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Preface

This book began as the notes for Computer Science 51, a second

semester course in programming at Harvard College, which follows

the legendary CS50 course that ably introduces some half of all Har-

vard undergraduate students to computer programming, and in its

online HarvardX version CS50x has benefited hundreds of thousands

of other students.

Students just learning to program, like those in CS50, typically view

the end product of programming as a program that works – that “gets

the right answer”. Once such a program is in hand, the student thinks,

the programmer’s job is done. This book was developed to move stu-

dents past this view of programming, to focus on programming well,

regarding programming not as a transaction but as an art and a craft.

The book emphasizes the role of abstraction and abstraction mech-

anisms in engendering a design space in which good programs can be

constructed. These abstraction mechanisms are associated with and

enable the major programming paradigms – first- and higher-order

functional programming, structure-driven programming, generic pro-

gramming, modular programming, imperative programming, proce-

dural programming, lazy programming, object-oriented programming,

and concurrent programming. By expanding the student’s armamen-

tarium of abstraction mechanisms, this design space grows as well,

making possible programs that are better along multiple dimensions

– readability, maintainability, succinctness, efficiency, testability, and,

most importantly but ineffably, beauty.

Aims

In developing the book, I had in mind several aims.

Explicit presentation of general principles. I introduce a small set of

very general software engineering principles – presented as “edicts”

in the text – and make frequent reference to them throughout the

text to tie together more particular software engineering ideas.

The programming edicts:

• Edict of intention: Make your
intentions clear.

• Edict of irredundancy: Never write
the same code twice.

• Edict of decomposition: Carve
software at its joints.

• Edict of prevention: Make the illegal
inexpressible.

• Edict of compartmentalization:
Limit information to those with a
need to know.

https://cs50.harvard.edu/x/2023/
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I emphasize other general principles, such as the separation of

concepts and paradigms from languages, and programming as art

and craft, not a science.

Use of formal methods and notations. Facility with notation is the

essence of mathematical maturity, and a strong correlate to com-

putational thinking. I explicitly motivate the use of formal notation,

and introduce notations for many of the core ideas in the book –

syntax, semantics, complexity – both to emphasize rigorous think-

ing and to provide practice in handling notations. Use of this kind of

notation is ubiquitous in computer science (Guy Steele has referred

to this kind of notation, which he calls “computer science metano-

tation”, as “the most popular programming language in computer

science”) though it is rarely introduced explicitly. For that reason

alone, an introductory presentation of these notations is valuable

for the early computer science student.

Provenance of ideas. Rather than presenting computational ideas or

techniques as disconnected from history, I emphasize the prove-

nance of these ideas, highlighting the role of real people in their

development and promulgation and providing acculturation into

some of the intellectual history of computer science. Special atten-

tion is given wherever appropriate to the role of women in develop-

ing the ideas.

Emphasis on reliable methods. Emphasis is placed on using modern

methods for generating reliable programs by having the computer

take on much of the work, in particular, strong static typing (and the

polymorphic type inference that makes it practical), unit testing,

and compartmentalization.

Pedagogical structure. The textbook contains a variety of components

in keeping with its pedagogical goals.

• My intention is for the text to be self-contained. Little back-

ground is assumed beyond basic programming of the sort

learned in a first-semester programming course. Any mathe-

matical ideas that arise in examples or assignments are explained

in an appendix.

• Code examples in the text are often developed step-wise, rather

than being presented as whole and complete, reflecting how

code is typically constructed. Similarly, examples are often

revisited as new concepts are introduced that can be used to

implement the examples in novel ways.

https://youtu.be/8fCfkGFF7X8?t=2299
https://youtu.be/8fCfkGFF7X8?t=2299
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• The text is tightly connected to a series of pedagogical activities

for students. Throughout the text, exercises test understanding

of the just presented material; solutions to the exercises, often

with extensive further explanations and descriptions of alter-

natives, are available in an appendix. Supplementary materials

tightly connected with the book include labs, problem sets, and a

project. Labs, intended to be done individually or synchronously

in pairs or groups, provide a series of small and carefully grad-

uated problems that build up practice with the programming

concepts introduced in the texts. Lab solutions, again provid-

ing alternatives and cross-references to previous and upcoming

discussions, are provided. Problem sets provide for more open-

ended work on larger-scale but still self-contained problems,

and relate to topical issues such as public-key encryption, sym-

bolic math, artificial intelligence search, music composition, and

epidemic simulation. The culmination is a project implement-

ing a small run-time-typed subset of OCaml, synthesizing ideas

from throughout the book, especially the presentations of formal

syntax and semantics.

Openness. The text and related materials are intended to be openly

available, allowing widespread adoption, including in venues, like

MOOCs, where closed materials aren’t appropriate.

Use of OCaml

It is typical in courses that introduce multiple programming paradigms

to introduce different programming languages geared towards one

or another of the paradigms. This language profligacy has the effect

of dramatically increasing the amount of language syntax that needs

to be introduced and misleadingly implies that the paradigms are

coincident with or require different languages. By contrast, I make use

of a single well-designed and well-supported language, OCaml, whose

relatively simple core allows development and exposition of all of these

paradigms and the abstraction mechanisms they rely on. OCaml is

introduced and used not for its own sake but as a vehicle for conveying

the wide range of programming and computational concepts.

OCaml is an ideal language for pedagogical purposes for the follow-

ing reasons:

Simple core. The language is designed based on a relatively simple

core set of orthogonal constructs, which are extended via syntactic

sugar. This spareness means that students can get to the level of

implementing an interpreter for a nontrivial subset of the language
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by the end of the book.

Clean semantics. The language has quite clean semantics, which aids

understanding.

Type discipline. Programs are strongly statically typed, so that stu-

dents are confronted from the start with thinking in terms of always

and only using values consistently with their types. Experience with

reasoning about the types of expressions can inform better pro-

gramming practice even when programming later in languages with

weaker type systems or dynamic typing.

Multi-paradigm. Although the core of the language is relatively spare,

built on top of the core is syntactic support for multiple paradigms

including functional, modular, imperative, lazy, and object-oriented

programming.

Nonproprietary. The language is supported by an open-source, non-

proprietary, cross-platform toolset.

The primary disadvantage of using OCaml is that the language is

little known and not widely used in the software industry. It is generally

viewed as an “academic language”, of interest to computer scientists

rather than mainstream software developers. Nonetheless, the general

approach of strongly statically typed languages based on a functional

foundation is gaining currency through languages like F#, Reason,

Rust, and Elm. More importantly, the goal of the textbook is not to

teach a particular language so as to improve employability; rather, it is

to teach a range of programming concepts that will be of use whatever

language one programs in.

Limitations

The book is intentionally limited in certain ways.

• It does not cover the OCaml language exhaustively, and does not

serve as a language reference. This is in keeping with the use of

OCaml as a vehicle for presenting concepts. Just enough OCaml is

presented to make possible the implementations of the presented

concepts. (Cf. Minsky et al.’s Real World OCaml.)

• It does not cover formal proofs of correctness (though there is lim-

ited and informal discussion of invariants). The importance of

correct code is highlighted in a focus on unit testing. (Indeed, a re-

curring thematic example is the building up of a simple unit testing

framework for OCaml.)
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• There is no coverage of interactive systems, graphics, or user in-

terface design and implementation. (Cf. Stein’s text Interactive

Programming In Java.)

• No large application examples are given in their entirety. (Cf. the

Whitington or Cousineau texts.) However, the problem sets provide

opportunity for working with larger-scale examples.
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Introduction

We forget how incredible the computer is. The modern computer

executes billions of operations each second, every one of which must

work perfectly – accurately performing the right operation at each

and every cycle. How is this even possible? How can we, mere humans

with our cognitive limitations, manage to build devices that work at

this pace with this level of fidelity? Each of the billions of instructions

executed per second on a modern computer is another detail to be

managed. How can we gain control over this mass of detail?

In Jorge Luis Borges’s 1944 short story Funes the Memorious, the

protaganist, Ireneo Funes, experiences what it is like to perceive the

world at this level of streaming detail. After being thrown from a wild

horse and severely crippled, he develops a prodigious memory. He

recalls, perfectly and instantaneously, every moment of his life.

He knew by heart the forms of the southern clouds at dawn on the 30th

of April, 1882, and could compare them in his memory with the mottled

streaks on a book in Spanish binding he had only seen once.. . . Two or

three times he had reconstructed a whole day; he never hesitated, but

each reconstruction had required a whole day. (Borges, 1962)

Yet, each of his memories was individual, disconnected, divorced of

any higher structural patterns. Borges relates,

With no effort, he had learned English, French, Portuguese and Latin. I

suspect, however, that he was not very capable of thought. To think is to

forget differences, generalize, make abstractions. In the teeming world

of Funes, there were only details, almost immediate in their presence.

Without abstraction, there are only details. And it is through abstrac-

tion – forgetting differences, generalizing – that we can get control of

the sheer daunting complexity of controlling a computer.

What is abstraction? A B S T R AC T I O N is the process of viewing a set of

apparently dissimilar things as instantiating an underlying identity. Fu-

nes sees a field of flowers, hundreds of blooms. To him, they are each
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individuals, but to the botanist, these apparently dissimilar individuals

are all instances of a type, the genus Tulipa, the tulips. By capturing

innumerable individual plants into a hierarchy of abstract families,

genera, and species, the bewildering complexity of plant life on the

planet becomes more manageable.

Programming computers is a battle against the sheer daunting

complexity of the task. The chief weapon in the battle is abstraction.

The first objective of this book is to introduce you to a broad variety

of abstraction mechanisms and their uses, providing you with an

appropriate armamentarium. The second objective is to open your

eyes to the beauty that computer programming can manifest when

those tools are elegantly applied.

You are already familiar with some of the primary abstraction mech-

anisms used in programming computers. (I assume throughout this

book that you’ve had some experience programming computers us-

ing an imperative programming language, of the sort, for instance,

acquired in Harvard’s CS50 or CS50x course.)

Figure 1.1: A model of a part of Charles
Babbage’s analytical engine, intended
for the calculation of tables of mathe-
matical functions such as the trigono-
metric functions like sine and cosine,
the Bernoulli numbers, or logarithms, as
in Figure 1.2 below.

Let’s take as an example the problem of generating a table of loga-

rithms. The choice is not random. The building of tables of mathemat-

ical functions like the logarithm was the motivating task for the earliest

computer designs, those of Charles Babbage in the 1820s and 1830s

(Figure 1.1). In the margin (Figure 1.2) is the beginning of such a table.

x log2x

1 0.0000
2 1.0000
3 1.5850
4 2.0000

· · ·

Figure 1.2: A small table of logarithms

A program to print out this kind of table might look like this:

printf "1 0.0000\n";

printf "2 1.0000\n";

printf "3 1.5850\n";

printf "4 2.0000\n" ;;

and when the program is executed, it prints the table:

# printf "1 0.0000\n";

# printf "2 1.0000\n";

# printf "3 1.5850\n";

# printf "4 2.0000\n" ;;

1 0.0000

2 1.0000

3 1.5850

4 2.0000

- : unit = ()

(For the moment, the details of the language in which this computa-

tion is written are immaterial. We’ll get to all that in a bit. The idea is

just to get the gist of the argument. In the meantime, you can just let

the code waft over you like a warm summer breeze.)

Now of course this code is hopelessly written. Why? Because it

treats each line of the table as an individual specimen, missing the

abstract view. The first step in viewing the lines abstractly is to note
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that they are actually instances of an underlying uniformity: Each

string is of the form of an integer (call it x) and the log (with base 2) of

x. They are instances of the underlying pattern

printf "%2d %2.4f\n" x (log2 x);

for each of several values of the variable x. (Again, the details of the

language being used are postponed, but you hopefully get the idea.)

This mechanism, the S TAT E VA R I A B L E, is thus a mechanism for ab-

straction – for making apparently dissimilar computations manifest an

underlying identity. To take full advantage of this type of variable, we’ll

need to specify the sequential values, 1 through 4 say, that the variable

takes on, using a L O O P.

for x = 1 to 4 do

printf "%2d %2.4f\n" x (log2 x)

done

Like Monsieur Jourdain, who discovered he’d been speaking prose

his whole life, you’ve been using abstraction mechanisms without

realizing it. Without them, programming is impossible.

This particular style of programming, imperative programming, is

undoubtedly most familiar to you. Its most basic abstraction mecha-

nisms are the state variable and the loop. It is the style seen in some of

the earliest, most influential programming languages, from F O RT R A N

to the A LG O L family of languages, to C, to Python, and beyond. And

it is the style of programming captured by the first universal model of

computation, the T U R I N G M AC H I N E of Alan Turing (Figure 1.3).

Figure 1.3: Alan Turing (1912–1954),
whose Turing machine provided the first
universal model of computation, based
on imperative programming notions
of state and state change. Turing is
rightfully credited with fundamental
contributions to essentially all areas of
computer science: the theory of com-
puting, hardware, software, artificial
intelligence, computational biology, and
much more. His premature death by
suicide at 41 after undergoing “therapy”
at the hands of the British government
following his conviction for the “crime”
of homosexuality is certainly one of the
great intellectual tragedies of the twen-
tieth century. (The British government
got around to apologizing for his treat-
ment some 50 years later.) The highest
award in computing, the Turing Award,
is appropriately named after him.

But there are many other abstraction mechanisms than state vari-

ables and loops, underpinning many other programming paradigms

than imperative programming, and allowing many other ways of de-

signing computations. It is the goal of this book to introduce several

such abstraction mechanisms, provide practice in their use and appli-

cation, and thereby open up a broad range of programming possibili-

ties not otherwise available.

An especially important abstraction mechanism is the F U N C T I O N,

a mapping from inputs to outputs. The idea of the function gives its

name to the paradigm of functional programming, and we will begin

with functions and functional programming ideas. But functional

programming is only one of several paradigms that we will discuss.

1.1 An extended example: greatest common divisor

By way of example of the distinction between imperative and func-

tional programming, consider the very practical question of tiling a

bathroom floor of size 28 by 20 units. We can tile such a floor with tiles

https://url.cs51.io/r8f
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that are 2 by 2, since both 28 and 20 are evenly divisible by 2, but 3 by 3

tiles don’t work, since neither 28 nor 20 are divisible by 3. If we want to

use the fewest tiles, it would be useful to know the largest number that

divides both dimensions evenly, their G R E AT E S T C O M M O N D I V I S O R

(GCD).

Here is how we might program a calculation of GCD in an impera-

tive style:

let gcd_down a b =

let guess = ref (min a b) in

while (a mod !guess <> 0) || (b mod !guess <> 0) do

guess := !guess - 1

done;

!guess ;;

This procedure works by counting down from the smaller of the two

numbers, one by one, until a common divisor is found. Since the

search for the common divisor is from the largest to the smallest possi-

bility, the greatest common divisor is found.

In the functional style, this same “countdown” algorithm might be

coded like this:

let gcd_func a b =

let rec downfrom guess =

if (a mod guess <> 0) || (b mod guess <> 0) then

downfrom (guess - 1)

else guess in

downfrom (min a b) ;;

Here, in the context of calculating the GCD of a and b, a new function

downfrom is introduced to check a particular guess of the GCD of the

two numbers. The downfrom function takes an input guess and checks

whether it is the GCD of a and b. If so, the output value of the function

is the guess guess itself, but if not, a one-smaller guess is tried. Having

defined this counting-down function, the calculation of the GCD itself

proceeds just by guessing the minimum of the two numbers.

You may find unusual some of the properties of this latter imple-

mentation of what is essentially the identical algorithm – counting

down one by one from the minimum of the two numbers until a

common divisor is found. First, there are no overt loops, and no as-

signments to variables that change the state of the computation by

changing the value of a variable. It’s just functions and their applica-

tion. Second, the function downfrom defined in the code appeals to

downfrom itself as part of the calculation of its output. It is defined by

R E C U R S I O N, that is, in terms of itself. Such functions are recursive, and

when they invoke themselves for a computation are said to recur.1 You 1 Not recurse please. To recurse is to
curse again, not the kind of thing a
program – or a person – should be
doing.

may wonder whether this is quite kosher. Isn’t defining something in

terms of itself a bad idea? But in this case at least, the definition works
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fine, because the value of downfrom guess depends not on the value

of downfrom guess itself but of downfrom (guess - 1), a different

value. This may itself depend on downfrom (guess - 2), and so on,

but eventually one of the inputs to downfrom will be a common divisor,

and in that case, the output value of downfrom does not depend on

downfrom itself. The recursion “bottoms out” and the GCD is returned.

Figure 1.4: Proposition 1 of Book 7
of Euclid’s Elements, providing his
algorithm for calculating the greatest
common divisor of two numbers.

This style of programming – by defining and applying functions –

has a certain elegance, which can be seen already in the distinction

between the two versions of the GCD computation already provided.

But as it turns out, the algorithm underlying both of these implemen-

tations is a truly bad one. Counting down is just not the right way to

calculate the GCD of two numbers. As far back as 300 B C E, Euclid of

Alexandria provided a far better algorithm in Proposition 1 of Book

7 (Figure 1.4) of his treatise on mathematics, Elements. Euclid’s algo-

rithm for GCD is based on the following insight: Any square tiling of a

20 by 28 area will tile both a 20 by 20 square and the 8 by 20 remainder.

More generally, any square tiling of an a by b area (where a is greater

than b) will tile both a b by b square and the b by a − b remainder.

Thus, to calculate the GCD of a and b, it suffices to calculate the GCD

of b and a −b. Eventually, we’ll be looking for the GCD of two instances

of the same number (that is, a and b will be the same; we’ll be looking

to tile a square area) in which case we know the GCD; it is a (or b) it-

self. Figure 1.5 shows the succession of smaller and smaller rectangles

explored by Euclid’s algorithm for the 20 by 28 case.

An initial presentation of Euclid’s algorithm is this:

let rec gcd_euclid a b =

if a < b then gcd_euclid b a

else if a = b then a

else gcd_euclid b (a - b) ;;

Now, in the case that a = b, were we to continue on one more round of

checking the GCD of b and a −b, the difference a −b would simply be

0. Thus, we can check for this condition instead.

let rec gcd_euclid a b =

if a < b then gcd_euclid b a

else if b = 0 then a

else gcd_euclid b (a - b) ;;

We can simplify further. When subtracting off b from a, the remainder

may still be greater than b, in which case, we’ll want to subtract b

again, continuing to subtract b until, eventually, the remainder is less

than b. Thus, instead of using the difference a −b as the new second

argument of the recursive call, we can use the remainder a modulo b.

let rec gcd_euclid a b =

if a < b then gcd_euclid b a
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Figure 1.5: Euclid’s algorithm for GCD
starting (a) with a 20×28 rectangle to
be tiled. Removing the 20×20 square
(b) leaves a 20× 8 remainder to be
tiled. From that rectangle, we remove,
successively, two 8× 8 squares (c),
leaving a 4× 8 remainder. Finally,
removing a 4×4 square (d) leaves a 4×4
square, the largest square that can tile
the whole (e).

else if b = 0 then a

else gcd_euclid b (a mod b) ;;

Finally, notice that if a < b, then the values b and a mod b are just b

and a, respectively – exactly the values we want to use for the recursive

call in that case. We can therefore drop the test for a < b entirely.

let rec gcd_euclid a b =

if b = 0 then a

else gcd_euclid b (a mod b) ;;

This is E U C L I D ’ S A LG O R I T H M. Compare it to the countdown algo-

rithm above. The difference is stark. Euclid’s method is beautiful in its

simplicity.

It is also, as it turns out, much more efficient. This can be deter-

mined analytically or experienced empirically.

1.2 Programming as design

Euclid’s algorithm for GCD shows us that there is more than one way

to solve a problem, and some ways are better than others. The dimen-

sions along which programmed solutions can be better or worse are

manifold. They include

• succinctness,

• efficiency,

• readability,

• maintainability,

• provability,

• testability,
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and, most importantly but ineffably,

• beauty.

Computer programming is not the only practice where practitioners

may generate multiple ways of satisfying a goal, which can be eval-

uated along multiple independent and perhaps conflicting metrics.

Architects, engineers, illustrators, industrial designers may generate

wildly different plans in response to a client’s constraints and desires.

All live in a space of possibilities from which they choose solutions that

vary along multiple, often competing, criteria.

What all of these practices have in common is D E S I G N – the navi-

gation of a space of options, generated by applicable tools, in search of

the good, as measured along multiple dimensions. In the case of com-

puter programming, the tools are exactly the abstraction mechanisms

provided by a programming language.

A crucial consideration in teaching programming from this perspec-

tive is what abstraction mechanisms to concentrate on, as these define

the space of options within which we can navigate. As discussed above,

the most important of these abstraction mechanisms is the function.

In addition to being a fantastic method for abstracting computation

(which will become clear some time around Chapter 8), functions

also serve as a platform upon which many other abstraction mecha-

nisms can be deployed and combined. It may be difficult at first to see

the incredible utility of the function as a unifying abstraction mecha-

nism, but hopefully, as you see more and more examples of their use

in combination with other techniques, you will come to appreciate the

function’s centrality in the design of programs.

Figure 1.6: Princeton professor Alonzo
Church (1903–1995), inventor of the
lambda calculus, the foundation of all
functional programming languages;
PhD adviser of Alan Turing.

Indeed, functions and their application are such a powerful compu-

tational tool that they constitute, by themselves, a complete universal

computational mechanism. The Princeton mathematician and logi-

cian Alonzo Church (1936) developed a “calculus” of functions alone,

the so-called L A M B D A C A LC U LU S (see Section B.1.4), a logical system

that includes functions and their application and literally nothing

else – no data objects or data structures of any kind, neither atomic

(like integers) nor composite (like lists); no mutable state (like vari-

able assignment); no control structures (like conditionals or loops).

