule presented in Section 19.6.1.

Solution to Exercise 196 The fold implementation from the solution

to Exercise 96 is the following:

let rec foldbt (emptyval : 'b)

(nodefn : 'a -> 'b -> 'b -> 'b)

(t : 'a bintree)

: 'b =

match t with

| Empty -> emptyval

| Node (value, left, right) ->

nodefn value (foldbt emptyval nodefn left)

(foldbt emptyval nodefn right) ;;

As a first step, let’s isolate the two recursive calls.

let rec foldbt (emptyval : 'b)

(nodefn : 'a -> 'b -> 'b -> 'b)

(t : 'a bintree)

: 'b =

match t with

| Empty -> emptyval

| Node (value, left, right) ->

let left' = foldbt emptyval nodefn left in

let right' = foldbt emptyval nodefn right in

nodefn value left' right' ;;

Now, we can compute the left subtree in a separate thread using

future, remembering to force the value when it’s needed.

# let rec foldbt_conc (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# match t with

# | Empty -> emptyval

# | Node (value, left, right) ->

# let left' =

# Future.future (foldbt_conc emptyval nodefn) left in

# let right' = foldbt_conc emptyval nodefn right in

# nodefn value (Future.force left') right' ;;

val foldbt_conc : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b

= <fun>

To demonstrate its operation, we can sum the values in a binary tree as

per Exercise 98.

# let sum_bintree =

# foldbt_conc 0 (fun v l r -> v + l + r) ;;

val sum_bintree : int bintree -> int = <fun>

# sum_bintree int_bintree ;;

- : int = 154
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Solution to Exercise 197 Here’s one such interleaving. We adjust the

previous interleaving moving thread A’s balance update to after thread

B’s update.

thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. let updated = balance - amt in
3. if balance >= amt then begin
4. let updated = balance - amt in
5. balance <- updated;
6. balance <- updated;
7. amt
8. · · · amt

· · ·

Solution to Exercise 198 Here’s one such interleaving. We adjust the

previous interleaving so that thread B verifies the balance adequacy

(line 2) before thread A’s update (line 3-4), but computes its updated

balance afterwards (line 6).

thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. if balance >= amt then begin
3. let updated = balance - amt in
4. balance <- updated;
5. amt
6. let updated = balance - amt in
7. · · · balance <- updated;
8. amt

· · ·

Solution to Exercise 199 We wrap the computation of the critical

region f () in a try 〈〉 with to trap any exceptions and unlock on the

way out.

# (* with_lock l f -- Run thunk `f` in context of acquired lock `l`,
# unlocking on return or exceptions *)

# let with_lock (l : Mutex.t) (f : unit -> 'a) : 'a =

# Mutex.lock l;

# let res =

# try f ()

# with exn -> Mutex.unlock l;

# raise exn in

# Mutex.unlock l;

# res ;;

val with_lock : Mutex.t -> (unit -> 'a) -> 'a = <fun>
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