Astoundingly, Turing (1937) was then able to show that anything that

can be computed by his universal model of computation, the Turing

machine, can also be computed in Church’s lambda calculus. Thus, the

lambda calculus – comprised only of functions and their applications

remember – is itself a universal model of computation. This argument

for the universality of Turing’s and Church’s computation models is

now known as the C H U RC H -T U R I N G T H E S I S. (The close connection
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between the lambda calculus and the Turing machine mirrors the close

relationship between Church and Turing; Church was Turing’s PhD

adviser at Princeton.)

In this book, we concentrate on the following abstraction mecha-

nisms, listed with the style of programming they are associated with:

Abstraction Programming paradigm

functions functional programming

algebraic data types structure-driven programming

polymorphism generic programming

abstract data types modular programming

mutable state imperative programming

loops procedural programming

lazy evaluation programming with infinite data structures

object dispatch object-oriented programming

concurrency concurrent programming

Table 1.1: Some abstraction mecha-
nisms and the programming paradigms
they allow.

Of course, there are many other abstraction mechanisms and pro-

gramming paradigms, but these should both give you a good sense of

the importance of a variety of abstractions and provide an excellent

base on which to build.

As with any design practice, computer programming is best learned

by seeing a range of examples of the space of options – examples that

are better or worse along one dimension or another – with attention

paid to the process of developing, modifying, and improving such

solutions. For that reason, we will often show computer programs be-

ing built up in stages and being modified to demonstrate alternative

designs (as we did with the GCD example above), and programming

problems will be revisited as new abstraction mechanisms open fur-

ther parts of the design space. You may find the multiple variations on

a theme redundant – as indeed they are – but we know of no better way

to get across the idea of programming as a design practice than the

careful development and exploration of a significant program design

space.

1.3 The OCaml programming language

Figure 1.7: Robin Milner (1934–2010),
developer of the ML programming lan-
guage, the first functional language with
type inference, and the programming
language from which OCaml derives. He
received the Turing Award in 1991 for
his work on ML and other innovations.

In order that we can introduce multiple abstraction mechanisms

and programming paradigms with a minimum of programming lan-

guage detail, we use a multi-paradigm programming language called

OC A M L. (The examples above were written in OCaml.) OCaml is a

member of the ML family of programming languages first developed
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at University of Edinburgh by Robin Milner (Figure 1.7) in the 1970’s.

The OCaml dialect of ML itself was developed at the French national

research lab Institut National de Recherche en Informatique et en

Automatique (INRIA), where it continues to be developed and main-

tained. OCaml is a multi-paradigm programming language in that it

provides support not only for functional programming, but also imper-

ative programming, object-oriented programming, and all the other

mechanisms and paradigms listed in Table 1.1.

OCaml is especially attractive from a pedagogical standpoint be-

cause it provides these capabilities on the basis of a relatively small

foundation of well-designed orthogonal primitive language constructs,

so that programming concepts can be introduced and experimented

with, without the need for learning a huge set of syntactic idiosyn-

crasies. Nonetheless, as with learning any new programming language,

it will take a bit of getting used to the ideas and notations of OCaml,

and in fact getting practice with learning new notations is a useful skill

in its own right.

I emphasize that this book is not a book about OCaml program-

ming. (For instance, this book doesn’t pretend to present the language

comprehensively, instead covering only those parts of the language

needed to present the principles being taught. For that reason, you will

want to get at least a bit familiar with the reference documentation of

the language.) Rather, it is a book about the role of abstraction in the

design of software, which uses the OCaml language as the medium in

which to express these ideas. But in order to get these ideas across, we

need some language, and it turns out that OCaml is an ideal language

for this pedagogical purpose. Of course, we’ll have to spend some time

going over the particularities of the OCaml language, which may seem

odd mostly because of their unfamiliarity. The text may have a bit of

a disjointed quality to it, bouncing back and forth between details

of OCaml and higher-level concepts. But the time spent learning the

details of the language isn’t time wasted. It pays off in lessons that gen-

eralize to any programming you will do in the future. You may discover,

like many do, that once you’ve gained some proficiency with OCaml,

you find its charms irresistible, and continue to use it (or its close

derivatives like Microsoft’s F#, Facebook’s Reason, Apple’s Swift, or

Mozilla’s Rust) when appropriate – as many companies including those

mentioned do. But whether you continue to program in OCaml or not,

the patterns of thinking and the sophistication of your understanding

will be the payoff of this process, translatable to any programming

you’ll do in the future. In fact, the market for software developers re-

flects this payoff as well. As shown in Figure 1.8, the market rewards

software developers fluent in the kinds of technologies and ideas fea-

https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/
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tured in this book; their salaries are substantially higher on average.

Although such pecuniary benefits aren’t the point of this book, they

certainly don’t hurt.

Table 1

Erlang 115000
Scala 115000

OCaml 114000

Clojure 110000

Go 110000

Groovy 110000

Objective-C 110000

F# 108000

Hack 108000

Perl 106000

Kotlin 105000

Rust 105000

Swift 102000

TypeScript 102000

Bash/Shell 100000

CoffeeScript 100000

ObjectPascal 100000

Haskell 100000

Java 100000

Lua 100000

Ruby 100000

Julia 98500

C 98000

JavaScript 98000

Python 98000

Erlang
Scala

OCaml
Clojure

Go
Groovy

Objective-C
F#

Hack
Perl

Kotlin
Rust
Swift

TypeScript
Bash/Shell
CoffeeScript
ObjectPascal

Haskell
Java
Lua
Ruby
Julia
C

JavaScript
Python

90K 95K 100K 105K 110K 115K 120K

OCaml

�1

Figure 1.8: United States average salary
by technology, from StackOverflow
Developer Survey 2018. Highlighted
bars correspond to technologies in the
typed functional family.

1.4 Tools and skills for design

The space of design options available to you is enabled by the palette

of abstraction mechanisms that you can fluently deploy. Navigating

the design space to find the best solutions is facilitated by a set of skills

and analytic tools, which we will also introduce throughout the follow-

ing chapters as they become pertinent. These include more precise

notions of the syntax and semantics of programming languages, fa-

cility with notations, sensitivity to programming style (see especially

Appendix C), programming interface design, unit testing, tools (big-

O notation, recurrence equations) for analyzing efficiency of code.

Having these tools and skills at your disposal will add to your computa-

tional tool-box and stretch your thinking about what it means to write

good code. I expect, based on my own experiences, that learning to

develop, analyze, and express your software ideas with precision will

also benefit your abilities to develop, analyze, and express ideas more

generally.

https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
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A Cook’s tour of OCaml

To give a flavor of working with the OCaml programming language,

we introduce OCaml through an I N T E R P R E T E R of the language, called

ocaml, which is invoked from the command line thus:1 1 We assume that you’ve already in-
stalled the OCaml tools, as described at
the ocaml.org web site.% ocaml

Upon running ocaml, you will see a P RO M P T (“#”) allowing you to type

an OCaml expression.

% ocaml
OCaml version 4.14.2

#

Exercise 1

The startup of the ocaml interpreter indicates that this is version 4.14.2 of the software.
What version of ocaml are you running?

Once the OCaml prompt is available, you can enter a series of

OCaml expressions to calculate the values that they specify. Numeric

(integer) expressions are a particularly simple case, so we’ll start with

those. The integer L I T E R A L S – like 3 or 42 or -100 – specify integer

values directly, but more complex expressions built by applying arith-

metic functions to other values do as well. Consequently, the OCaml

interpreter can be used as a kind of calculator.

# 42 ;;

- : int = 42

# 3 + 4 * 5 ;;

- : int = 23

# (3 + 4) * 5 ;;

- : int = 35

Since this is the first example we’ve seen of interaction with the

OCaml interpreter, some glossing may be useful. The OCaml interac-

tive prompt, ‘#’, indicates that the user can enter an OCaml expression,

such as ‘3 + 4 * 5’. A double semicolon ‘;;’ demarcates the end of

the expression. The system reads the expression, evaluates it (that

https://ocaml.org/docs/install.html
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is, calculates its value), and prints an indication of the result, then

loops back to provide another prompt for the next expression. For

this reason, the OCaml interactive system is referred to as the “R E A D -

E VA L - P R I N T L O O P” or R E P L.2 Whenever we show the results of an 2 To exit the R E P L, just enter the end-
of-file character, ^d, typed by holding
down the control key while pressing the
d key.

interaction with the R E P L, the interpreter’s output will be shown in a

slanted font to distinguish it from the input.

You’ll notice that the R E P L obeys the standard order of operations,

with multiplication before addition for instance. This precedence can

be overwritten in the normal manner using parentheses.

Exercise 2

Try entering some integer expressions into the OCaml interpreter and verify that appro-
priate values are returned.

Although we’ll introduce the aspects of the OCaml language in-

crementally over the next few chapters, to get a general idea of using

the language, we demonstrate its use with the GCD algorithm from

Chapter 1. We type the definition of the gcd_euclid function into the

R E P L:

# let rec gcd_euclid a b =

# if b = 0 then a

# else gcd_euclid b (a mod b) ;;

val gcd_euclid : int -> int -> int = <fun>

Now we can make use of that definition to calculate the greatest com-

mon divisor of 20 and 28

# gcd_euclid 20 28 ;;

- : int = 4

But we’re getting ahead of ourselves.
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Expressions and the linguistics of programming lan-

guages

Programming is an expressive activity: We express our intentions to a

computer using a language – a programming language – that is in some

ways similar to the natural languages that we use to communicate with

each other.

One of the deep truths of linguistics, known since the time of the

great Sanskrit grammarian Pān. ini in the fourth century B C E, is that the

expressive units of natural languages, or E X P R E S S I O N S as we will call

them, have hierarchical structure. (The recovery of that structure used

to be a typical subject matter taught to students in “grammar school”

through the exercise of sentence diagramming.) Characterizing what

are the well-formed and -structured phrases of a language constitutes

the realm of S Y N TA X.

3.1 Specifying syntactic structure with rules

The expressions of English (and other natural languages) are formed as

sequences of words to form expressions of various types. By way of ex-

ample, noun phrases can be formed in various ways: as a single noun

(party or drinker or tea), or by putting together (in sequential order) a

noun phrase and a noun (as in tea party), or by putting together (again

in order) an adjective (iced or mad) and another noun phrase as in

(iced tea). We can codify these rules by defining classes of expressions

like 〈noun〉 or 〈nounphrase〉 or 〈adjective〉. We’ll write the rule that

allows forming a noun phrase from a single noun as

〈nounphrase〉 ::= 〈noun〉
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The rules that form a noun phrase from an adjective and a noun

phrase or from a noun phrase and a noun are, respectively,

〈nounphrase〉 ::= 〈adjective〉 〈nounphrase〉
〈nounphrase〉 ::= 〈nounphrase〉 〈noun〉

In these rules, we write 〈noun〉 to indicate the class of noun expres-

sions, 〈nounphrase〉 to indicate the class of noun phrases, and in

general, put the names of classes of expressions in angle brackets to

represent elements of that class. The notation ::= should be read as

“can be composed from”, so that expressions of the class on the left of

the ::= can be composed by putting together expressions of the classes

listed on the right of the ::=, in the order indicated.

This rule notation for presenting the syntax of languages is called

B AC K U S -N AU R F O R M (BNF), named after John Backus and Peter

Naur, who proposed it for specifying the syntax of the A LG O L family of

programming languages. But as noted above, the idea goes back much

further, at least to Pān. ini.

Putting these rules together, the BNF specification for noun phrases

is

〈nounphrase〉 ::= 〈noun〉
| 〈adjective〉 〈nounphrase〉
| 〈nounphrase〉 〈noun〉

Here, we’ve rephrased the three rules as a single rule with three

alternative right-hand sides. The BNF notation allows separating

alternative right-hand sides with the vertical bar (|) as we have done

here.

A specification of a language using rules of this sort is referred to as

a G R A M M A R. According to this grammar, we can build noun phrases

like mad tea party

〈nounphrase〉

〈nounphrase〉

〈noun〉

party

〈nounphrase〉

〈noun〉

tea

〈adjective〉

mad

or iced tea drinker
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〈nounphrase〉

〈noun〉

drinker

〈nounphrase〉

〈nounphrase〉

〈noun〉

tea

〈adjective〉

iced

Notice the difference in structure. In mad tea party, the adjective mad

is combined with the phrase tea party, but in iced tea drinker, the

adjective iced does not combine with tea drinker. The drinker isn’t

iced; the tea is!

But these same rules can also be used to build an alternative tree for

“iced tea drinker”:

〈nounphrase〉

〈nounphrase〉

〈noun〉

drinker

〈nounphrase〉

〈noun〉

tea

〈adjective〉

iced

The expression iced tea drinker is A M B I G U O U S (as is mad tea party);

the trees make clear the two syntactic analyses.

Importantly, as shown by these examples, it is the syntactic tree

structures that dictate what the expression means. The first tree seems

to describe a drinker of cold beverages, the second a cold drinker

of beverages. The syntactic structure of an utterance thus plays a

crucial role in its meaning. The characterization of the meanings of

expressions on the basis of their structure is the realm of S E M A N T I C S,

pertinent to both natural and programming languages. We’ll come

back to the issue of semantics in detail in Chapters 13 and 19.

Exercise 3

Draw a second tree structure for the phrase mad tea party, thereby demonstrating that it
is also ambiguous.

Exercise 4

How many trees can you draw for the noun phrase flying purple people eater? Keep in
mind that flying and purple are adjectives and people and eater are nouns.

The English language, and all natural languages, are ambiguous that

way. Fortunately, context, intonation, and other clues disambiguate

https://url.cs51.io/5aa
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these ambiguous constructions so that we are mostly unaware of

the ambiguities.1 In the case of the mad tea party, we understand 1 The rare exceptions where ambiguities
are brought to our attention account
for the humor (of a sort) found in
syntactically ambiguous sentences, as
in the old joke that begins “I shot an
elephant in my pajamas.”

the phrase as having the syntactic structure as displayed above (as

opposed to the one referred to in Exercise 3).

3.2 Disambiguating ambiguous expressions

Programming language expressions, like the utterances of natural

language, have syntactic structure as well. Without some care, pro-

gramming languages might be ambiguous too. Consider the following

BNF rules for simple arithmetic expressions built out of numbers and

B I N A RY O P E R ATO R S (operators, like +, -, *, and /, that take two argu-

ments).2 2 In defining expression classes using
this notation, we use subscripts to dif-
ferentiate among different occurrences
of the same expression class, such as
the two 〈expr〉 instances 〈exprleft〉 and
〈exprright〉 in the first BNF rule.

〈expr〉 ::= 〈exprleft〉〈binop〉〈exprright〉
| 〈number〉

〈binop〉 ::= + | - | * | /
〈number〉 ::= 0 | 1 | 2 | 3 | · · ·

Using these rules, we can build two trees for the expression 3 + 4 *
5:

〈expr〉

〈expr〉

〈number〉

5

〈binop〉

*

〈expr〉

〈expr〉

〈number〉

4

〈binop〉

+

〈expr〉

〈number〉

3

or

〈expr〉

〈expr〉

〈expr〉

〈number〉

5

〈binop〉

*

〈expr〉

〈number〉

4

〈binop〉

+

〈expr〉

〈number〉

3

https://url.cs51.io/lme
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But in the case of programming languages, we don’t have the luxury

of access to intonation or shared context to disambiguate expressions.

Instead, we rely on other tools – conventions and annotations.

In the way of conventions, we rely on a conventional O R D E R O F

O P E R AT I O N S that dictates which operations we tend to do “first”, that

is, lower in the tree. We refer to this kind of priority of operators as

their P R E C E D E N C E, with higher precedence operators appearing lower

in the tree than lower precedence operators. By convention, we take

the additive operators (+ and -) to have lower precedence than the

multiplicative operators (*, /). Thus, the expression 3 + 4 * 5 has the

structure shown in the second tree, not the one shown in the first. For

that reason, it expresses the value 23 and not 35.

Precedence is not sufficient to disambiguate, for instance, expres-

sions with two binary operators of the same precedence. Precedence

alone doesn’t disambiguate the structure of 5 - 4 - 1: Is it (5 - 4)

- 1, that is, 0, or 5 - (4 - 1), that is, 2. Here, we rely on the A S S O -

C I AT I V I T Y of an operator. We say that subtraction, by convention, is

L E F T A S S O C I AT I V E, so that the operations are applied starting with

the left one. The grouping is (5 - 4) - 1. Other operators, such as

OCaml’s exponentiation operator ** are R I G H T A S S O C I AT I V E, so that

2. ** 2. ** 3. is disambiguated as 2. ** (2. ** 3.). Its value is

256., not 64..3 3 The ** operator applies to and returns
floating point values, hence the decimal
point dots in the arguments and return
values.

For a more complete presentation of
the precedences and associativities of
all of the built-in operators of OCaml,
see the documentation on OCaml’s
operators.

Associativity and precedence conventions go a long way in picking

out the abstract structure of concrete expressions. But what if we want

to override those conventions? What if, say, we want to express the

left-branching tree for 3 + 4 * 5? We can use annotations, as indeed,

we already have, to enforce a particular structure. This is the role of

PA R E N T H E S E S, to override conventional rules for disambiguating

expressions. In the case at hand, we write (3 + 4) * 5 to obtain the

left-branching tree.

Exercise 5

What is the structure of the following OCaml expressions? Draw the corresponding
tree so that it reflects the actual precedences and associativities of OCaml. Then, try
typing the expressions into the R E P L to verify that they are interpreted according to the
structure you drew.

1. 10 / 5 / 2

2. 5. +. 4. ** 3. /. 2.

3. (5. +. 4.) ** (3. /. 2.)

4. 1 - 2 - 3 - 4

You may have been taught this kind of rule under the mnemonic

P E M D A S. But the ideas of precedence, associativity, and annotation

are quite a bit broader than the particulars of the P E M D A S convention.

They are useful in thinking more generally about the relationship

between what we will call concrete syntax and abstract syntax.

https://url.cs51.io/qhb
https://url.cs51.io/qhb
https://url.cs51.io/9qm
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3.3 Abstract and concrete syntax

The right way to think of expressions, then, is as hierarchically struc-

tured objects, which we have been depicting with trees as specified

by BNF grammar rules. From a practical perspective, however, when

programming, we are forced to notate these expressions in an unstruc-

tured linear form as a sequence of characters, in order to enter them

into a computer. We use the term A B S T R AC T S Y N TA X for expressions

viewed as structured objects, and C O N C R E T E S Y N TA X for expressions

viewed as unstructured linear text.

In order to more directly present the abstract syntax that corre-

sponds to a concrete expression, we draw trees as above that depict the

structure.4 So, for instance, the concrete syntax expression 3 + 4 * 5 4 The trees shown in Section 3.1, and
those shown below, provide more detail
than necessary for capturing the struc-
ture of the concrete expressions. For
that reason, they are, strictly speaking,
more like PA R S E T R E E S, rather than
abstract syntax trees. (The abbreviated
versions introduced below get more to
the point of true abstract syntax trees.)
But since these parse trees capture
structure that the concrete linear forms
do not, they will serve our purposes, and
we will continue to use these trees to
represent abstract syntactic structure
and BNF notation to define them. A
good course in programming languages
will more precisely distinguish parse
trees that structure the concrete syntax
from abstract syntax trees.

corresponds to the A B S T R AC T S Y N TA X T R E E

〈expr〉

〈expr〉

〈expr〉

〈number〉

5

〈binop〉

*

〈expr〉

〈number〉

4

〈binop〉

+

〈expr〉

〈number〉

3

We might abbreviate the tree structure to highlight the important

aspects by eliding the expression classes as

+

*

54

3

Then the alternative abstract syntax tree

*

5+

43

would correspond to the concrete syntax (3 + 4) * 5. Parentheses as

used for grouping are therefore notions of concrete syntax, not abstract

syntax. Similarly, conventions of precedence and associativity have to

do with the interpretation of concrete syntax, as opposed to abstract

syntax.
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In fact, there are multiple concrete syntax expressions for this ab-

stract syntax, such as (3 + 4) * 5, ((3 + 4) * 5), (3 + ((4))) *
5. But certain expressions that may seem related do not have this same

abstract syntax: 5 * (3 + 4) or ((4 + 3) * 5) or (3 + 4 + 0) *
5. Although these expressions specify the same value, they do so in

syntactically distinct ways. The fact that multiplication and addition

are commutative, or that 0 is an additive identity – these are semantic

properties, not syntactic.

Exercise 6

Draw the (abbreviated) abstract syntax tree for each of the following concrete syntax
expressions. Assume the further BNF rule

〈expr〉 ::= 〈unop〉〈expr〉
for unary operators like ~-, the unary negation operator.

1. (~- 4) + 6

2. ~- (4 + 6)

3. 20 / ~- 4 + 6

4. 5 * (3 + 4)

5. ((4 + 3) * 5)

6. (3 + 4 + 0) * 5

Exercise 7

What concrete syntax corresponds to the following abstract syntax trees? Show as many
as you’d like.

1. ~-

+

421

2. /

+

420

84

3. +

/

420

84

3.4 Expressing your intentions

It is through the expressions of a programming language – structured

as abstract syntax and notated through concrete syntax – that pro-

grammers express their intentions to a computer. The computer inter-

prets the expressions in order to carry out those intentions.
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Programming is an expressive activity with multiple audiences. Of

course, the computer is one audience; a program allows for program-

mers to express their computational intentions to the computer. But

there are human audiences as well. Programs can be used to commu-

nicate to other people – those who might be interested in an algorithm

for its own sake, or those who are tasked with testing, deploying, or

maintaining the programs. One of these latter programmers might

even be the future self of the author of the original code. Weeks or even

days after writing some code, you might well have already forgotten

why you wrote the code a certain way. The following fundamental

principle thus follows:

Edict of intention:

Make your intentions clear.

Programmers make mistakes. If their intentions are well expressed,

other programmers reviewing the code can notice that those inten-

tions are inconsistent with the code. Even the computer interpreting

the program can itself take appropriate action, notifying the program-

mer with a useful error or warning before the code is executed and the

unintended behavior can manifest itself.

Over the next chapters, we’ll see many ways that the edict of inten-

tion is applied. But one of the most fundamental is through documen-

tation of code.

3.4.1 Commenting

One of the most valuable aspects of the concrete syntax of any pro-

gramming language is the facility to provide elements in a concrete

program that have no correspondence whatsoever in the abstract syn-

tax, and therefore no effect on the computation expressed by the pro-

gram. The audience for such C O M M E N T S is the population of human

readers of the program. Comments serve the crucial expressive pur-

pose of documenting the intended workings of a program for those

human readers.

In OCaml, comments are marked by surrounding them with special

delimiters: (* 〈〉 *).5 The primary purpose of comments is satisfying 5 We use the symbol 〈〉 here and
throughout the later chapters as a
convenient notation to indicate un-
specified text of some sort, a textual
anonymous variable of a sort. Here,
it stands in for the text that forms the
comment. In other contexts it stands in
for the arguments of an operator, con-
structor, or subexpression, for instance,
in 〈〉 + 〈〉 or 〈〉 list or let 〈〉 in 〈〉 .

the edict of intention. Comments should therefore describe the why

rather than the how of a program. Section C.2 presents some useful

stylistic considerations in providing comments for documenting pro-

grams.

There are other aspects of concrete syntax that can be freely de-

ployed because they have no affect on the computation that a program

carries out. These too can be judiciously deployed to help express your
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intentions. For instance, the particular spacing used in laying out the

elements of a program doesn’t affect the computation that the program

expresses. Spaces, newlines, and indentations can therefore be used to

make your intentions clearer to a reader of the code, by laying out the

code in a way that emphasizes its structure or internal patterns. Simi-

larly, the choice of variable names is completely up to the programmer.

Variables can be consistently renamed without affecting the computa-

tion. Programmers can take advantage of this fact by choosing names

that make clear their intended use.

❧

Having clarified these aspects of the syntactic structure of program-

ming languages (and OCaml in particular) – distinguishing concrete

and abstract syntax; presenting precedence, associativity, and paren-

thesization for disambiguation – we turn now to begin the discussion

of OCaml as a language of types and values.
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Values and types

OCaml is a

• value-based,

• strongly, statically, implicitly typed,

• functional

programming language. In this chapter, we introduce these aspects of

the language.

4.1 OCaml expressions have values

The OCaml language is, at its heart, a language for calculating values.

The expressions of the language specify these values, and the process

of calculating the value of an expression is termed E VA LU AT I O N. We’ve

already seen examples of OCaml evaluating some simple expressions

in Chapter 2:

# 3 + 4 * 5 ;;

- : int = 23

# (3 + 4) * 5 ;;

- : int = 35

The results of these evaluations are integers, and the output printed by

the R E P L indicates this by the int, about which we’ll have more to say

shortly.

4.1.1 Integer values and expressions

Integer values are built using a variety of operators and functions.

We’ve seen the standard arithmetic operators for integer addition (+),

subtraction (-), multiplication (*), and division (/). Integer negation

is with the ~- operator (a tilde followed by a hyphen), which is kept

distinct from the subtraction operator for clarity.
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A full set of built-in operators is provided in OCaml’s Stdlib mod-

ule, one of a large set of OCaml library modules that provide a range

of functions. The Stdlib module is OCaml’s “standard library” in the

sense that the values it provides can be referred to anywhere without

any additional qualification, whereas values from other modules re-

quire a prefix, for example, List.length or Hashtbl.create.1 You’ll 1 There is nothing special going on with
Stdlib. It’s just that by default, the
Stdlib module is “opened”, whereas
other library modules like List and
Hashtbl are not. The behavior of
modules will become clear when they
are fully introduced in Chapter 12.

want to look over the Stdlib module documentation to get a sense of

what is available.

Here are some examples of integer expressions using these opera-

tors:

# 1001 / 365 ;; (* # of years in 1001 nights *)

- : int = 2

# 1001 mod 365 ;; (* # of nights left over *)

- : int = 271

# 1001 - (1001 / 365) * 365 ;; (* ...or alternatively *)

- : int = 271

Notice the use of comments to document the intentions behind the

calculations.

4.1.2 Floating point values and expressions

In addition to integers, OCaml provides other kinds of values. Real

numbers can be represented using a floating point approximation.

Floating point literals can be expressed in several ways, using decimal

notation (3.14), with an exponent (314e-2), and even in hexadecimal

(0x1.91eb851eb851fp+1).

# 3.14 ;;

- : float = 3.14

# 314e-2 ;;

- : float = 3.14

# 0x1.91eb851eb851fp+1 ;;

- : float = 3.14

Floating point expressions can be built up with a variety of oper-

ators, including addition (+.), subtraction (-.), multiplication (*.),

division (/.), and negation (~-.). Again, the Stdlib module provides a

fuller set, including operators for square root (sqrt) and various kinds

of rounding (floor and ceil).

# 3.14 *. 2. *. 2. ;; (* area of circle of radius 2 *)

- : float = 12.56

# ~-. 5e10 /. 2.718 ;;

- : float = -18395879323.0316429

Notice that the floating point operators are distinct from those for

integers. Though this will take some getting used to, the reason for this

design decision in the language will become apparent shortly.

https://url.cs51.io/3wq
https://url.cs51.io/3wq
https://url.cs51.io/ejw
https://url.cs51.io/och
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Exercise 8

Use the OCaml R E P L to calculate the value of the G O L D E N R AT I O,

1+p
5

2
,

a proportion thought to be especially pleasing to the eye (Figure 4.1).
You’ll want to use the built in sqrt function for floating point numbers. Be careful

to use floating point literals and operators. If you find yourself confronted with errors in
solving this exercise, come back to it after reading Section 4.2.

Figure 4.1: A rectangle with width and
height in the golden ratio.

4.1.3 Character and string values

As in many programming languages, text is represented as strings

of C H A R AC T E R S. Character literals are given in single quotes, for in-

stance, ’a’, ’X’, ’3’. Certain special characters can be specified only

by escaping them with a backslash, for instance, the single-quote char-

acter itself ’\’’ and the backslash ’\\’, as well as certain whitespace

characters like newline ’\n’ or tab ’\t’.

String literals are given in double quotes (with special characters

similarly escaped), for instance, "", "first", " and second". They

can be concatenated with the ^ operator.2 2 A useful trick is to use the escape
sequence of a backslash, a newline, and
any amount of whitespace, all of which
will be ignored, so as to split a string
over multiple lines. For instance,

# "First, " ^ "second, \

# third, \

# and fourth." ;;

- : string = "First, second, third, and fourth."

# "" ^ "first" ^ " and second" ;;

- : string = "first and second"

4.1.4 Truth values and expressions

There are two T RU T H VA LU E S, indicated in OCaml by the literals true

and false. Logical reasoning based on truth values was codified by the

British mathematician George Boole (1815–1864), leading to the use of

the term boolean for such values, and the type name bool for them in

OCaml.

Just as arithmetic values can be operated on with arithmetic oper-

ators, the truth values can be operated on with logical operators, such

as operators for conjunction (&&), disjunction (||), and negation (not).

(See Section B.3 for definitions of these operators.)

# false ;;

- : bool = false

# true || false ;;

- : bool = true

# true && false ;;

- : bool = false

# true && not false ;;

- : bool = true

The equality operator = tests two values3 for equality, returning 3 This is the first example of a function
that can apply to values of different
types, a powerful idea that we will
explore in detail in Chapter 9.

true if they are equal and false otherwise. There are other C O M PA R I -

S O N O P E R ATO R S as well: < (less than), > (greater than), <= (less than or

equal), >= (greater than or equal), <> (not equal).

https://url.cs51.io/k6z
https://url.cs51.io/lym
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# 3 = 3 ;;

- : bool = true

# 3 > 4 ;;

- : bool = false

# 1 + 1 = 2 ;;

- : bool = true

# 3.1416 = 314.16 /. 100. ;;

- : bool = false

# true = false ;;

- : bool = false

# true = not false ;;

- : bool = true

# false < true ;;

- : bool = true

Exercise 9

Are any of the results of these comparisons surprising? See if you can figure out why the
results are that way.

Of course, the paradigmatic use of truth values is in the ability

to compute different values depending on the truth or falsity of a

condition. The OCaml C O N D I T I O N A L expression is structured as

follows:4 4 We describe the syntax of the construct
using the BNF rule notation introduced
in Chapter 3. We will continue to do
so throughout as we introduce new
constructs of the language.

As mentioned in footnote 2 on
page 34, in defining expression classes
using this notation, we use subscripts
to differentiate among different occur-
rences of the same expression class,
as we have done here with the three
instances of the 〈expr〉 class – 〈exprtest〉,
〈exprtrue〉, and 〈exprfalse〉.

〈expr〉 ::= if 〈exprtest〉 then 〈exprtrue〉 else 〈exprfalse〉

The value of such an expression is the value of the 〈exprtrue〉 if the value

of the test expression 〈exprtest〉 is true and the value of the 〈exprfalse〉 if

the value of 〈exprtest〉 is false.

# if 3 = 3 then 0 else 1 ;;

- : int = 0

# 2 * if 3 > 4 then 3 else 4 + 5 ;;

- : int = 18

# 2 * (if 3 > 4 then 3 else 4) + 5 ;;

- : int = 13

4.2 OCaml expressions have types

We’ve introduced these additional values grouped according to their

use. Integers are the type of things that integer operations are appro-

priate for; floating point numbers are the type of things that floating

point operations are appropriate for; truth values are the type of things

that logical operations are appropriate for. And conversely, it makes

no sense to apply operations to values for which they are not appro-

priate. Therefore, OCaml is a T Y P E D language. Every expression of the

language is associated with a type.
Figure 4.2: Small inconsistencies can
lead to major problems: The explosion
of the Ariane 5 on June 4, 1996.

Using values in ways inconsistent with their type is perilous. The

maiden flight of the Ariane 5 rocket on June 4, 1996 ended spectac-

ularly 37 seconds after launch when the rocket self-destructed. The

https://url.cs51.io/zgm
https://url.cs51.io/zgm
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reason? A floating-point value was used as an integer, causing an im-

plicit conversion that overflowed. Using values in inappropriate ways

is a frequent source of bugs in code, even if not with the dramatic after-

math of the Ariane 5 explosion. As we will see, associating values with

types can often prevent these kinds of bugs.

The OCaml language is S TAT I C A L LY T Y P E D, in that the type of an

expression can be determined just by examining the expression in

its context. It is not necessary to run the code in which an expression

occurs in order to determine the type of an expression, as might be

necessary in a DY N A M I C A L LY T Y P E D language (Python or JavaScript,

for instance).

Types are themselves a powerful abstraction mechanism. Types are

essentially abstract values. By reasoning about the types of expressions,

we can convince ourselves of the correctness of code without having to

run it.

Furthermore, OCaml is S T RO N G LY T Y P E D; values may not be

used in ways inappropriate for their type. One of the ramifications of

OCaml’s strong typing is that functions only apply to values of certain

types and only return values of certain types. For instance, the addition

function specified by the + operator expects integer arguments and

returns an integer result.

By virtue of strong, static typing, the programming system (com-

piler or interpreter) can tell the programmer when type constraints are

violated even before the program is run, thereby preventing bugs before

they happen. If you attempt to use a value in a manner inconsistent

with its type, OCaml will complain with a typing error. For instance,

integer multiplication can’t be performed on floating point numbers or

strings:

# 5 * 3 ;;

- : int = 15

# 5 * 3.1416 ;;

Line 1, characters 4-10:

1 | 5 * 3.1416 ;;

^^^^^^

Error: This expression has type float but an expression was

expected of type

int

# "five" * 3 ;;

Line 1, characters 0-6:

1 | "five" * 3 ;;

^^^^^^

Error: This expression has type string but an expression was

expected of type

int

Programmers using a language with strong static typing for the first

time often find the frequent type errors limiting and even annoying.
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Type Type expression Example values An example expression

integers int 1 -2 42 (3 + 4) * 5

floating point numbers float 3.14 -2. 2e12 (3.0 +. 4.) *. 5e0

characters char ’a’ ’&’ '\n' char_of_int (int_of_char ’s’)

strings string "a" "3 + 4" "re" ^ "bus"

truth values bool true false true && not false

unit unit () ignore (3 + 4)

Table 4.1: Some of the atomic OCaml
types with example values and an
example expression.

Furthermore, there are some computations that can’t be expressed well

with such strict limitations, especially low-level systems computations

that need access to the underlying memory representation of values.

But a type error found at compile time is a warning that data use er-

rors could show up at run time after the code has been deployed – and

when it’s far too late to repair it. Strong static type constraints are thus

an example of a language restraint that frees programmers from verify-

ing that their code does not contain “bad” operations by empowering

the language interpreter to do so itself. (Looking ahead to the edict of

prevention in Chapter 11, it makes the illegal inexpressible.)

4.2.1 Type expressions and typings

In OCaml, every type has a “name”. These names are given as T Y P E

E X P R E S S I O N S, a kind of little language for naming types. Just as there

are value expressions for specifying values, there are type expressions

for specifying types.

In this language of type expressions, each ATO M I C T Y P E has its

own name. We’ve already seen the names of the integer, floating point,

and truth value types – int, float, and bool, respectively – in the

examples earlier in this chapter, because the R E P L prints out a type

expression for a value’s type along with the value itself, for instance,

# 42 ;;

- : int = 42

# 3.1416 ;;

- : float = 3.1416

# false ;;

- : bool = false

Notice that the R E P L presents the type of each computed value after a

colon (:). (Why a colon? You’ll see shortly.)

Table 4.1 provides a more complete list of some of the atomic types

in OCaml (some not yet introduced), along with their type names,

some example values, and an example expression that specifies a value

of that type using some functions that return values of the given type.
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(We’ll get to non-atomic (composite) types in Chapter 7.)

It is often useful to notate that a certain expression is of a certain

type. Such a T Y P I N G is notated in OCaml using the : operator, placing

the value to the left of the operator and its type to the right. So, for

instance, the following typings hold:

• 42 : int

• true : bool

• 3.14 *. 2. *. 2. : float

• if 3 > 4 then 3 else 4 : int

The first states that the expression 42 specifies an integer value, the

second that true specifies a boolean truth value, and so forth. The :

operator is sometimes read as “the”, thus “42, the integer” or “true, the

bool”. The typing operator is special in that it combines an expression

from the value language (to its left) with an expression from the type

language (to its right).

We can test out these typings right in the R E P L. (The parentheses

are necessary.)

# (42 : int) ;;

- : int = 42

# (true : bool) ;;

- : bool = true

# (3.14 *. 2. *. 2. : float) ;;

- : float = 12.56

# (if 3 > 4 then 3 else 4 : int) ;;

- : int = 4

The R E P L generates an error when a value is claimed to be of an

inappropriate type.

# (42 : float) ;;

Line 1, characters 1-3:

1 | (42 : float) ;;

^^

Error: This expression has type int but an expression was expected

of type

float

Hint: Did you mean `42.'?

Exercise 10

Which of the following typings hold?

1. 3 + 5 : float

2. 3. + 5. : float

3. 3. +. 5. : float

4. 3 : bool
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5. 3 || 5 : bool

6. 3 || 5 : int

Try typing these into the R E P L to see what happens. (Remember to surround them with
parentheses.)

Finally, in OCaml, expressions are I M P L I C I T LY T Y P E D. Although all

expressions have types, and the types of expressions can be annotated

using typings, the programmer doesn’t need to specify those types in

general. Rather, the OCaml interpreter can typically deduce the types

of expressions at compile time using a process called T Y P E I N F E R-

E N C E. In fact, the examples shown so far depict this inference. The

R E P L prints not only the value calculated for each expression but also

the type that it inferred for the expression.

4.3 The unit type

In OCaml, the phrases of the language are expressions, expressing

values. In many other programming languages, the phrases of the lan-

guage are not always used to express values. Rather, they are used as

commands. They are of interest because of what they do, not what they

are. This approach is especially prevalent in imperative programming,

the term ‘imperative’ deriving from the Latin ‘imperativus’, meaning

‘pertaining to a command’. But OCaml, like other functional languages,

is uniform in privileging expressions over commands.

Occasionally, we have an expression that really need compute

no value. But since every expression has to have a value in OCaml,

we need to assign a value to such expressions as well. In this case,

we use the value (), spelled with an open and close parenthesis and

pronounced “unit”. This value is the only value of the type unit. Since

the unit type has only one value, that value conveys no information,

which is just what we want as the value of an expression whose value

is irrelevant. The unit type will feature more prominently once we

explore imperative programming within OCaml in Chapter 15.

Exercise 11

Give a typing for a value of the unit type.

4.4 Functions are themselves values

Functions play a central role in OCaml. They serve as the primary

programming abstraction, as they do in many languages.

In a mathematical sense, a F U N C T I O N is simply a mapping from an

input (called the function’s A RG U M E N T) to an output (the function’s

VA LU E). Some functions that are built into OCaml are depicted in

Figure 4.3.

...

-2→ -1

-1→ 0

0→ 1

1→ 2

2→ 3

...

...

-2→ "-2"

-1→ "-1"

0→ "0"

1→ "1"

2→ "2"

...

true→ false

false→ true

(a) (b) (c)

Figure 4.3: Three example functions:
(a) the function from integers to their
successors, available in OCaml as the
succ function; (b) the function from
integers to their string representation,
available in OCaml as the string_of_-
int function; (c) the function mapping
each boolean value onto its negation,
available as the not function in OCaml.
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OCaml is a F U N C T I O N A L P RO G R A M M I N G L A N G UAG E. By this we

mean more than that functions play a central role in the language. We

mean that functions are F I R S T- C L A S S VA LU E S – they can be passed as

arguments to functions or returned as the value of functions. Func-

tions that take functions as arguments or return functions as values

are referred to as H I G H E R- O R D E R F U N C T I O N S, and the powerful pro-

gramming paradigm that makes full use of this capability, which we

will introduce in Chapter 8, is H I G H E R- O R D E R F U N C T I O N A L P RO -

G R A M M I N G.

Related to the idea that functions are values is that they have types

as well. In Exercise 8, you used the sqrt function to take the square

root of a floating point number. This function, sqrt, is itself a value

and has a type. The type of a function expresses both the type of its

argument (in this case, float) and the type of its output (again float).

The type expression for a function (the type’s “name”) is formed by

placing the symbol -> (read “arrow” or “to”) between the argument

type and the output type. Thus the type for sqrt is float -> float

(read “float arrow float” or “float to float”), or, expressed as a typing,

sqrt : float -> float.

You can verify this typing yourself, just by evaluating sqrt:

# sqrt ;;

- : float -> float = <fun>

Since functions are themselves values, they can be evaluated, and the

R E P L performs type inference and provides the type float -> float

along with a printed representation of the value itself <fun>, indicating

that the value is a function of some sort.5 5 The actual value of a function is a
complex data object whose internal
structure is not useful to print, so this
abstract presentation <fun> is printed
instead.

Because the argument type of sqrt is float, it can only be applied

to values of that type. And since the result type of sqrt is float, only

functions that take float arguments can apply to expressions like

sqrt 42..

Exercise 12

What are the types of the three functions – succ, string_of_int, and not – from
Figure 4.3?

Exercise 13

Try applying the sqrt function to an argument of some type other than float, for
instance, a value of type bool. What happens?

Of course, the real power in functional programming comes from

defining your own functions. We’ll move to this central topic in Chap-

ter 6, but first, it is useful to provide a means of naming values (includ-

ing functions), to which we turn in the next chapter.
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Naming and scope

In this chapter, we introduce the ability to give names to values, an

ability with multiple benefits.

5.1 Variables are names for values

We introduced the concept of a variable in Chapter 1 as seen in the

imperative programming paradigm – the variable as a locus of mutable

state, which takes on different values over time. But in the functional

paradigm, variables are better thought of simply as names for values.

To introduce a name for a value for use in some other expression,

OCaml provides the local naming expression, introduced by the key-

word let:

〈expr〉 ::= let 〈var〉 : 〈type〉 = 〈exprdef〉 in 〈exprbody〉

In this construct, 〈var〉 is a variable,1 which will be the name of a value

1 Variables in OCaml are required
to be sequences of alphabetic and
numeric characters along with the
underscore character (_) and the prime
character (’). The first character in the
variable name must be alphabetic or an
underscore. The special role of the latter
case is discussed later in Section 7.2.

of the given 〈type〉; 〈exprdef〉 is an expression defining a value of the

given 〈type〉; and 〈exprbody〉 is an expression within which the variable

can be used as the name for the defined value. The expression as

a whole specifies whatever the 〈exprbody〉 evaluates to. We say that

the construction B I N D S the name 〈var〉 to the value 〈exprdef〉 for use

in 〈exprbody〉.2 For this reason, the let expression is referred to as a 2 The name being defined is sometimes
referred to as the D E F I N I E N D U M,
the expression it names being the
D E F I N I E N S.

B I N D I N G C O N S T RU C T. We’ll introduce other binding constructs in

Chapters 6 and 7.

As an example,3 we might provide a name for the important con- 3 In these examples, we follow the stylis-
tic guidelines described in Section C.1.7
in indenting the body of a let to the
same level as the let keyword itself. The
rationale is provided there.

stant π in the context of calculating the area of a circle of radius 2:

# let pi : float = 3.1416 in

# pi *. 2. *. 2. ;;

- : float = 12.5664

Informally speaking (and we’ll provide a more rigorous description in

Chapter 13), the construct operates as follows: The 〈exprdef〉 expression
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is evaluated to a value, and then the 〈exprbody〉 is evaluated, but as if

occurrences of the definiendum 〈var〉 were first replaced by the value

of the definiens 〈exprdef〉.

Notice how by naming the value pi, we document our intention

that the value serves as the mathematical constant, π, consistent with

the edict of intention.

5.2 The type of a let-bound variable can be inferred

It may seem obvious to you that in an expression like

let pi : float = 3.1416 in

pi *. 2. *. 2. ;;

the variable pi is of type float. What else could it be, given that its

value is a float literal, and it is used as an argument of the *. oper-

ator, which takes float arguments? You would be right, and OCaml

itself can make this determination, inferring the type of pi without the

explicit typing being present. For that reason, the type information in

the let construct is optional. We can simply write

let pi = 3.1416 in

pi *. 2. *. 2. ;;

and the calculation proceeds as usual. This ability to infer types is what

we mean when we say (as in Section 4.2.1) that OCaml is implicitly

typed.

Although these typings when introducing variables are optional,

nonetheless, it can still be useful to provide explicit type information

when naming a value. First, (and again following the edict of inten-

tion), it allows the programmer to make clear the intended types, so

that the OCaml interpreter can verify that the programmer’s intention

was followed and so that readers of the code are aware of that inten-

tion. Second, there are certain (relatively rare) cases (Section 9.6) in

which OCaml cannot infer a type for an expression in context; in such

cases, the explicit typing is necessary.

5.3 let expressions are expressions

Remember that all expressions in OCaml have values, even let expres-

sions. Thus we can use them as subexpressions of larger expressions.

# 3.1416 *. (let radius = 2.

# in radius *. radius) ;;

- : float = 12.5664
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Exercise 14

Are the parentheses necessary in this example? Try out the expression without the
parentheses and see what happens.

A particularly useful application of the fact that let expressions

can be used as first-class values is that they may be embedded in other

let expressions to get the effect of defining multiple names. Here, we

define both the constant π and a radius to calculate the area of a circle

of radius 4:

# let pi = 3.1416 in

# let radius = 4. in

# pi *. radius ** 2. ;;

- : float = 50.2656

Exercise 15

Use the let construct to improve the readability of the following code to calculate the
length of the hypotenuse of a particular right triangle:

# sqrt (1.88496 *. 1.88496 +. 2.51328 *. 2.51328) ;;
- : float = 3.1416

5.4 Naming to avoid duplication

We introduce an extended example to more crisply demonstrate the

advantages of naming. Suppose we wanted to determine the area of

the larger of the two triangles in Figure 5.1.

Figure 5.1: Two triangles, the left with
sides of length 1, 1, and 1.41, and the
right with sides of length 1.75, .75, and
2. Which has the larger area?

To demonstrate some of the advantages of naming, we attempt

to calculate the area of the larger without recourse to the let con-

struct. To calculate the areas, we’ll use a method attributed to Heron of

Alexandria around 60 CE.

Calculating the area of the larger triangle without defining local

names is possible, but ungainly:

1 # if sqrt ( ((1. +. 1. +. 1.41) /. 2.)

2 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

3 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

4 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.41) )

5 # > sqrt ( ((1.5 +. 0.75 +. 2.) /. 2.)

6 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 1.5)

7 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 0.55)

8 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 2.) )

9 # then

10 # sqrt ( ((1. +. 1. +. 1.41) /. 2.)

11 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

12 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

13 # *. ((1. +. 1. +. 1.41) /. 2. -. 1.41) )

14 # else

15 # sqrt ( ((1.5 +. 0.75 +. 2.) /. 2.)

16 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 1.5)

17 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 0.75)

18 # *. ((1.5 +. 0.75 +. 2.) /. 2. -. 2.) ) ;;

- : float = 0.477777651606895504



54 P RO G R A M M I N G W E L L

It’s extraordinarily difficult to tell what’s going on in this code. Cer-

tainly, the various side lengths appear repeatedly, and in fact, calcu-

lations making use of them repeat as well. Lines 1–4 and 10–13 both

separately calculate the area of the left triangle in the figure, and lines

5–8 and 15–18 calculate the area of the right triangle. The calculations

are redundant, and worse, provide the opportunity for bugs to creep in

if the copies aren’t kept in perfect synchrony.

Appropriate use of naming can partially remedy these problems.

(We’ll address their solution more systematically in Chapters 6 and 8.)

First, by naming the two area calculations, we need calculate each only

once.

# let left_area = sqrt ( ((1. +. 1. +. 1.41) /. 2.)

# *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

# *. ((1. +. 1. +. 1.41) /. 2. -. 1.)

# *. ((1. +. 1. +. 1.41) /. 2. -. 1.41) ) in

# let right_area = sqrt ( ((1.5 +. 0.75 +. 2.) /. 2.)

# *. ((1.5 +. 0.75 +. 2.) /. 2. -. 1.5)

# *. ((1.5 +. 0.75 +. 2.) /. 2. -. 0.75)

# *. ((1.5 +. 0.75 +. 2.) /. 2. -. 2.) ) in

# if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

We also correct a bug in line 7, which you may not have noticed, that

uses inconsistent values for one of the side lengths in the area calcula-

tions. By defining the area once and using the value twice, we remove

the possibility for such inconsistencies to even arise.

Finally, notice the repeated calculation of, for instance, (1. +. 1.

+. 1.41) /. 2., which is calculated some four times, and similarly

for (1.5 +. 0.75 +. 2.) /. 2.. Each of these is the S E M I P E R I M E -

T E R of a triangle (that is, half the perimeter). The semiperimeter fea-

tures heavily in Heron’s method of calculating triangle areas. By nam-

ing these two subexpressions, we clarify even further what is going on

in the example.

# let left_area =

# let left_sp = (1. +. 1. +. 1.41) /. 2. in

# sqrt ( left_sp

# *. (left_sp -. 1.)

# *. (left_sp -. 1.)

# *. (left_sp -. 1.41) ) in

# let right_area =

# let right_sp = (1.5 +. 0.75 +. 2.) /. 2. in

# sqrt ( right_sp

# *. (right_sp -. 1.5)

# *. (right_sp -. 0.75)

# *. (right_sp -. 2.) ) in

# if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

There’s still much room for improvement, but to make further
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progress on this example awaits additional techniques beyond nam-

ing, as described in Section 6.5.

5.5 Scope

The name defined in the let expression is available only in the body

of the expression. The name is L O C A L to the body, and unavailable

outside of the body. We say that the S C O P E of the variable – that is,

the code region within which the variable is available as a name of the

defined value – is the body of the let expression. This explains the

following behavior:

# (let s = "hi ho " in

# s ^ s) ^ s ;;

Line 2, characters 9-10:

2 | s ^ s) ^ s ;;

^

Error: Unbound value s

The body of the let expression in this example ends at the closing

parenthesis, and thus the variable s defined by that construct is un-

available (“unbound”) thereafter.

Exercise 16

Correct the example to provide the triple concatenation of the defined string.

Exercise 17

What type do you expect is inferred for s in the example?

In particular, the scope of a local let naming does not include the

definition itself (the 〈exprdef〉 part between the = and the in). Thus the

following expression is ill-formed:

# let x = x + 1 in

# x * 2 ;;

Line 1, characters 8-9:

1 | let x = x + 1 in

^

Error: Unbound value x

And a good thing too, for what would such an expression mean? This

kind of recursive definition isn’t well founded. Nonetheless, there are

useful recursive definitions, as we will see in Section 6.6.

What if we define the same name twice? There are several cases to

consider. Perhaps the two uses are disjoint, as in this example:

# sqrt ((let x = 3. in x *. x)

# +. (let x = 4. in x *. x)) ;;

- : float = 5.

Since each x is introduced with its own let and has its own body, the

scopes are disjoint. The occurrences of x in the first expression name
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the number 3. and in the second name the number 4.. But in the

following case, the scopes are not disjoint:

# sqrt (let x = 3. in

# x *. x +. (let x = 4. in x *. x )) ;;

- : float = 5.

The scope of the first let encompasses the entire second let. Do the

highlighted occurrences of x in the body of the second let name 3.

or 4.? The rule used in OCaml (and most modern languages) is that

the occurrences are bound by the nearest enclosing binding construct

for the variable. The same binding relations hold as if the inner let-

bound variable x and the occurrences of x in its body were uniformly

renamed, for instance, as y:

# sqrt (let x = 3. in

# x *. x +. (let y = 4. in y *. y)) ;;

- : float = 5.

By virtue of this convention that variables are bound by the closest

binder, when an inner binder for a variable falls within the scope of an

outer binder for the same variable, the outer variable is inaccessible

in the inner scope. We say that the outer variable is S H A D OW E D by the

inner variable. For instance, in

# let x = 1 in

# x + let x = 2 in

# x + let x = 4 in

# x ;;

- : int = 7

the innermost x (naming 4) shadows the outer two, and the middle x

(naming 2) shadows the outer x (naming 1). Thus the three highlighted

occurrences of x name 1, 2, and 4, respectively, which the expression as

a whole sums to 7.

Since the scope of a let-bound variable is the body of the construct,

but not the definition, occurrences of the same variable in the defi-

nition must be bound outside of the let. Consider the highlighted

occurrence of x on the second line:

let x = 3 in

let x = x * 2 in

x + 1 ;;

This occurrence is bound by the let in line 1, not the one in line 2.

That is, it is equivalent to the renaming

let x = 3 in

let y = x * 2 in

y + 1 ;;
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Exercise 18

For each occurrence of the variable x in the following examples, which let construct
binds it? Rewrite the expressions by renaming the variables to make them distinct while
preserving the bindings.

1. let x = 3 in
let x = 4 in
x * x ;;

2. let x = 3 in
let x = x + 2 in
x * x ;;

3. let x = 3 in
let x = 4 + (let x = 5 in x) + x in
x * x ;;

5.6 Global naming and top-level let

The let construct introduced above introduces a local name, local in

the sense that its scope is just the body of the let. OCaml provides a

global naming construct as well, defined by this BNF rule:4 4 �Unlike the local naming construct,
the global naming construct expressed
in this BNF rule is not an expression
(that is, of syntactic class 〈expr〉).
Rather, we categorize it as a D E F I N I -
T I O N (of syntactic class 〈definition〉).
Such definitions are allowed only at the
top level of program files or the R E P L.

〈definition〉 ::= let 〈var〉 : 〈type〉 = 〈exprdef〉

By simply leaving off the ‘in 〈exprbody〉’ part of the let construct, the

name can continue to be used thereafter; the scope of the naming

extends all the way through the remainder of the R E P L session or to the

end of the program file.

# let pi = 3.1416 ;;

val pi : float = 3.1416

# let radius = 4.0 ;;

val radius : float = 4.

# pi *. radius *. radius ;;

- : float = 50.2656

# 2. *. pi *. radius ;;

- : float = 25.1328

The R E P L indicates that new names have been introduced by present-

ing typings for the names (pi : float or radius : float) as well as

displaying their values.

This global naming may look a bit like assignment in imperative

languages. We can have, for instance,

# let x = 3 ;;

val x : int = 3

# let x = x + 1 ;;

val x : int = 4

# x + x ;;

- : int = 8

The second line may look like it is assigning a new value to x. But no,

all that is happening is that there is a new name (coincidentally the

same as a previous name) for a new value. The old name x for the value
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3 is still around; it’s just inaccessible, shadowed by the new name x. (In

Chapter 15, we provide a demonstration that this is so.)

Exercise 19

In the sequence of expressions

let tax_rate = 0.05 ;;
let price = 5. ;;
let price = price * (1. +. tax_rate) ;;
price ;;

what is the value of the final expression? (You can use the R E P L to verify your answer.)

Global naming is available only at the top level. A global name

cannot be defined from within another expression, for instance, the

body of a local let. The following is thus not well-formed:

# let radius = 4. in

# let pi = 3.1416 in

# let area = pi *. radius ** 2. ;;

Line 3, characters 30-32:

3 | let area = pi *. radius ** 2. ;;

^^

Error: Syntax error

Exercise 20

How might you get the effect of this definition of a global variable area by making use of
local variables for pi and radius?

❧

We alluded to the fact that in OCaml, functions are first-class values,

and as such they can be named as well. In fact, the ability to name val-

ues becomes most powerful when the named values are functions. In

the next chapter, we introduce functions and function application in

OCaml, and start to demonstrate the power of functions as an abstrac-

tion mechanism.



6

Functions

Recall that abstraction is the process of viewing a set of apparently

dissimilar things as instantiating an underlying identity. Plato in his

Phaedrus has Socrates adduce two rhetorical principles. The first

Socrates describes as

That of perceiving and bringing together in one idea the scattered

particulars, that one may make clear by definition the particular thing

which he wishes to explain. (Plato, 1927)

that is, a principle of abstraction. (Socrates’s second principle shows

up in Chapter 8.)

Abstraction in programming is this process applied to code, and

can be enabled by appropriate language constructs. Programming

abstraction is important because it enables programmers to satisfy

perhaps the most important edict of programming:

Edict of irredundancy:

Never write the same code twice.

A standard technique that beginning programmers use is “cut and

paste” programming – you find some code that does more or less

what you need, perhaps code you’ve written before, and you cut and

paste it into your program, adjusting as necessary for the context the

code now appears in. There is a high but mostly hidden cost to the

cut and paste approach. If you find a bug in one of the copies, it needs

to be fixed in all of the copies. If some functionality changes in one

of the copies, the other copies don’t benefit unless they are modified

too. As documentation is added to clarify one of the copies, it must

be maintained for all of them. When one of the copies is tested, no

assurance is thereby gained for the other copies. There’s a theme here.

Having written the same code twice, all of the problems of debugging,

maintaining, documenting, and testing code have been similarly

multiplied.
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The edict of irredundancy is the principle of avoiding the problems

introduced by duplicative code. Rather than write the same code twice,

the edict calls for viewing the apparently dissimilar pieces of code as

instantiating an underlying identity, and factoring out the common

parts using an appropriate abstraction mechanism.

Given the emphasis in the previous chapters, it will be unsurprising

to see that the abstraction mechanism we turn to for satisfying the

edict of irredundancy is the function itself. but before getting there,

there is much to be introduced about how functions are defined and

used in OCaml.

We will thus introduce how OCaml supports functions, their ap-

plication and their definition, including some notational issues that

simplify writing functions and connections to the typing constraints

that make sure that code works properly. Then, we’ll have the tools to

provide an example of how functions can factor out redundancies from

code in keeping with the edict of irredundancy. Finally, we’ll extend

the expressivity of functions even further with recursive functions,

and introduce the idea of unit testing of functions to help verify their

correctness.

6.1 Function application

We introduced functions in Section 4.4 as mappings from an argument

to the function’s value at that argument. We can make use of a function

by A P P LY I N G it to its argument. You’ll be most familiar with the tradi-

tional and ubiquitous mathematical notation for function application,

in which a symbol naming the function precedes a parenthesized,

comma-separated list of the arguments, as, for instance, f (1,2,3).1 1 Some historical background on this
notation is provided in Section B.1.2.It is thus perhaps surprising that OCaml doesn’t use this notation for

function application. Instead, it follows the notational convention

proposed by Church in his lambda calculus. (See Section 1.2.) In the

lambda calculus, functions and their application are so central (in-

deed, there’s basically nothing else in the logic) that the addition of the

parentheses in the function application notation becomes onerous. In-

stead, Church proposed merely prefixing the function to its argument.

Instead of f (1), Church’s notation would have f 1. Instead of f (g (1)),

he would have f (g 1), using the parentheses for grouping, but not for

demarcating the arguments.

Similarly, in OCaml, the function merely precedes its argument. The

successor of 41 is thus simply succ 41. The square root of two is sqrt

2.0.

# succ 41 ;;

- : int = 42
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# sqrt 2.0 ;;

- : float = 1.41421356237309515

Syntactically, we can codify that in a simple BNF rule for function

application:

〈expr〉 ::= 〈exprfunc〉 〈exprarg〉

Recall from Section 4.4 that functions (as all values) have types,

which can be expressed as type expressions using the -> operator. For

instance, the successor function succ has the type given by the type

expression int -> int and the string_of_int function the type int

-> string.

6.2 Multiple arguments and currying

Figure 6.1: Moses Schönfinkel (1889–
1942), Russian logician and math-
ematician, first specified the use of
higher-order functions to mimic the
effect of multiple-argument functions.

Figure 6.2: Haskell Curry (1900–1982),
American logician, promulgator of
the use of higher-order functions
to simulate functions of multiple
arguments, which is referred to as
currying in his honor.

The simple prefix notation for function application is only appropriate

when functions take exactly one argument. But it turns out that this

is not a substantial limitation in a system (like the lambda calculus

and like OCaml) in which functions are themselves values. Suppose

we have a function that we think of as taking multiple arguments

simultaneously (like f (1,2,3)). We can reconceptualize f as taking only

one argument (in this case, the argument 1), returning a function that

takes the second argument 2, again returning a function that takes the

third and final argument 3, returning the final value. The type of such a

function, which takes three integers returning an integer result, say, is

thus

int -> (int -> (int -> int))

In essence, the function takes its three arguments one at a time, return-

ing a function after each argument before the last. Although this trick

was first discussed by Schönfinkel (1924), it is referred to as C U R RY I N G

a function, the resulting function being curried, so named after Haskell

Curry who popularized the approach.

Because in OCaml functions take one argument, the language

makes extensive use of currying, and language constructs facilitate

its use. For instance, the -> type expression operator is right associa-

tive (see Section 3.2) in OCaml, so that the type of the curried three-

argument function above can be expressed as

int -> int -> int -> int

Application, conversely, is left associative, so that applying a curried

function f to its arguments can be notated f 1 2 3 instead of ((f 1)

2) 3.
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We’ve already used some curried functions without noticing. The

two-argument arithmetic and boolean operators, like +, /., and &&, are

curried. As usual, the R E P L reveals their type:

# (+) ;;

- : int -> int -> int = <fun>

# (/.) ;;

- : float -> float -> float = <fun>

# (&&) ;;

- : bool -> bool -> bool = <fun>

Normally, we write these operators I N F I X, placing the operator be-

tween its two arguments, but by placing the operator in parentheses2 2 Care must be taken when parenthesiz-
ing the multiplication operators * and

*. to convert them to prefix functions.
Since OCaml comments are provided
as (* 〈〉 *), parenthesizing as (*) will
be misinterpreted as the beginning of a
comment. To avoid this problem, place
spaces between the parentheses and the
operator: ( * ).

as we’ve done, the OCaml R E P L interprets them as regular P R E F I X

functions, in which the function appears before its argument. Making

use of this ability, they can even be applied in the one-by-one manner,

as we’ve done here both parenthesized and unparenthesized:

# ((+) 3) 4 ;;

- : int = 7

# (+) 3 4 ;;

- : int = 7

Exercise 21

What (if anything) are the types and values of the following expressions? Try to figure
them out yourself before typing them into the R E P L to verify your answer.

1. (-) 5 3

2. 5 - 3

3. - 5 3

4. "O" ^ "Caml"

5. (^) "O" "Caml"

6. (^) "O"

7. ( ** ) – See footnote 2.

6.3 Defining anonymous functions

Now we get to the whole point of functional programming: defining

your own functions. Suppose we want to specify a function that maps a

certain input, call it x, to an output, say the doubling of x. The follow-

ing expression does the trick: fun x : int -> 2 * x.

# fun x : int -> 2 * x ;;

- : int -> int = <fun>

The keyword fun introduces the function definition. The arrow ->

separates the typing of a variable that represents the input, the integer

x, from an expression that represents the output value, 2 * x. The

output expression can, of course, make free use of the input variable as

part of the computation.
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We can apply this function to an argument (21, say). We use the

usual OCaml prefix function application syntax, placing the function

before its argument:

# (fun x : int -> 2 * x) 21 ;;

- : int = 42

Syntactically, we construct such a “function without a name”, an

A N O N Y M O U S F U N C T I O N, with the OCaml fun construct, given by the

following syntactic rule:3 3 Warning: The same arrow symbol ->
is used in defining both function values
and function types. This sometimes
leads to confusion. Be aware that
though the same symbol is used for
both, the two are quite distinct.

〈expr〉 ::= fun 〈var〉 : 〈type〉 -> 〈expr〉

Here, 〈var〉 is a variable, the name of the argument of the function, and

〈expr〉 is an expression defining the output of the function, which will

be of the given 〈type〉.
The fun construct, like the let construct, is a binding construct.

The fun construct introduces a variable and binds occurrences of that

variable in its scope. The scope of the variable is the body of the fun,

the expression 〈expr〉 after the arrow.

As was the case for let expressions, when the type of the variable

can be inferred from how it is used in the definition part, as is typically

the case, the typing part can be left off. So, for instance, the doubling

function could be written

# fun x -> 2 * x ;;

- : int -> int = <fun>

and the same type int -> int still inferred.

Exercise 22

Try defining your own functions, perhaps one that squares a floating point number, or
one that repeats a string.

6.4 Named functions

Now that we have the ability to define functions (with fun) and the

ability to name values (with let), we can put them together to name

newly-defined functions. Here, we give a global naming of the dou-

bling function and use it:

# let double = fun x -> 2 * x ;;

val double : int -> int = <fun>

# double 21 ;;

- : int = 42

Here are functions for the circumference and area of circles of given

radius:
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# let pi = 3.1416 ;;

val pi : float = 3.1416

# let area =

# fun radius ->

# pi *. radius ** 2. ;;

val area : float -> float = <fun>

# let circumference =

# fun radius ->

# 2. *. pi *. radius ;;

val circumference : float -> float = <fun>

# area 4. ;;

- : float = 50.2656

# circumference 4. ;;

- : float = 25.1328

6.4.1 Compact function definitions

This method for defining named functions, though effective, is a bit

cumbersome. For that reason, OCaml provides a simpler syntax for

defining functions, in which a definition for the calling pattern itself is

provided. Instead of the phrasing

let 〈varfunc〉 = fun 〈vararg〉 -> 〈expr〉

OCaml allows the following equivalent phrasing

let 〈varfunc〉 〈vararg〉 = 〈expr〉

This syntax for defining functions may be more familiar from other

languages. It is also consistent with a more general pattern-matching

syntax that we will come to in Section 7.2.

This compact syntax for function definition is an example of S Y N -

TAC T I C S U G A R,4 a bit of additional syntax that serves to abbreviate 4 The term “syntactic sugar” was first
used by Landin (1964) (Figure 17.7)
to describe just such abbreviatory
constructs.

a more complex construction. By adding some syntactic sugar, the

language can provide simpler expressions without adding underlying

constructs to the language; a language with a small core set of con-

structs can still have a sufficiently expressive concrete syntax that it

is pleasant to program in. As we introduce additional syntactic sugar

constructs, notice how they allow for idiomatic programming without

increasing the core language.

We can use this more compact function definition notation to

provide a more elegant definition of the doubling function:

# let double x = 2 * x ;;

val double : int -> int = <fun>

# double (double 3) ;;

- : int = 12
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This compact notation applies to local definitions as well.

# let double x = 2 * x in

# double (double 3) ;;

- : int = 12

It even extends to multiple-argument curried functions. The defini-

tion

# let hypotenuse x y =

# sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

is syntactic sugar for (and hence completely equivalent to) the defini-

tion

# let hypotenuse =

# fun x ->

# fun y ->

# sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

6.4.2 Providing typings for function arguments and outputs

As in all definitions, you can provide a typing for the variable being

defined, as in

# let hypotenuse : float -> float -> float =

# fun x ->

# fun y ->

# sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

and it is good practice to do so for top-level definitions. That way,

you are registering your intentions as to the types – remember the

edict of intention? – and the language interpreter can verify that those

intentions are satisfied. (See Section C.3.4.)

In the compact notation, typings can and should be provided for

the application of the function to its arguments, as well as for the ar-

guments itself. In the hypotenuse function definition, the application

hypotenuse x y is of type float, which can be recorded as

# let hypotenuse x y : float =

# sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

Each of the arguments can be explicitly typed as well.

# let hypotenuse (x : float) (y : float) : float =

# sqrt (x ** 2. +. y ** 2.) ;;

val hypotenuse : float -> float -> float = <fun>

Here, we have recorded that x and y are each of float type, and the re-

sult of an application hypotenuse x y is also a float, which together
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capture the full information about the type of hypotenuse itself. Con-

sequently, the type inferred for the hypotenuse function itself is, as

before, float -> float -> float, that is, a curried binary function

from floats to floats.

Exercise 23

Consider the following beginnings of function declarations. How would these appear
using the compact notation (using whatever argument variable names you prefer)?

1. let foo : bool -> int -> bool = ...

2. let foo : (float -> int) -> float -> bool = ...

3. let foo : bool -> (int -> bool) -> int = ...

Exercise 24

What are the types for the following expressions?

1. let greet y = "Hello" ˆ y in greet "World!" ;;

2. fun x -> let exp = 3. in x ** exp ;;

Exercise 25

Define a function square, using compact notation, that squares a floating point number.
For instance,

# square 3.14 ;;
- : float = 9.8596
# square 1234567. ;;
- : float = 1524155677489.

Exercise 26

Define a function abs : int -> int, using compact notation, that computes the
absolute value of an integer.

# abs (-5) ;;
- : int = 5
# abs 0 ;;
- : int = 0
# abs (3 + 4) ;;
- : int = 7

Exercise 27

The Stdlib.string_of_bool function returns a string representation of a boolean.
Here it is in operation:

# string_of_bool (3 = 3) ;;
- : string = "true"
# string_of_bool (0 = 3) ;;
- : string = "false"

What is the type of string_of_bool? Provide your own function definition for it.

Exercise 28

Define a function even : int -> bool that determines whether its integer argument
is an even number. It should return true if so, and false otherwise. Try using both the
compact notation for the definition and the full desugared notation. Try versions with
and without typing information for the function name.

Exercise 29

Define a function circle_area : float -> float that returns the area of a circle of a
given radius specified by its argument. Try all of the variants described in Exercise 28. Figure 6.3: The frustrum of a cone,

with top and bottom radii r1 and r2
respectively, and height h.
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Exercise 30

A frustrum (Figure 6.3) is a three-dimensional solid formed by slicing off the top of a
cone parallel to its base. The volume V of a frustrum with radii r1 and r2 and height h is
given by the formula

V = πh

3
(r 2

1 + r1r2 + r 2
2 ) .

Implement a function to calculate the volume of a frustrum given the radii and height.

Problem 31

The calculation of the date of Easter, a calculation so important to early Christianity
that it was referred to simply as C O M P U T U S (“the computation”), has been the subject
of innumerable algorithms since the early history of the Christian church. An especially
simple method, published in Nature in 1876 and attributed to “A New York correspon-
dent” (1876), proceeds by sequentially calculating the following values on the basis of the
year Y :

a = Y mod 19 h = (19a +b −d − g +15) mod 30

b = Y

100
i = c

4

c = Y mod 100 k = c mod 4

d = b

4
l = (32+2e +2i −h −k) mod 7

e = b mod 4 m = a +11h +22l

451

f = b +8

25
month = h + l −7m +114

31

g = b − f +1

3
day = ((h + l −7m +114) mod 31)+1

Write two functions, computus_month and computus_day, which take an integer year
argument and return, respectively, the month and day of Easter as calculated by the
method above. Use them to verify that the date of Easter in 2018 was April 1.

6.5 Function abstraction and irredundancy

We have enough background in place to see directly how functions are

key to obeying the edict of irredundancy. Recall the comparison of the

areas of two triangles from Section 5.4. By appropriate use of naming

subcalculations, the computation was defined as

# let left_area =

# let left_sp = (1. +. 1. +. 1.41) /. 2. in

# sqrt ( left_sp

# *. (left_sp -. 1.)

# *. (left_sp -. 1.)

# *. (left_sp -. 1.41) ) in

# let right_area =

# let right_sp = (1.5 +. 0.75 +. 2.) /. 2. in

# sqrt ( right_sp

# *. (right_sp -. 1.5)

# *. (right_sp -. 0.75)

# *. (right_sp -. 2.) ) in

# if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

But some obvious redundancies remain. The calculation of left_-

area and right_area are structured identically, composed of first a
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calculation of the semiperimeter for the three sides and then the area

calculation itself, again using the three side lengths in corresponding

places.

Of course, they are not strictly identical; if they were, we could just

use the naming trick (Section 5.4) to remove the redundancy. How-

ever, except for the three side lengths, the two calculations are the

same. The two area values involve the same computation over the side

lengths, the same mapping from side lengths to area, the same func-

tion of the side lengths so to speak. We can view these two dissimilar

expressions as manifesting an underlying identity by thinking of them

as applications of one and the same function (call it area) to the three

side lengths.

We start with a definition of this area function.

# let area x y z =

# let sp = (x +. y +. z) /. 2. in

# sqrt (sp *. (sp -. x) *. (sp -. y) *. (sp -. z)) ;;

val area : float -> float -> float -> float = <fun>

The two original computations of left_area and right_area match

this pattern exactly, just with different values substituted for the three

side lengths x, y, and z.

To generate these two instances, we apply the area function to the

two sets of side lengths and compare the results as before.

# let left_area = area 1. 1. 1.41 in

# let right_area = area 1.5 0.75 2. in

# if left_area > right_area then left_area else right_area ;;

- : float = 0.499991149296665216

It is worth noting that this solution to the triangle area comparison

problem specifies each of the six side lengths exactly once. Compare

that with the initial version, in which each of the six side lengths ap-

pears ten times in the calculation, providing the risk of accidentally

modifying some of the occurrences but not others and introducing

bugs that way. Similarly, the definition of semiperimeter occurs once

in this version, but 16 times in the original version. The definition of

area by Heron’s method appears only once here but four times in the

original. This is the essence of abstraction, capturing the underlying

idea once that unifies many instances.

We’ve now seen two abstraction techniques for eliminating re-

dundancies. For trivial redundant expressions, exact duplications,

it suffices to name the expression once and refer to it by its name

multiple times. When the redundancy is a bit more subtle, involving

systematic differences as to particular values in particular places, we

can introduce a function that abstracts over those places, applying it

to the particular values. But there are cases where mere substitution
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of simple values (like in the area example) is not sufficient. The true

power of functions comes in with these even more sophisticated cases,

which we explore in detail in Chapter 8.

To prepare for those abstraction techniques, we extend the expres-

sivity of functions even further by allowing functions to be defined in

terms of themselves, recursive functions.

6.6 Defining recursive functions

Consider the F AC TO R I A L function, which maps its integer argument

n onto the product of all the positive integers that are no larger than

n. Thus, the factorial of 3, traditionally notated with a suffixed excla-

mation mark as 3!, is the product of 1, 2, and 3, that is, 6; and 4! is 24.

Notice that 4! is 4 · 3!, which makes sense because 3! has already in-

corporated all the integers up to 3, so the only remaining integer to

multiply in is 4 itself. Indeed, in general,

n! = n · (n −1)!

for all integers n greater than 1, and if we take the value of 0! to be 1,

the equation even holds for n = 1. This serves to completely define

the factorial function. We can take its definition to be given by the two

equations5 5 See Section B.1.1 for more background
on defining mathematical functions by
equations.0! = 1

n! = n · (n −1)! for n > 0

We can implement the factorial function directly from this defini-

tion. The first line of the definition, setting up the name of the function

(fact), its single integer argument (n), and its output type (int) is

straightforward.

let fact (n : int) : int =

...

The body of the function starts by distinguishing the two cases, when n

is zero and when n is positive.

let fact (n : int) : int =

if n = 0 then ...

else ...

The zero case is simple; the output value is 1.

let fact (n : int) : int =

if n = 0 then 1

else ...

The non-zero case involves multiplying n by the factorial of n - 1.
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let fact (n : int) : int =

if n = 0 then 1

else n * fact (n - 1) ;;

Let’s try it.

# let fact (n : int) : int =

# if n = 0 then 1

# else n * fact (n - 1) ;;

Line 3, characters 9-13:

3 | else n * fact (n - 1) ;;

^^^^

Error: Unbound value fact

Hint: If this is a recursive definition,

you should add the 'rec' keyword on line 1

There seems to be a problem. Recall from Section 5.5 that the scope

of a let is the body of the let (or the code following a global let),

but not the definition part of the let. Yet we’ve referred to the name

fact in the definition of the fact function. The scope rules for the let

constructs (both local and global) disallow this.

In order to extend the scope of the naming to the definition itself, to

allow a recursive definition, we add the rec keyword after the let.

# let rec fact (n : int) : int =

# if n = 0 then 1

# else n * fact (n - 1) ;;

val fact : int -> int = <fun>

The rec keyword means that the scope of the let includes not only its

body but also its definition part. With this change, the definition goes

through, and in fact, the function works well:

# fact 0 ;;

- : int = 1

# fact 1 ;;

- : int = 1

# fact 4 ;;

- : int = 24

# fact 20 ;;

- : int = 2432902008176640000

You may in the past have been admonished against defining some-

thing in terms of itself, such as “comb: an object used to comb one’s

hair; to comb: to run a comb through.” You may therefore find some-

thing mysterious about recursive definitions. How can we make use of

a function in its own definition? We seem to be using it before it’s even

fully defined. Isn’t that problematic?

Of course, recursive definition can be problematic. For instance,

consider this recursive definition of a function to add “just one more”

to a recursive invocation of itself:
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# let rec just_one_more (x : int) : int =

# 1 + just_one_more x ;;

val just_one_more : int -> int = <fun>

The definition works just fine, but any attempt to use it fails impres-

sively:

# just_one_more 42 ;;

Stack overflow during evaluation (looping recursion?).

The error message “Stack overflow during evaluation (looping recur-

sion?)” gives a hint as to what’s gone wrong; there is indeed a looping

recursion that would go on forever if the computer didn’t run out of

memory (“stack overflow”) first.

A recursion is W E L L F O U N D E D if it eventually “bottoms out” in a

non-recursive computation. Clearly, the recursion in just_one_more

is not well founded and thus not useful. But a recursion that is well

founded can be quite useful.6 In the case of factorial, each recursive 6 In fact, the computer scientist C. A. R.
Hoare in his 1981 Turing Award lecture
described his own introduction to
recursion this way:

Around Easter 1961, a course

on A LG O L 60 was offered in

Brighton, England, with Peter

Naur, Edsger W. Dijkstra, and

Peter Landin as tutors. . . . It

was there that I first learned

about recursive procedures

and saw how to program the

sorting method which I had

earlier found such difficulty

in explaining. It was there

that I wrote the procedure,

immodestly named QU I C K -

S O RT, on which my career

as a computer scientist is

founded. Due credit must

be paid to the genius of the

designers of A LG O L 60 who

included recursion in their

language and enabled me

to describe my invention

so elegantly to the world.

I have regarded it as the

highest goal of programming

language design to enable

good ideas to be elegantly

expressed. (Hoare, 1981)

invocation of fact is given an argument that is one smaller than the

previous invocation, so that eventually an invocation on argument

0 will occur and the recursion will end. Because there are branches

of computation (namely, the first arm of the conditional) without

recursive invocations of fact, and those branches will eventually be

taken, all is well.

But will those branches always be eventually taken? Unfortunately

not.

# fact (~-5) ;;

Stack overflow during evaluation (looping recursion?).

This looks familiar. Counting down from any non-negative integer will

eventually get us to zero. But counting down from a negative integer

won’t. We intended the factorial function to apply only to non-negative

integers, the values for which it’s recursion is well founded, but we

didn’t express that intention – the edict of intention again – with this

unfortunate result.

You might think that we could solve this problem with types. In-

stead of specifying the argument as having integer type, perhaps we

could specify it as of non-negative integer type. Unfortunately, OCaml

does not provide for this more fine-grained type, and in any case, other

examples might require different constraints on the type, perhaps odd

integers only, or integers larger than 7, or integers within a certain

range.

Exercise 32

For each of the following cases, define a recursive function of a single argument for
which the recursion is well founded (and the computation terminates) only when the
argument is
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1. an odd integer;

2. an integer less than or equal to 5;

3. the integer 0;

4. the truth value true.

OCaml’s type system isn’t expressive enough to capture these fine-

grained distinctions.7 Instead, we’ll have to deal with such anomalous 7 If you are interested in the issue,
you might explore the literature on
D E P E N D E N T T Y P E S Y S T E M S, which
provide this expanded expressivity at
the cost of much more complex type
inference computations.

conditions using different techniques, which will be the subject of

Chapter 10.

Exercise 33

Imagine tiling a floor with square tiles of ever-increasing size, each one abutting the
previous two, as in Figure 6.4. The sides of the tiles grow according to the F I B O N AC C I

S E QU E N C E, in which each number is the sum of the previous two. By convention, the
first two numbers in the sequence are 0 and 1. Thus, the third number in the sequence is
0+1 = 1, the fourth is 1+1 = 2, and so forth.

Figure 6.4: A Fibonacci tiling.

The first 10 numbers in the Fibonacci sequence are
0,1,1,2,3,5,8,13,21,34, . . .

The Fibonacci sequence has connections to many natural phenomena, from the
spiral structure of seashells (as alluded to in the figure) to the arrangement of seeds in a
sunflower to the growth rate of rabbits. It even relates to the golden ratio: the tiled area
depicted in the figure tends toward a golden rectangle (see Exercise 8) as more tiles are
added. (Exercise 172 explores this fact.)

Define a recursive function fib : integer -> integer that given an index into the
Fibonacci sequence returns the integer at that index. For instance,

# fib 1 ;;
- : int = 0
# fib 2 ;;
- : int = 1
# fib 8 ;;
- : int = 13

Exercise 34

Define a function fewer_divisors : int -> int -> bool, which takes two integers,
n and bound, and returns true if n has fewer than bound divisors (including 1 and n). For
example:

# fewer_divisors 17 3 ;;
- : bool = true
# fewer_divisors 4 3 ;;
- : bool = false
# fewer_divisors 4 4 ;;
- : bool = true

Do not worry about zero or negative arguments or divisors. Hint: You may find it useful
to define an auxiliary function to simplify the definition of fewer_divisors.

6.7 Unit testing

Having written some functions, how can we have some assurance

that our code is correct? Best might be a mathematical proof that the

code does what it’s supposed to do. Such a proof would guarantee that

the code generates the appropriate values regardless of what inputs

it is given. This is the domain of F O R M A L V E R I F I C AT I O N of software.

Unfortunately, the difficulty of providing formal specifications that can

be verified, along with the arduousness of carrying out the necessary

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
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proofs, means that this approach to program correctness is used only

in rare circumstances. It is, in any case, beyond the scope of this book.

But if we can’t have a proof that a program generates the appro-

priate values on all input values, perhaps we can at least verify that it

generates the appropriate values on some of them – even better if the

values we verify are representative of a full range of cases. This leads

us to the approach of U N I T T E S T I N G, the systematic evaluation of

code on known inputs, comparing the actual behavior to the intended

behavior.

In this section, we begin the development of a simple unit testing

framework for OCaml, continuing the development in Sections 10.5

and 17.6. We do so not because OCaml lacks a good unit testing tool

of its own; in fact, there are several such full-featured packages, such

as ounit, alcotest, qcheck, ppl_inline_tests, crowbar, bun, and

broken, providing functionality far beyond what we develop in this

running example. Rather, seeing the construction should make clearer

what is going on in such unit testing tools, making their utility clearer.

In addition, the subtle issues that arise provide a nice opportunity to

demonstrate the use of abstractions (exceptions and laziness) that we

introduce later. But we start here using only functions.

Consider the fact function defined above. It exhibits the following

(correct) behavior:

# fact 1 ;;

- : int = 1

# fact 2 ;;

- : int = 2

# fact 5 ;;

- : int = 120

# fact 10 ;;

- : int = 3628800

We can describe the correctness conditions for these inputs as a series

of boolean expressions.

# fact 1 = 1 ;;

- : bool = true

# fact 2 = 2 ;;

- : bool = true

# fact 5 = 120 ;;

- : bool = true

# fact 10 = 3628800 ;;

- : bool = true

A unit testing function for fact, call it fact_test, verifies that fact

calculates the correct values for representative examples. (Let’s start

with these.) One approach is to simply evaluate each of the conditions

and make sure that they are all true.
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# let fact_test () =

# fact 1 = 1

# && fact 2 = 2

# && fact 5 = 120

# && fact 10 = 3628800 ;;

val fact_test : unit -> bool = <fun>

We run the tests by calling the function:

# fact_test () ;;

- : bool = true

If all of the tests pass (as they do in this case), the testing function

returns true. If any test fails, it returns false. Unfortunately, in the

latter case it provides no help in tracking down the tests that fail.

In order to provide information about which tests have failed, we’ll

print an indicative message associated with the test. An auxiliary

function to handle the printing will be helpful:8 8 We’re making use here of two language
constructs that, strictly speaking, belong
in later chapters, as they involve side
effects, computational artifacts that
don’t affect the value expressed: the
sequencing operator (;) discussed in
Section 15.3, and the printf function in
the Printf library module. Side effects
in general are introduced in Chapter 15.

# let unit_test (test : bool) (msg : string) : unit =

# if test then

# Printf.printf "%s passed\n" msg

# else

# Printf.printf "%s FAILED\n" msg ;;

val unit_test : bool -> string -> unit = <fun>

Now the fact_test function can call unit_test to verify each of the

conditions.

# let fact_test () =

# unit_test (fact 1 = 1) "fact 1";

# unit_test (fact 2 = 2) "fact 2";

# unit_test (fact 5 = 120) "fact 5";

# unit_test (fact 10 = 3628800) "fact 10" ;;

val fact_test : unit -> unit = <fun>

Running fact_test provides a report on the performance of fact on

each of the unit tests.

# fact_test () ;;

fact 1 passed

fact 2 passed

fact 5 passed

fact 10 passed

- : unit = ()

We’ll want to unit test fact as completely as is practicable. We can’t

test every possible input, but we can at least try examples representing

as wide a range of cases as possible. We’re missing an especially impor-

tant case, the base case for the recursion, fact 0. We’ll add a unit test

for that case:

# let fact_test () =

# unit_test (fact 0 = 1) "fact 0 (base case)";

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Printf.html
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# unit_test (fact 1 = 1) "fact 1";

# unit_test (fact 2 = 2) "fact 2";

# unit_test (fact 5 = 120) "fact 5";

# unit_test (fact 10 = 3628800) "fact 10" ;;

val fact_test : unit -> unit = <fun>

We haven’t tested the function on negative numbers, and probably

should. But fact as currently written wasn’t intended to handle those

cases. We postpone discussion about unit testing in such cases to

Section 10.5, when we’ll have further tools at hand. (See Exercise 81.)

Testing the hypotenuse function presents further issues. We might

want to check the simple case of the hypotenuse of a unit triangle,

whose hypotenuse ought to be about 1.41421356, as well as the limit-

ing case of a “triangle” with zero-length sides.

# let hypotenuse_test () =

# unit_test (hypotenuse 0. 0. = 0.) "hyp 0 0";

# unit_test (hypotenuse 1. 1. = 1.41421356) "hyp 1 1" ;;

val hypotenuse_test : unit -> unit = <fun>

# hypotenuse_test () ;;

hyp 0 0 passed

hyp 1 1 FAILED

- : unit = ()

The test reveals a problem. The unit triangle test has failed, not

because the hypotenuse function is wrong but because the value we’ve

proposed isn’t exactly the floating point number calculated. The float

type has a fixed capacity for representing numbers, and can’t therefore

represent all numbers exactly. The best we can do is check that floating

point calculations are approximately correct, within some tolerance.

Rather than checking the condition as above, instead we can check

that the value is within, say, 0.0001 of the value in the test, a condition

like this:

# hypotenuse 1. 1. -. 1.41421356 < 0.0001 ;;

- : bool = true

Instead of writing out these more complex conditions each time

they’re needed, we’ll devise another unit testing function for approxi-

mate floating point calculations:

# let unit_test_within (tolerance : float)

# (test_value : float)

# (expected : float)

# (msg : string)

# : unit =

# unit_test (abs_float (test_value -. expected) < tolerance) msg ;;

val unit_test_within : float -> float -> float -> string -> unit =

<fun>
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We can restate the hypotenuse_test function to make use of these

approximate tests. (We’ve added a few more for other conditions.)

# let hypotenuse_test () =

# unit_test_within 0.0001 (hypotenuse 0. 0.) 0. "hyp 0 0";

# unit_test_within 0.0001 (hypotenuse 1. 1.) 1.4142 "hyp 1 1";

# unit_test_within 0.0001 (hypotenuse ~-.1. 1.) 1.4142 "hyp -1 1";

# unit_test_within 0.0001 (hypotenuse 2. 2.) 2.8284 "hyp 2 2" ;;

val hypotenuse_test : unit -> unit = <fun>

Calling the function demonstrates that all of the calculations hold

within the required tolerance.

# hypotenuse_test () ;;

hyp 0 0 passed

hyp 1 1 passed

hyp -1 1 passed

hyp 2 2 passed

- : unit = ()

We’ll return to the question of unit testing in Sections 10.5 and 17.6,

when we have more advanced tools to use.

6.8 Supplementary material

• Lab 1: Basic functional programming

• Problem set A.1: The prisoners’ dilemma

http://url.cs51.io/lab1
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Structured data and composite types

The kinds of data that we’ve introduced so far have been unstructured.

The values are separate atoms,1 discrete undecomposable units. Each 1 The term “atom” is used here in its
sense from Democritus and other clas-
sical philosophers, the indivisible units
making up the physical universe. Now,
of course, we know that though chemi-
cal elements are made of atoms, those
atoms themselves have substructure
and are not indivisible. Unlike the phys-
ical world, the world of discrete data can
be well thought of as being built from
indivisible atoms.

integer is separate and atomic, each floating point number, each truth

value. But the power of data comes from the ability to build new data

from old by putting together data structures.

In this chapter, we’ll introduce three quite general ways built into

OCaml to structure data: tuples, lists, and records. For each such way,

we describe how to construct structures from their parts using value

constructors; what the associated type of the structures is and how to

construct a type expression for them using type constructors; and how

to decompose the structures into their component parts using pattern-

matching. (We turn to methods for generating your own composite

data structures in Chapter 11.) We start with tuples.

7.1 Tuples

The first structured data type is the T U P L E, a fixed length sequence

of elements. The smallest tuples are pairs, containing two elements,

then triples, quadruples, quintuples, sextuples, septuples, and so forth.

(The etymology of the term “tuple” derives from this semi-productive

suffix.)

In OCaml, a tuple value is formed using the VA LU E C O N S T RU C TO R

for tuples, an infix comma. A pair containing the integer 3 and the

truth value true, for instance, is given by 3, true. The order is crucial;

the pair true, 3 is a different pair entirely. (Indeed, as we will see,

these two pairs are not even of the same type.)

The type of a pair is determined by the types of its parts. We name

the type by forming a type expression giving the types of the parts

combined using the infix T Y P E C O N S T RU C TO R *, read “cross” (for

“cross product”). For instance, the pair 3, true is of type int * bool

(read, “int cross bool”).

https://url.cs51.io/s9o
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Exercise 35

What are the types for the following pair expressions?

1. false, 5

2. false, true

3. 3, 5

4. 3.0, 5

5. 5.0, 3

6. 5, 3

7. succ, pred

Triples are formed similarly. A triple of the elements 1, 2, and

"three" would be 1, 2, "three"; its type is int * int * string.

This triple should not be confused with the pair consisting of the inte-

ger 1 and the int * string pair 2, "three". Such a pair containing

a pair is also constructable, as 1, (2, "three"), and is of type int *
(int * string). The parentheses in both the value expression and

the type expression make clear that this datum is structured as a pair,

not a triple.

Exercise 36

Construct a value for each of the following types.

1. bool * bool

2. bool * int * float

3. (bool * int) * float

4. (int * int) * int * int

5. (int -> int) * int * int

6. (int -> int) * int -> int

Exercise 37

Integer division leaves a remainder. It is sometimes useful to calculate both the result of
the quotient and the remainder. Define a function div_mod : int -> int -> (int *
int) that takes two integers and returns a pair of their quotient and the remainder. For
instance,

# div_mod 40 20 ;;
- : int * int = (2, 0)
# div_mod 40 13 ;;
- : int * int = (3, 1)
# div_mod 0 12 ;;
- : int * int = (0, 0)

Using this technique of returning a pair, we can get the effect of a function that returns
multiple values.

Exercise 38

In Exercise 31, you are asked to implement the computus to calculate the month and
day of Easter for a given year by defining two functions, one for the day and one for the
year. A more natural approach is to define a single function that returns both the month
and the day. Use the technique from Exercise 37 to implement a single function for
computus.
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7.2 Pattern matching for decomposing data structures

The value constructor is used to construct composite values from

parts. How can we do the inverse, extracting the parts from the com-

posite structure? Perhaps surprisingly, we make use of the value con-

structor for this purpose as well, by matching a template pattern con-

taining the constructor against the structure being decomposed. The

match construction is used to perform this matching and decomposi-

tion. The general form of a match is2 2 The . . . in this BNF rule is intended to
indicate that there may be any number
of such pattern-expression pairs in the
construct. We’ll leave this addition to
the BNF notation as informal, though
precide formulations of the idea can be
constructed.

On a stylistic point, the first vertical
bar in match constructs is, strictly
speaking, optional. We uniformly use
it for consistency of demarcating the
patterns appearing on consecutive
lines, as discussed in Section C.1.7.

〈expr〉 ::= match 〈exprvalue〉 with
| 〈pattern1〉 -> 〈expr1〉
| 〈pattern2〉 -> 〈expr2〉
. . .

Without going into a formal BNF definition of 〈pattern〉 phrases, they

are essentially expressions constructed only of variables, and value

constructors (including literals like true or []). The structured value

given by 〈exprvalue〉 is pattern-matched against each of the patterns

〈pattern1〉, 〈pattern2〉, and so on, in that order. Whichever pattern

matches first, the variables therein name the corresponding parts

of the 〈exprvalue〉 being matched against. The corresponding 〈expri〉,
which may use the variables just bound by the 〈patterni〉, is evaluated

to provide the value of the match construction as a whole. The vari-

ables in a 〈patterni〉 are newly introduced names, just like those in let

and fun expressions, and like those variables, they also have a scope,

namely, the corresponding 〈expri〉.

Figure 7.1: Computer scientist Marianne
Baudinet’s (1985) work with David
MacQueen on compiling ML-style
pattern matching constructs to efficient
matching code proved to be the break-
through that made the extensive use of
pattern matching in ML-style languages
practical.

For example, suppose we want to add the integers in an integer pair.

We need to extract the integers in order to operate on them. Here is a

function that extracts the two parts of the pair and returns their sum.

# let addpair (pair : int * int) : int =

# match pair with

# | x, y -> x + y ;;

val addpair : int * int -> int = <fun>

# addpair (3, 4) ;;

- : int = 7

In the pattern x, y, the variables x and y are names that can be used

for the two components of the pair, as they have been in the expression

x + y. There is nothing special about the names x and y; any variables

could be used.

The match used here is especially simple in having just a single

pattern/result pair. Only one is needed because there is only one value

constructor for pairs. We’ll shortly see examples where more than one

pattern is used.
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Notice how the match construction allows us to deconstruct a struc-

tured datum into its component parts simply by matching against

a template that uses the very same value constructor that is used to

build such data in the first place. This method for decomposition is

extremely general. It allows extracting the component parts from arbi-

trarily structured data.

You might think, for instance, that it would be useful to have a

function that directly extracts the first or second element of a pair. But

these can be written in terms of the match construct.3 3 The functions fst and snd are avail-
able as part of the Stdlib module, but
it’s useful to see how they can be writ-
ten in terms of the core of the OCaml
language.

# let fst (pair : int * int) : int =

# match pair with

# | x, y -> x ;;

Line 3, characters 5-6:

3 | | x, y -> x ;;

^

Warning 27 [unused-var-strict]: unused variable y.

val fst : int * int -> int = <fun>

# fst (3, 4) ;;

- : int = 3

The warning message arises because the variable y appears in the

pattern, but is never used in the corresponding action. Often this is a

sign that something is awry in one’s code: Why would you establish a

variable only to ignore its value? For that reason, this warning message

can be quite useful in catching subtle bugs. But in cases like this, where

the value of the variable really is irrelevant, the warning is misleading.

To eliminate it, an A N O N Y M O U S VA R I A B L E – a variable starting with

the underscore character – can be used instead. This codifies the

programmer’s intention that the variable not be used, and disables the

warning message. This is a good example of the edict of intention: by

clearly and uniformly expressing our intention not to use a variable,

the language interpreter can help find latent bugs where we intended

to use a variable but did not (as when a variable name is misspelled).

# let fst (pair : int * int) : int =

# match pair with

# | x, _y -> x ;;

val fst : int * int -> int = <fun>

# fst (3, 4) ;;

- : int = 3

Exercise 39

Define an analogous function snd : int * int -> int that extracts the second
element of an integer pair. For instance,

# snd (3, 4) ;;
- : int = 4

As another example, consider the problem of calculating the dis-

tance between two points, where the points are given as pairs of
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floats. First, we need to extract the coordinates in each dimension

by pattern matching:

let distance p1 p2 =

match p1 with

| x1, y1 ->

match p2 with

| x2, y2 -> ...calculate the distance... ;;

Rather than use two separate pattern matches, one for each argument,

we can perform both matches at once using a pattern that matches

against the pair of points p1, p2.

let distance p1 p2 =

match p1, p2 with

| (x1, y1), (x2, y2) -> ...calculate the distance... ;;

Once the separate components of the points are in hand, the distance

can be calculated:

# let distance p1 p2 =

# match p1, p2 with

# | (x1, y1), (x2, y2) ->

# sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

val distance : float * float -> float * float -> float = <fun>

The ability to pattern match to extract and name data components

is so useful that OCaml provides syntactic sugar to integrate it into

other binding constructs, such as the let and fun constructs. In cases

where there is only a single pattern to be matched (as in the examples

above), the matching can be performed directly in the let. That is, an

expression of the form

let 〈var〉 = 〈expr〉 in

match 〈var〉 with

| 〈pattern1〉 -> 〈expr1〉
can be “sugared” to4 4 Anonymous functions can benefit

from this syntactic sugar as well, for
instance, as in

# (fun (x, y) -> x + y) (3, 4) ;;

- : int = 7

let 〈pattern1〉 = 〈expr〉 in

〈expr1〉
Using this sugared form further simplifies the distance function.

let distance p1 p2 =

let (x1, y1), (x2, y2) = p1, p2 in

sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

Finally, pattern matching can even be used in global let constructs,

to further simplify.

# let distance (x1, y1) (x2, y2) =

# sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

val distance : float * float -> float * float -> float = <fun>

# distance (1., 1.) (2., 2.) ;;

- : float = 1.41421356237309515
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As usual, it is useful to add typings in the global definition to make

clear the intended types of the arguments and the result:5 5 This example provides a good oppor-
tunity to mention that for readability
code lines should be kept short. We
use a convention described in the style
guide (Section C.3.4) for breaking up
long function definition introductions.

# let distance (x1, y1 : float * float)

# (x2, y2 : float * float)

# : float =

# sqrt ((x2 -. x1) ** 2. +. (y2 -. y1) ** 2.) ;;

val distance : float * float -> float * float -> float = <fun>

# distance (1., 1.) (2., 2.) ;;

- : float = 1.41421356237309515

Exercise 40

Simplify the definitions of addpair and fst above by taking advantage of this syntactic
sugar.

Using this shorthand can make code much more readable, and

is thus recommended. See the style guide (Section C.4.2) for further

discussion.

Exercise 41

Define a function slope : float * float -> float * float -> float that returns
the slope between two points.

7.2.1 Advanced pattern matching

It’s not only composite types that can be the object of pattern match-

ing. Patterns can match particular values of atomic types as well, such

as int or bool. One could, for instance, write

# let int_of_bool (cond : bool) : int =

# match cond with

# | true -> 1

# | false -> 0 ;;

val int_of_bool : bool -> int = <fun>

# int_of_bool true ;;

- : int = 1

# int_of_bool false ;;

- : int = 0

For booleans, however, the use of a conditional is considered a better

approach:6 6 Using cond = true as the test part
of the conditional is redundant and
stylistically poor. See Section C.5.2.# let int_of_bool (cond : bool) : int =

# if cond then 1 else 0 ;;

val int_of_bool : bool -> int = <fun>

Integers can also be matched against:

# let is_small_int (x : int) : bool =

# match abs x with

# | 0 -> true

# | 1 -> true
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# | 2 -> true

# | _ -> false ;;

val is_small_int : int -> bool = <fun>

# is_small_int ~-1 ;;

- : bool = true

# is_small_int 2 ;;

- : bool = true

# is_small_int 7 ;;

- : bool = false

Notice here the use of an anonymous variable _ as a W I L D - C A R D

pattern that matches any value.

In the is_small_int function, the same result is appropriate for

multiple patterns. Rather, than repeat the result expression in each

case, multiple patterns can be associated with a single result, by listing

the patterns interspersed with vertical bars (|).

# let is_small_int (x : int) : bool =

# match abs x with

# | 0 | 1 | 2 -> true

# | _ -> false ;;

val is_small_int : int -> bool = <fun>

7.3 Lists

Tuples are used for packaging together fixed-length sequences of

elements of perhaps differing type. L I S T S, conversely, are used for

packaging together varied-length sequences of elements all of the same

type. The type constructor list for lists thus operates on a single type,

the type of the list elements, and is written in P O S T F I X position – that

is, following its argument. For instance, the type corresponding to a list

of integers is given by the type expression int list, a list of booleans

as bool list, a list of coordinates (pairs of floats, say) as (float *
float) list.

There are two value constructors for lists. The first value con-

structor, written [] and conventionally read as “N I L”, specifies the

empty list, that is, the list containing no elements at all. The second

value constructor, written with an infix :: and conventionally read

as “C O N S”,7 takes two arguments – a first element and a further list of 7 The term “cons” for this constructor
derives from the cons function in one
of the earliest and most influential
functional programming languages,
Lisp. It reflects the idea of constructing a
list by adding a new element.

elements – and specifies the list whose first element is its first argu-

ment and whose remaining elements are the second. (The two parts

of a non-empty list, the first element and the remaining elements, are

called the H E A D and the TA I L of the list, respectively.)

Suppose we want a list of integers containing just the integer 4.

Such a list can be constructed by starting with the empty list [], and

“consing” 4 to it as 4 :: []. The list containing, in sequence, 2 and 4
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is constructed by consing 2 onto the list containing 4, that is, 2 :: (4

:: []). The list of the integers 1, 2, and 4 is analogously 1 :: (2 ::

(4 :: [])).

As usual, some notational cleanup is in order. First, we can take

advantage of the fact that the :: operator is right associative, so that

the parentheses in the lists above are not needed. We can simply write

1 :: 2 :: 4 :: []. Second, OCaml provides a more familiar alterna-

tive notation – more sugar – for lists, writing the elements of the list in

order within brackets and separated by semicolons, as [1; 2; 4]. We

can think of all of these as alternative concrete syntaxes for the same

underlying abstract syntax, given by

::

::

::

[]4

2

1

You can verify the equivalence of these notations by entering them into

OCaml:

# 1 :: (2 :: (4 :: [])) ;;

- : int list = [1; 2; 4]

# 1 :: 2 :: 4 :: [] ;;

- : int list = [1; 2; 4]

# [1; 2; 4] ;;

- : int list = [1; 2; 4]

Notice that in all three cases, OCaml provides the inferred type int

list and reports the value using the sugared list notation.8 8 The list containing elements, say, 1
and 2 – written [1; 2] – should not
be confused with the pair of those
same elements – written (1, 2). The
concrete syntactic differences may
be subtle (semicolon versus comma;
brackets versus parentheses) but their
respective types make the distinction
quite clear.

Exercise 42

Which of the following expressions are well-formed, and for those that are, what are their
types and how would their values be written using the sugared notation?

1. 3 :: []

2. true :: false

3. true :: [false]

4. [true] :: [false]

5. [1; 2; 3.1416]

6. [4; 2; -1; 1_000_000]

7. ([true], false)

Using the :: and bracketing notations, we can construct lists from

their elements. How can we extract those elements from lists? As al-

ways in OCaml, decomposing structured data is done with pattern-

matching; no new constructs are needed. We’ll see examples shortly.
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7.3.1 Some useful list functions

To provide some intuition with list processing, we’ll construct a few

useful functions, starting with a function to determine if an integer list

is empty or not. We start with considering the type of the function. Its

argument should be an integer list (of type int list) and its result a

truth value (of type bool), so the type of the function itself is int list

-> bool. This type information is just what we need in order to write

the first line of the function definition, naming the function’s argument

and incorporating the typing information:

let is_empty (lst : int list) : bool = ...

Now we need to determine whether lst is empty or not, that is, what

value constructor was used to construct it. We can do so by pattern

matching lst against a series of patterns. Since lists have only two

value constructors, two patterns will be sufficient.

let is_empty (lst : int list) : bool =

match lst with

| [] -> ...

| head :: tail -> ...

What should we do in these two cases? In the first case, we can con-

clude that lst is empty, and hence, the value of the function should

be true. In the second case, lst must have at least one element (now

named head by the pattern match), and is thus non-empty; the value

of the function should be false.9

9 We’ve used alignment of the arrows
in the pattern match to emphasize the
parallelism between these two cases.
See the discussion in the style guide
(Section C.1.7) for differing views on this
practice.

# let is_empty (lst : int list) : bool =

# match lst with

# | [] -> true

# | head :: tail -> false ;;

Line 4, characters 2-6:

4 | | head :: tail -> false ;;

^^^^

Warning 27 [unused-var-strict]: unused variable head.

Line 4, characters 10-14:

4 | | head :: tail -> false ;;

^^^^

Warning 27 [unused-var-strict]: unused variable tail.

val is_empty : int list -> bool = <fun>

Since neither head nor tail are used in the second pattern match,

they should be made anonymous variables to codify that intention

(and avoid a warning message).10

10 The “wild card” anonymous variable
_ is special in not serving as a name
that can be later referred to, and is thus
allowed to be used more than once in a
pattern.

# let is_empty (lst : int list) : bool =

# match lst with

# | [] -> true

# | _ :: _ -> false ;;

val is_empty : int list -> bool = <fun>
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# is_empty [] ;;

- : bool = true

# is_empty [1; 2; 3] ;;

- : bool = false

# is_empty (4 :: []) ;;

- : bool = false

Sure enough, the function works well on the test cases.

Let’s try another example: calculating the L E N G T H of a list, the

count of its elements. We use the same approach, starting with the

type of the function. The argument is an int list as before, but the

result type is an int providing the count of the elements; overall, the

function is of type int list -> int. The type of the function in

hand, the first line writes itself.

let length (lst : int list) : int = ...

And again, a pattern match on the sole argument is a natural first step

to decide how to proceed in the calculation.

let length (lst : int list) : int =

match lst with

| [] -> ...

| hd :: tl -> ...

In the first match case, the list is empty; hence its length is 0.

let length (lst : int list) : int =

match lst with

| [] -> 0

| hd :: tl -> ...

The second case is more subtle, however. The length must be at

least 1 (since the list at least has the single element hd). But the length

of the list overall depends on tl, and in particular, the length of tl. If

only we had a method for calculating the length of tl.

But we do; the length function itself can be used for this purpose!

Indeed, the whole point of length is to calculate lengths of int lists

like tl. We can call length recursively on tl, and add 1 to the result to

calculate the length of the full list lst. 11

11 As with the definition of the recursive
factorial function in Section 6.6, the
well-founded basis of this recursive
definition depends on the recursive
calls heading in the direction of the base
case. In this case, the recursive applica-
tion of the function is to a smaller data
structure, the tail of the original argu-
ment, and all further applications will
similarly be to smaller and smaller data
structures. This process can’t continue
indefinitely. Inevitably, it will bottom
out in application to the empty list, at
which point the computation is non-
recursive and terminates. Recursive
computation may seem a bit magical
when you first confront it, but over time
it becomes a powerful tool natural to
deploy.

# let rec length (lst : int list) : int =

# match lst with

# | [] -> 0

# | _hd :: tl -> 1 + length tl ;;

val length : int list -> int = <fun>

(We’ve made _hd an anonymous variable for the same reasons as

above, and also inserted the rec keyword to allow the recursive refer-

ence to length within the definition.)

We can test the function on a few examples to demonstrate it.



S T RU C T U R E D D ATA A N D C O M P O S I T E T Y P E S 87

# length [1; 2; 4] ;;

- : int = 3

# length [] ;;

- : int = 0

# length [[1; 2; 4]] ;;

Line 1, characters 8-17:

1 | length [[1; 2; 4]] ;;

^^^^^^^^^

Error: This expression has type 'a list

but an expression was expected of type int

Exercise 43

Why does this last example cause an error, given that its input is a list of length one?
Chapter 9 addresses this problem more thoroughly.

As a final example, we’ll implement a function that, given a list of

pairs of integers, returns the list of products of the pairs. For example,

the following behaviors should hold.

# prods [2,3; 4,5; 0,10] ;;

- : int list = [6; 20; 0]

# prods [] ;;

- : int list = []

By now the process should be familiar. Start with the type of the

function: (int * int) list -> int list. Use the type to write the

function introduction:

let rec prods (lst : (int * int) list) : int list = ...

Use pattern-matching to decompose the argument:

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> ...

| hd :: tl -> ...

In the first pattern match, the list is empty; we should thus return the

empty list of products.

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> []

| hd :: tl -> ...

Finally, we get to the tricky bit. If the list is nonempty, the head will be

a pair of integers, which we’ll want access to. We could pattern match

against hd to extract the parts:

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> []

| hd :: tl ->

match hd with

| (x, y) -> ...
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but it’s simpler to fold that pattern match into the list pattern match

itself:

let rec prods (lst : (int * int) list) : int list =

match lst with

| [] -> []

| (x, y) :: tl -> ...

Now, the result in the second pattern match should be a list of integers,

the first of which is x * y and the remaining elements of which are the

products of the pairs in tl. The latter can be computed recursively as

prods tl. (It’s a good thing we thought ahead to use the rec keyword.)

Finally, the list whose first element is x * y and whose remaining

elements are prods tl can be constructed as x * y :: prods tl.

# let rec prods (lst : (int * int) list) : int list =

# match lst with

# | [] -> []

# | (x, y) :: tl -> x * y :: prods tl ;;

val prods : (int * int) list -> int list = <fun>

# prods [2,3; 4,5; 0,10] ;;

- : int list = [6; 20; 0]

# prods [] ;;

- : int list = []

You’ll have noticed a common pattern to writing these functions,

one that is widely applicable.

1. Write down some examples of the function’s use.

2. Write down the type of the function.

3. Write down the first line of the function definition, based on the

type of the function, which provides the argument and result types.

4. Using information about the argument types, decompose one or

more of the arguments.

5. Solve each of the subcases, paying attention to the types, and using

recursion where appropriate, to construct the output value.

6. Test the examples from Step 1.

Using this S T RU C T U R E - D R I V E N P RO G R A M M I N G pattern can make

it so that simple functions of this sort almost write themselves. No-

tice the importance of types in the process. The types constrain so

many aspects of the function that they provide a guide to writing the

function itself.

Exercise 44

Define a function sum : int list -> int that computes the sum of the integers in its
list argument.
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# sum [1; 2; 4; 8] ;;
- : int = 15

What should this function return when applied to the empty list?

Exercise 45

Define a function prod : int list -> int that computes the product of the integers
in its list argument.

# prod [1; 2; 4; 8] ;;
- : int = 64

What should this function return when applied to the empty list?

Exercise 46

Define a function sums : (int * int) list -> int list, analogous to prods

above, which computes the list each of whose elements is the sum of the elements of the
corresponding pair of integers in the argument list. For example,

# sums [2,3; 4,5; 0,10] ;;
- : int list = [5; 9; 10]
# sums [] ;;
- : int list = []

Exercise 47

Define a function inc_all : int list -> int list, which increments all of the
elements in a list.

# inc_all [1; 2; 4; 8] ;;
- : int list = [2; 3; 5; 9]

Exercise 48

Define a function square_all : int list -> int list, which squares all of the
elements in a list.

# square_all [1; 2; 4; 8] ;;
- : int list = [1; 4; 16; 64]

Exercise 49

Define a function append : int list -> int list -> int list to append two
integer lists. Some examples:

# append [1; 2; 3] [4; 5; 6] ;;
- : int list = [1; 2; 3; 4; 5; 6]
# append [] [4; 5; 6] ;;
- : int list = [4; 5; 6]
# append [1; 2; 3] [] ;;
- : int list = [1; 2; 3]

Exercise 50

Define a function concat : string -> string list -> string, which takes a
string sep and a string list lst, and returns one string with all the elements of lst
concatenated together but separated by the string sep.12 Some examples: 12 The OCaml library module String

already provides just this function under
the same name.

# concat ", " ["first"; "second"; "third"] ;;
- : string = "first, second, third"
# concat "..." ["Moo"; "Baa"; "Lalala"] ;;
- : string = "Moo...Baa...Lalala"
# concat ", " [] ;;
- : string = ""
# concat ", " ["Moo"] ;;
- : string = "Moo"

We’ve gone through the valuable exercise of writing a bunch of

useful list functions. But list processing is so ubiquitous that OCaml

provides a library module for just such functions. We’ll discuss the

List module further in Section 9.4.
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7.4 Records

Tuples and lists use the order within a sequence to individuate their

elements. An alternative, the R E C O R D, names the elements, providing

each with a unique label. The type constructor specifies the labels and

the type of element associated with each. For instance, suppose we’d

like to store information about people: first and last name and year of

birth. An appropriate record type would be

{lastname : string; firstname : string; birthyear : int}

Each of the elements in a record is referred to as a F I E L D. Since the

fields are individuated by their label, the order in which they occur is

immaterial; the same type could have been specified reordering the

fields as

{firstname : string; birthyear : int; lastname : string}

with no difference (except perhaps to add a bit of confusion to a reader

expecting a more systematic ordering).

Unlike lists and tuples, which are built-in types in OCaml, particular

record types are user-defined. OCaml needs to know about the type –

its fields, their labels and types – in order to make use of them. Records

are the first of the user-defined types we’ll explore in detail in Chap-

ter 11. To define a new type, we use the type construction to give the

type a name:13 13 The 〈definition〉 phrase type was
introduced in footnote 4.

〈definition〉 ::= type 〈typename〉 = 〈typeexpr〉

We might give the type above the name person:

# type person = {lastname : string;

# firstname : string;

# birthyear : int} ;;

type person = { lastname : string; firstname : string; birthyear :

int; }

Now that the type is defined and OCaml is aware of its fields’ labels

and types, we can start constructing values of that type. To construct a

record value, we use the strikingly similar notation of placing the fields,

separated by semicolons, within braces. In record value expressions,

the label of a field is separated from its value by an =.14 We define a

14 A common confusion when first using
record types concerns when to use :
and when to use = within fields. Here’s a
way to think about the usages: The use
of : in record type expressions evokes
the use of : in a typing. In a sense, the
type constructor provides a typing for
each of the fields. The use of = in record
value expressions evokes the use of = in
naming constructs.

value of the record type above:

# let ac =

# {firstname = "Alonzo";

# lastname = "Church";

# birthyear = 1903} ;;

val ac : person =

{lastname = "Church"; firstname = "Alonzo"; birthyear = 1903}
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Notice that the type inferred for ac is person, the defined name for the

record type.

As usual, we use pattern matching to decompose a record into its

constituent parts. A simple example decomposes the ac value just

created to extract the birth year.

# match ac with

# | {lastname = _lname;

# firstname = _fname;

# birthyear = byear} -> byear ;;

- : int = 1903

We can define a function that takes a value of type person and

returns the person’s full name as a single string by extracting and con-

catenating the first and last names.

# let fullname (p : person) : string =

# match p with

# | {firstname = fname;

# lastname = lname;

# birthyear = _byear} ->

# fname ^ " " ^ lname ;;

val fullname : person -> string = <fun>

This function can be used to generate the full name:

# fullname ac ;;

- : string = "Alonzo Church"

It’s a bit cumbersome to have to mention every field in a record

pattern match when we are interested in only a subset of the fields.

Fortunately, patterns need only specify a subset of the fields, using the

notation _ to stand for any remaining fields.15 15 In fact, the _ notation isn’t necessary,
but it performs the useful role of
capturing the programmer’s intention
that the set of fields is not complete.
In fact, OCaml will provide a warning
(when properly set up) if an incomplete
record match isn’t marked with this
notation.

let fullname (p : person) : string =

match p with

| {firstname = fname; lastname = lname; _} ->

fname ^ " " ^ lname ;;

Another simplification in record patterns, called F I E L D P U N N I N G,

is allowed for fields in which the label and the variable name are iden-

tical. In that case, the label alone is all that is required. We can use field

punning to simplify fullname:

let fullname (p : person) : string =

match p with

| {firstname; lastname; _} ->

firstname ^ " " ^ lastname ;;

As a final simplification, the syntactic sugar allowing single-pattern

matches in let constructs allows us to eliminate the explicit match

entirely:
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# let fullname ({firstname; lastname; _} : person) : string =

# firstname ^ " " ^ lastname ;;

val fullname : person -> string = <fun>

# fullname ac ;;

- : string = "Alonzo Church"

7.4.1 Field selection

Pattern matching permits extracting the values of all of the fields of a

record (or any subset). When only one field value is needed, however, a

more succinct technique suffices. The familiar dot notation from many

programming languages allows selection of a single field.

# ac.firstname ;;

- : string = "Alonzo"

# ac.birthyear ;;

- : int = 1903

Thus, the fullname function could have been written as

# let fullname (p : person) : string =

# p.firstname ^ " " ^ p.lastname ;;

val fullname : person -> string = <fun>

# fullname ac ;;

- : string = "Alonzo Church"

Which notation to use is again a design matter, which will depend

on the individual case.

7.5 Comparative summary

These three data structuring mechanisms provide three different ap-

proaches to the same idea – agglomerating a collection of elements

into a single unit. The differences arise in how the elements are indi-

viduated. In tuples and lists, an element is individuated by its index

in an ordered collection. In records, an element is individuated by its

label in a labeled but unordered collection.

Tuples and records collect a fixed number of elements. Because

the number of elements is fixed, they can be of differing type. The

type of the tuple or record indicates what type each element has. Lists,

on the other hand, collect an arbitrary number of elements. In order

to be able to operate on any arbitrary element, the types of all the

elements must be indicated in the type of the list itself. This constraint

is facilitated by having all elements have the same type, so that they

can be operated on uniformly.

Table 7.1 provides a summary of the differing structuring mecha-

nisms.
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Tuples Records Lists

element types differing differing uniform

selected by order label order

type constructors 〈〉 * 〈〉 〈〉 * 〈〉 * 〈〉 · · · {a : 〈〉 ; b : 〈〉 ; c : 〈〉 ; ...} 〈〉 list
value constructors 〈〉 , 〈〉 〈〉 , 〈〉 , 〈〉 · · · {a = 〈〉 ; b = 〈〉 ; c = 〈〉 ; ...} [] 〈〉 :: 〈〉

Table 7.1: Comparison of three structur-
ing mechanisms: tuples, records, and
lists.
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Higher-order functions and functional programming

We’ve laid the groundwork for programming with functions in Chap-

ter 6, and provided some useful structures for data in Chapter 7, espe-

cially lists. In this chapter we show how higher-order functions serve as

a mechanism to satisfy the edict of irredundancy. By examining some

cases of similar code, we will present the use of higher-order functions

to achieve the abstraction, in so doing presenting some of the most

well known abstractions of higher-order functional programming on

lists – map, fold, and filter.

8.1 The map abstraction

In Exercises 47 and 48, you wrote functions to increment and to square

all of the elements of a list. After solving the first of these exercises with

# let rec inc_all (xs : int list) : int list =

# match xs with

# | [] -> []

# | hd :: tl -> (1 + hd) :: (inc_all tl) ;;

val inc_all : int list -> int list = <fun>

you may have thought to cut and paste the solution, modifying it

slightly to solve the second:

# let rec square_all (xs : int list) : int list =

# match xs with

# | [] -> []

# | hd :: tl -> (hd * hd) :: (square_all tl) ;;

val square_all : int list -> int list = <fun>

These “apparently dissimilar” pieces of code bear a striking resem-

blance, a result of the cutting and pasting. And to the extent that they

echo the same idea, we’ve written the same code twice, violating the

edict of irredundancy. Can we view them abstractly as “instantiating

an underlying identity”?

The differences between these functions are localized in their last

lines, where they compute the head of the output list from the head
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of the input list – in inc_all as 1 + hd, in square_all as hd * hd.

But the redundancies here are not merely the use of different values

(as they were in Section 6.5), but different computations over values.

Do we have a tool to characterize these different computations, what

is done to the head of the input list in each case? Yes, the function! In

inc_all, we are essentially applying the function fun x -> 1 + x

to the head, and in square_all, the function fun x -> x * x. We

can make this clearer by rewriting the two snippets of code as explicit

applications of a function.

let rec inc_all (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> (fun x -> 1 + x) hd :: (inc_all tl) ;;

let rec square_all (xs : int list) : int list =

match xs with

| [] -> []

| hd :: tl -> (fun x -> x * x) hd :: (square_all tl) ;;

Now, we can take advantage of the fact that in OCaml functions

are first-class values, which can be used as arguments or outputs of

functions, to construct a single function that performs this general

task of applying a function, call it f, to each element of a list. We add f

as a new argument and replace the different functions being applied

to hd with this f. Historically, this abstract pattern of computation –

performing an operation on all elements of a list – is called a M A P. We

capture it in a function named map that abstracts both inc_all and

square_all.

# let rec map (f : int -> int) (xs : int list) : int list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map f tl) ;;

val map : (int -> int) -> int list -> int list = <fun>

The map function takes two arguments (curried), the first of which

is itself a function, to be applied to all elements of its second integer

list argument. Its type is thus (int -> int) -> int list -> int

list. With map in hand, we can perform the equivalent of inc_all and

square_all directly.

# map (fun x -> 1 + x) [1; 2; 4; 8] ;;

- : int list = [2; 3; 5; 9]

# map (fun x -> x * x) [1; 2; 4; 8] ;;

- : int list = [1; 4; 16; 64]

In fact, map can even be used to define the functions inc_all and

square_all.
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# let inc_all (xs : int list) : int list =

# map (fun x -> 1 + x) xs ;;

val inc_all : int list -> int list = <fun>

# let square_all (xs : int list) : int list =

# map (fun x -> x * x) xs ;;

val square_all : int list -> int list = <fun>

These definitions of inc_all and square_all don’t suffer from the

violation of the edict of irredundancy exhibited by our earlier ones.

By abstracting out the differences in those functions and capturing

them in a single higher-order function map, we’ve simplified each of the

definitions considerably.

But making full use of higher-order functions as an abstraction

mechanism allows even further simplification, via partial application.

8.2 Partial application

Although we traditionally think of functions as being able to take

more than one argument, in OCaml functions always take exactly one

argument. Here, for instance, is the power function, which appears to

take two arguments, an exponent n and a base x, and returns xn :1 1 In general, it’s good practice to provide
typing information in the header of a
function. In this section and the rest
of the chapter, however, we leave off
types in the headers so as to emphasize
the structural relationships among
the various versions of the functions
we discuss. The typings would be
distracting from the point being made.

# let rec power (n, x) =

# if n = 0 then 1

# else x * power ((n - 1), x) ;;

val power : int * int -> int = <fun>

# power (3, 4) ;;

- : int = 64

Though it appears to be a function of two arguments, “desugaring”

makes clear that there is really only one argument. First, we desugar

the let:

let rec power =

fun (n, x) ->

if n = 0 then 1

else x * power ((n - 1), x) ;;

and then desugar the pattern match in the fun:

let rec power =

fun arg ->

match arg with

| (n, x) -> if n = 0 then 1

else x * power ((n - 1), x) ;;

demonstrating that all along, power was a function (defined with fun)

of one argument (now called arg).

How about this definition of power?

# let rec power n x =

# if n = 0 then 1
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# else x * power (n - 1) x ;;

val power : int -> int -> int = <fun>

# power 3 4 ;;

- : int = 64

Again, desugaring reveals that all of the functions in the definition take

a single argument.

let rec power =

fun n ->

fun x ->

if n = 0 then 1

else x * power (n - 1) x ;;

As described in Section 6.2, we use the term “currying” for encoding

a multi-argument function using nested, higher-order functions,

as this latter definition of power. In OCaml, we tend to use curried

functions, rather than uncurried definitions like the first definition of

power above; the whole language is set up to make that easy to do.

We can use the power function to define a function to cube num-

bers (take numbers to the third power):

# let cube x = power 3 x ;;

val cube : int -> int = <fun>

# cube 4 ;;

- : int = 64

But since power is curried, we can define the cube function even more

simply, by applying the power function to its “first” argument only.

# let cube = power 3 ;;

val cube : int -> int = <fun>

# cube 4 ;;

- : int = 64

A perennial source of confusion is that in this definition of the cube

function by partial application, no overt argument of the function

appears in its definition. There’s no let cube x = ... here. The

expression power 3 is already a function (of type int -> int). It is the

cubing function, not just the result of applying the cubing function.

This is PA RT I A L A P P L I C AT I O N: the applying of a curried function

to only some of its arguments, resulting in a function that takes the

remaining arguments.

The order in which a curried function takes its arguments thus

becomes an important design consideration, as it determines what

partial applications are possible. With partial application at hand, we

can define other functions for powers of numbers. Here’s a version of

square:

# let square = power 2 ;;

val square : int -> int = <fun>
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# square 4 ;;

- : int = 16

Understanding what’s going on in these examples is a good indica-

tion that you “get” higher-order functional programming. So we pause

for a little practice with partial application.

Exercise 51

A T E S S E R AC T is the four-dimensional analog of a cube, so fourth powers of numbers are
sometimes referred to as T E S S E R AC T I C N U M B E R S. Use the power function to define a
function tesseract that takes its integer argument to the fourth power.

Now, map is itself a curried function and therefore can itself be par-

tially applied to its first argument. It takes its function argument and

its list argument one at a time. Applying it only to its first argument

generates a function that applies that argument function to all of the

elements of a list. We can partially apply map to the successor function

to generate the inc_all function we had before.

# let inc_all = map (fun x -> 1 + x) ;;

val inc_all : int list -> int list = <fun>

But there are even further opportunities for partial application.2 2 � Partial application takes full advan-
tage of the first-class nature of functions
to enable compact and elegant def-
initions of functions. However, you
should be aware that it does make type
inference more difficult in the pres-
ence of polymorphism, an advanced
topic discussed in Section 9.6 for the
adventurous.

The addition function (+) itself is curried, as we noted in Section 6.2.

It can thus be partially applied to one argument to form the successor

function: (+) 1. (Recall the use of parentheses around the + operator

in order to allow it to be used as a normal prefix function.) Notice

how the types work out: Both fun x -> 1 + x and (+) 1 have the

same type, namely, int -> int. So the definition of inc_all can be

expressed simply is as

# let inc_all = map ((+) 1) ;;

val inc_all : int list -> int list = <fun>

# inc_all [1; 2; 4; 8] ;;

- : int list = [2; 3; 5; 9]

Similarly, square_all can be written as the mapping of the square

function:

# let square_all = map square ;;

val square_all : int list -> int list = <fun>

# square_all [1; 2; 4; 8] ;;

- : int list = [1; 4; 16; 64]

Compare this to the original definition of square_all:

# let rec square_all (xs : int list) : int list =

# match xs with

# | [] -> []

# | hd :: tl -> (hd * hd) :: (square_all tl) ;;

val square_all : int list -> int list = <fun>
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Exercise 52

Use the map function to define a function double_all that takes an int list argument
and returns a list with the elements doubled.

8.3 The fold abstraction

Let’s take a look at some other functions that bear a striking resem-

blance. Exercises 44 and 45 asked for definitions of functions that took,

respectively, the sum and the product of the elements in a list. Here are

some possible solutions, written in the recursive style of Chapter 7:

# let rec sum (xs : int list) : int =

# match xs with

# | [] -> 0

# | hd :: tl -> hd + (sum tl) ;;

val sum : int list -> int = <fun>

# let rec prod (xs : int list) : int =

# match xs with

# | [] -> 1

# | hd :: tl -> hd * (prod tl) ;;

val prod : int list -> int = <fun>

As before, note the striking similarity of these two definitions. They

differ in just two places (highlighted above): an initial value to return

on the empty list and the operation to apply to the next element of the

list and the recursively processed suffix of the list.

This abstract pattern of computation – combining all of the ele-

ments of a list one at a time with a binary function, starting with an

initial value – is called a F O L D. We repeat the abstraction process from

the previous section, defining a function called fold to capture the

abstraction.

# let rec fold (f : int -> int -> int)

# (xs : int list)

# (init : int)

# : int =

# match xs with

# | [] -> init

# | hd :: tl -> f hd (fold f tl init) ;;

val fold : (int -> int -> int) -> int list -> int -> int = <fun>

Notice the two additional arguments – f and init – which correspond

exactly to the two places that sum and prod differed.3 In summary, the

3 Ideally, these two arguments – f and
init – would be placed as the first two
arguments of fold so that they could be
conveniently partially applied. (In fact,
the Haskell functional programming
language uses that argument order for
their fold functions.) By convention,
however, the argument order for this
fold operation in OCaml is as provided
here, allowing for partially applying
the f argument but not init. The init
argument is placed at the end to reflect
its use as the rightmost element being
operated on during the fold. As you’ll
see later, the alternative fold_left
function uses the Haskell argument
order.type of fold is (int -> int -> int) -> int list -> int -> int.

The fold abstraction is simply the repeated embedded application

of a binary function, starting with an initial value, to all of the elements

of a list. That is, given a list of n elements [x_1, x_2, x_3, ...,

x_n], the fold of a binary function f with initial value init is



H I G H E R- O R D E R F U N C T I O N S A N D F U N C T I O N A L P RO G R A M M I N G 101

f x_1 (f x_2 (f x_3 ( · · · (f x_n init)· · ·))) .

Now sum can be defined using fold:

# let sum lst =

# fold (fun x y -> x + y) lst 0 ;;

val sum : int list -> int = <fun>

or, noting that + is itself the curried addition function we need as the

first argument to fold:

# let sum lst = fold (+) lst 0 ;;

val sum : int list -> int = <fun>

The prod function, similarly, is a kind of fold, this time of the prod-

uct function starting with the multiplicative identity 1.

# let prod lst = fold ( * ) lst 1 ;;

val prod : int list -> int = <fun>

A wide variety of list functions follow this pattern. Consider taking

the length of a list, a function from Section 7.3.1.

let rec length (lst : int list) : int =

match lst with

| [] -> 0

| _hd :: tl -> 1 + length tl ;;

This function matches the fold structure as well. The initial value, the

length of an empty list, is 0, and the operation to apply to the head of

the list and the recursively processed tail is to simply ignore the head

and increment the value for the tail.

# let length lst = fold (fun _hd tlval -> 1 + tlval) lst 0 ;;

val length : int list -> int = <fun>

#

# length [1; 2; 4; 8] ;;

- : int = 4

The function that we’ve called fold operates “right-to-left” produc-

ing

f x_1 (f x_2 (f x_3 ( · · · (f x_n init)· · ·))) .

For this reason, it is sometimes referred to as fold_right; in fact, that

is the name of the corresponding function in OCaml’s List module.

The symmetrical function fold_left operates left-to-right, calculat-

ing

(f · · · (f (f (f init x_1) x_2) x_3) x_n) .

where init is as before an initial value, and f is a binary function

taking as arguments the recursively processed prefix and the next

element in the list.
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Exercise 53

Define the higher-order function fold_left : (int -> int -> int) -> int -> int

list -> int, which performs this left-to-right fold.

Because addition is associative, a list can be summed by either a

fold_right as above or a fold_left. The definition analogous to the

one using fold_right is

# let sum lst = fold_left (+) 0 lst ;;

val sum : int list -> int = <fun>

but (because the list argument of fold_left is the final argument) this

can be further simplified by partial application:

# let sum = fold_left (+) 0 ;;

val sum : int list -> int = <fun>

Exercise 54

Define the length function that returns the length of a list, using fold_left.

Exercise 55

A cousin of the fold_left function is the function reduce,4 which is like fold_left 4 The higher-order functional program-
ming paradigm founded on functions
like map and reduce inspired the wildly
popular Google framework for parallel
processing of large data sets called, not
surprisingly, MapReduce (Dean and
Ghemawat, 2004).

except that it uses the first element of the list as the initial value, calculating

(f · · · (f (f x_1 x_2) x_3) x_n) .

Define the higher-order function reduce : (int -> int -> int) -> int list ->

int, which works in this way. You might define reduce recursively as we did with fold

and fold_left or nonrecursively by using fold_left itself. (By its definition reduce is
undefined when applied to an empty list, but you needn’t deal with this case where it’s
applied to an invalid argument.)

8.4 The filter abstraction

The final list-processing abstraction we look at is the F I LT E R, which

serves as an abstract version of functions that return a subset of ele-

ments of a list, such as the following examples, which return the even,

odd, positive, and negative elements of an integer list.

# let rec evens xs =

# match xs with

# | [] -> []

# | hd :: tl -> if hd mod 2 = 0 then hd :: evens tl

# else evens tl ;;

val evens : int list -> int list = <fun>

# let rec odds xs =

# match xs with

# | [] -> []

# | hd :: tl -> if hd mod 2 <> 0 then hd :: odds tl

# else odds tl ;;

val odds : int list -> int list = <fun>

# let rec positives xs =

# match xs with
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# | [] -> []

# | hd :: tl -> if hd > 0 then hd :: positives tl

# else positives tl ;;

val positives : int list -> int list = <fun>

# let rec negatives xs =

# match xs with

# | [] -> []

# | hd :: tl -> if hd < 0 then hd :: negatives tl

# else negatives tl ;;

val negatives : int list -> int list = <fun>

We leave the definition of an appropriate abstracted function filter

: (int -> bool) -> int list -> int list as an exercise.

Exercise 56

Define a function filter : (int -> bool) -> int list -> int list that returns
a list containing all of the elements of its second argument for which its first argument
returns true.

Exercise 57

Provide definitions of evens, odds, positives, and negatives in terms of filter.

Exercise 58

Define a function reverse : int list -> int list, which returns the reversal of its
argument list. Instead of using explicit recursion, define reverse by mapping, folding, or
filtering.

Exercise 59

Define a function append : int list -> int list -> int list (as described in
Exercise 49) to calculate the concatenation of two integer lists. Again, avoid explicit
recursion, using map, fold, or filter functions instead.

8.5 Problem section: Credit card numbers and the Luhn

check

Here’s an interesting bit of trivia: Not all credit card numbers are well-

formed. The final digit in a 16-digit credit card number is in fact a

C H E C K S U M, a digit that is computed from the previous 15 by a simple

algorithm.

The algorithm used to generate the checksum is called the LU H N

C H E C K. To calculate the correct final checksum digit used in a 16-digit

credit card number, you perform the following computation on the

first 15 digits of the credit card number:

Figure 8.1: A sample credit card

1. Take all of the digits in an odd-numbered position (the leftmost

digit being the first, not the zero-th digit, hence an odd-numbered

one) and double them, subtracting nine if the doubling is greater

than nine (called “casting out nines”).
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As an example, we’ll use the (partial) credit card number from the

card in Figure 8.1:

4275 3156 0372 549 x

Here, the odd-numbered digits (4, 7, 3, 5, 0, 7, 5, and 9) have been

underlined. We double them and cast out nines to get 8, 5, 6, 1, 0, 5,

1, and 9.

2. Add all of the even position digits and the doubled odd position

digits together. For the example above, the sum would be

(2+5+1+6+3+2+4)+ (8+5+6+1+0+5+1+9) = 23+35 = 58 .

3. The checksum is then the digit that when added to this sum makes

it a multiple of ten. In the example above the checksum would be

2, since adding 2 to 58 generates 60, which is a multiple of 10. Thus,

the sequence 4275 3156 0372 5492 is a valid credit card number, but

changing the last digit to any other makes it invalid. (In particular,

the final 3 in the card in Figure 8.1 is not the correct checksum!)

Problem 60

Define a function odds_evens that takes a list if integers and returns a pair of int lists,
the list at the odd indices and the list at the even indices, respectively.

# let cc = [4; 2; 7; 5; 3; 1; 5; 6; 0; 3; 7; 2; 5; 4; 9] ;;
val cc : int list = [4; 2; 7; 5; 3; 1; 5; 6; 0; 3; 7; 2; 5; 4; 9]
# odds cc ;;
- : int list = [4; 2; 7; 5; 3; 1; 5; 6; 0; 3; 7; 2; 5; 4; 9]

Exercise 61

What is the type of the odds_evens function?

The process of doubling a number and “casting out nines” is easy to

implement as well. Here is some code to do that:

# let doublemod9 (n : int) : int =

# (n * 2 - 1) mod 9 + 1 ;;

val doublemod9 : int -> int = <fun>

Finally, it will be useful to have a function to sum a list of integers.
Problem 62

Implement the function sum using the List module function fold_left.

All the parts are now in place to implement the Luhn check algo-

rithm.
Problem 63

Implement a function luhn that takes a list of integers and returns the check digit for
that digit sequence. (You can assume that it is called with a list of 15 integers.) For
instance, for the example above

# luhn cc ;;
- : int = 2

You should feel free to use the functions oods_evens, doublemod9, sum, and any other
OCaml library functions that you find useful and idiomatic.
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❧

We’ve used the same technique three times in this chapter – notic-

ing redundancies in code and carving out the differing bits to find the

underlying commonality. The result is a set of higher-order functions –

map, fold_left, fold_right, and filter – that are broadly useful.

Determining the best place to carve up code into separate factors to

take advantage of the commonalities and maximizing the utility of the

factors is an important skill, the basis for R E F AC TO R I N G of code, the

name given to exactly this practice. And it turns out to match Socrates’s

second principle in Phaedrus:

P H A E D RU S : And what is the other principle, Socrates?

S O C R AT E S : That of dividing things again by classes, where the natural

joints are, and not trying to break any part after the manner of a bad

carver. (Plato, 1927)

This principle deserves its own name:

Edict of decomposition:

Carve software at its joints.

The edict of decomposition arises throughout programming prac-

tice, but plays an especial role in Chapter 18, where it motivates the

programming paradigm of object-oriented programming. For now,

however, we continue in the next chapter our pursuit of mechanisms

for capturing more abstractions, by allowing generic programs that

operate over various types, a technique called polymorphism.

8.6 Supplementary material

• Lab 2: Simple data structures and higher-order functions

• Problem set A.2: Higher-order functional programming

http://url.cs51.io/lab2
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Polymorphism and generic programming

What happens when the edict of intention runs up against the edict

of irredundancy? The edict of intention calls for expressing clearly the

intended types over which functions operate, so that the language can

provide help by checking that the types are used consistently. We’ve

heeded that edict, for example, in our definition of the higher-order

function map from the previous chapter, repeated here:

# let rec map (f : int -> int) (xs : int list) : int list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map f tl) ;;

val map : (int -> int) -> int list -> int list = <fun>

The map function is tremendously useful for a wide variety of opera-

tions over integer lists. It seems natural to apply the same idea to other

kinds of lists as well. For instance, we may want to define a function to

double all of the elements of a float list or implement the prods

function from Section 7.3.1 to take the products of pairs of integers in a

list of such pairs. Using map we can try

# let double = map (fun x -> 2. *. x) ;;

Line 1, characters 33-34:

1 | let double = map (fun x -> 2. *. x) ;;

^

Error: This expression has type int but an expression was expected

of type

float

# let prods = map (fun (x, y) -> x * y) ;;

Line 1, characters 21-27:

1 | let prods = map (fun (x, y) -> x * y) ;;

^^^^^^

Error: This pattern matches values of type 'a * 'b

but a pattern was expected which matches values of type int

but we run afoul of the typing constraints on map, which can only apply

functions of type int -> int, and not float -> float or int * int

-> int.
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Of course, we can implement a version of map for lists of these types

as well:

# let rec map_float_float (f : float -> float)

# (xs : float list)

# : float list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map_float_float f tl) ;;

val map_float_float : (float -> float) -> float list -> float list

= <fun>

# let rec map_intpair_int (f : int * int -> int)

# (xs : (int * int) list)

# : int list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map_intpair_int f tl) ;;

val map_intpair_int : (int * int -> int) -> (int * int) list -> int

list =

<fun>

This is where we run up against the edict of irredundancy: we’ve writ-

ten the same code three times now, once for each set of argument

types.

What we’d like is a way to map functions over lists generically, while

still obeying the constraint that whatever type the list elements are,

they are appropriate to apply the function to; and whatever type the

function returns, the map returns a list of elements of that type.

9.1 Polymorphism

The solution to this quandary is found in P O LY M O R P H I S M. In a lan-

guage with polymorphism, like OCaml, functions can apply generically

to values from any type, so long as they do so consistently and system-

atically, as the various versions of map above do. Nonetheless, we’d still

like to keep the advantages of strong static typing, so that code can be

checked for this consistency and systematicity. Then what should the

type of a polymorphic version of the map function be?

We can get a hint of the answer by taking advantage of OCaml’s type

inference process, first introduced in Section 4.2.1. The type inference

process combines all of the type constraints implicit in the use of typed

functions together with all of the constraints in explicit typings to

compute the types for all of the expressions in a program. For instance,

in the definition

# let succ x = x + 1 ;;

val succ : int -> int = <fun>
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it follows from the fact that the + function is applied to x that x must

have the same type as the argument type for +, that is, int. Similarly,

since succ x is calculated as the output of the + function, it must have

the same type as +’s output type, again int. Since succ’s argument is of

type int and output is of type int, its type must be int -> int. And

in fact that is the type OCaml reports for it, even though no explicit

typings were provided.

Propagating type information in this way results in a fully instan-

tiated type int -> int for the succ function. But what if there aren’t

enough constraints in the code to yield a fully instantiated type? The

I D E N T I T Y F U N C T I O N id, which just returns its argument unchanged,

is an example:

# let id x = x ;;

val id : 'a -> 'a = <fun>

Since x is never involved in any applications in the definition of id,

there are no type constraints on it. All that we can conclude is that

whatever type x is – call it α – the id function must take values of type

α as argument and return values of type α as output. That is, id must

be of type α -> α.

The id function doesn’t have a fully instantiated type. It is a P O LY-

M O R P H I C F U N C T I O N, with a P O LY M O R P H I C T Y P E. The term poly-

morphic means many forms; the id function can take arguments of

many forms and operate on them similarly.

As the type inference process has indicated in the R E P L output, to

express polymorphic types, we need to extend the type expression

language. We use T Y P E VA R I A B L E S to specify that any type can be

used. We write type variables as identifiers with a prefixed quote mark

– ’a, ’b, ’c, and so forth – and conventionally read them as their cor-

responding Greek letter – α (alpha), β (beta), γ (gamma) – as we’ve

done above. Notice that OCaml has reported a polymorphic type for

id, namely, ’a -> ’a (read, “α to α”). This type makes the claim, “for

any type α, if id is applied to an argument of type α it returns a value

of type α.”

9.2 Polymorphic map

Returning to the map function, we wanted a way to map functions over

lists generically. If we just remove the typings in the definition of map,

it would seem that we could have just such a function, a polymorphic

version of map.

# let rec map f xs =

# match xs with

# | [] -> []
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# | hd :: tl -> f hd :: (map f tl) ;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

This function performs the same computation as the previous version

of map, just without any of the explicit type constraints enforced. The

function f is applied to elements of xs and returns elements that

appear in the result list, so the type of the argument of f must be the

type of the elements of xs and the type of the result of f must be the

type of the elements of the returned list simply as a consequence of the

structure of the code.

Figure 9.1: J. Roger Hindley (1939–
), codeveloper with Robin Milner
(Figure 1.7) of the Hindley-Milner
type inference algorithm that OCaml
relies on for inferring the most general
polymorphic types for expressions.

Happily, the type inference process that OCaml uses – developed by

Roger Hindley (Figure 9.1) and Robin Milner (Figure 1.7) – infers these

constraints automatically, concluding that map, like id, has a poly-

morphic type, which the OCaml type inference system has inferred

and reported as (’a -> ’b) -> ’a list -> ’b list. This type ex-

presses the constraint that “for any types α and β, if map is applied to a

function from α values to β values, it will return a function that when

given a list of α values returns a list of β values.”

This polymorphic version of map can be used to implement double

and prods as above. In each case, the types for these functions are

themselves properly inferred by instantiating the type variables of the

polymorphic map type.1 1 Note the use of partial application in
these examples.

# let double = map (fun x -> 2. *. x) ;;

val double : float list -> float list = <fun>

# let prods = map (fun (x, y) -> x * y) ;;

val prods : (int * int) list -> int list = <fun>

As inferred by OCaml, double takes a float list argument and re-

turns a float list, and prods takes an (int * int) list argument

and returns an int list.

9.3 Regaining explicit types

By taking advantage of polymorphism in OCaml, we’ve satisfied the

edict of irredundancy by defining a polymorphic version of map. Unfor-

tunately, we seem to have forgone the edict of intention, since we are

no longer explicitly providing information about the intended type for

map.

But by using the additional expressivity provided by type variables,

we can express the intended typing for map explicitly.

# let rec map (f : 'a -> 'b) (xs : 'a list) : 'b list =

# match xs with

# | [] -> []

# | hd :: tl -> f hd :: (map f tl) ;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
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The type variables make clear the intended constraints among f, xs,

and the return value map f xs.

Problem 64

For each of the following types construct an expression for which OCaml would infer
that type. For example, for the type bool * bool, the expression true, true would be
a possible answer. (The idea in this exercise is not that the expressions be practical or
do anything useful; they need only have the requested type. But no cheating by using
explicit typing annotations with the : operator!)

1. bool * bool -> bool

2. ’a list -> bool list

3. (’a * ’b -> ’a) -> ’a -> ’b -> ’a

4. int * ’a * ’b -> ’a list -> ’b list

5. bool -> unit

6. ’a -> (’a -> ’b) -> ’b

7. ’a -> ’a -> ’b

Exercise 65

Define polymorphic versions of fold and filter, providing explicit polymorphic typing
information.

Problem 66

For each of the following definitions of a function f, try to work out by hand its most
general type (as would be inferred by OCaml) or explain briefly why no type exists for the
function.

1. let f x =
x +. 42. ;;

2. let f g x =
g (x + 1) ;;

3. let f x =
match x with
| [] -> x
| h :: t -> h ;;

4. let rec f x a =
match x with
| [] -> a
| h :: t -> h (f t a) ;;

5. let f x y =
match x with
| (w, z) -> if w then y z else w ;;

6. let f x y =
x y y ;;

7. let f x y =
x (y y) ;;

8. let rec f x =
match x with
| None
| Some 0 -> None
| Some y -> f (Some (y - 1)) ;;

9. let f x y =
if x then [x]
else [not x; y] ;;
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9.4 The List library

One way, perhaps the best, for satisfying the edict of irredundancy is

to avoid writing the same code twice by not writing the code even once,

instead taking advantage of code that someone else has already writ-

ten. OCaml, like many modern languages, comes with a large set of

libraries (packaged as modules, which we’ll cover in Chapter 12) that

provide a wide range of functionality. The List module in particular

provides exactly the higher-order list processing functions presented

in this and the previous chapter as polymorphic functions. The docu-

mentation for the List module gives typings and descriptions for lots

of useful list processing functions. For instance, the module provides

the map, fold, and filter abstractions of Chapter 8, described in the

documentation as

• map : (’a -> ’b) -> ’a list -> ’b list

map f [a1; ...; an] applies function f to a1, . . . , an, and builds

the list [f a1; ...; f an] with the results returned by f. Not

tail-recursive.2 2 We’ll come back to the issue of tail
recursion in Section 16.2.2.

• fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2)

...) bn.

• fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b)

...)). Not tail-recursive.

• filter : (’a -> bool) -> ’a list -> ’a list

filter p l returns all the elements of the list l that satisfy the

predicate p. The order of the elements in the input list is preserved.

They can be invoked as List.map, List.fold_left, and so forth. The

library provides many other useful functions, including

• append : ’a list -> ’a list -> ’a list

Concatenate two lists. Same as the infix operator @.. . .

• partition : (’a -> bool) -> ’a list -> ’a list * ’a

list

partition p l returns a pair of lists (l1, l2), where l1 is the

list of all the elements of l that satisfy the predicate p, and l2 is the

list of all the elements of l that do not satisfy p. The order of the

elements in the input list is preserved.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html


P O LY M O R P H I S M A N D G E N E R I C P RO G R A M M I N G 113

The List library has further functions for sorting, combining, and

transforming lists in all kinds of ways.

Although these functions are built into OCaml through the List

library, it’s still useful to have seen how they are implemented and

why they have the types they have. In particular, it makes clear that

the power of list processing via higher-order functional programming

doesn’t require special language constructs; they arise from the in-

teractions of simple language primitives like first-class functions and

structured data types.
Problem 67

Provide an implementation of the List.map function over a list using only a call to
List.fold_right over the same list, or provide an argument for why it’s not possible to
do so.

Problem 68

Provide an implementation of the List.fold_right function using only a call to
List.map over the same list, or provide an argument for why it’s not possible to do so.

Problem 69

In the list module, OCaml provides a function partition : (’a -> bool) -> ’a

list -> ’a list * ’a list. According to the OCaml documentation, “partition p

l returns a pair of lists (l1, l2), where l1 is the list of all the elements of 1 that satisfy
the predicate p, and 12 is the list of all the elements of l that do not satisfy p. The order of
the elements in the input list is preserved.”

For example, we can use this to divide a list into two new ones, one containing the
even numbers and one containing the odd numbers:

# List.partition (fun n -> n mod 2 = 0)
# [1; 2; 3; 4; 5; 6; 7] ;;
- : int list * int list = ([2; 4; 6], [1; 3; 5; 7])

As described above, the List module provides the partition function of type (’a ->

bool) -> ’a list -> ’a list * ’a list. Give your own definition of partition,
implemented directly without the use of any library functions except for those in the
Stdlib module.

Exercise 70

Define a function permutations : ’a list -> ’a list list, which takes a list of
values and returns a list containing every permutation of the original list. For example,

# permutations [1; 2; 3] ;;
- : int list list =
[[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]]

It doesn’t matter what order the permutations appear in the returned list. Note that if
the input list is of length n, then the answer should be of length n! (that is, the factorial
of n). Hint: One way to do this is to write an auxiliary function, interleave : int ->

int list -> int list list, that yields all interleavings of its first argument into its
second. For example:

# interleave 1 [2; 3] ;;
- : int list list = [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]]

9.5 Problem section: Function composition

The C O M P O S I T I O N of two unary functions f and g is the function that

applies f to the result of applying g to its argument.

For example, suppose you’re given a list of pairs of integers, where

we think of each pair as containing a number and a corresponding
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weight. We’d like to compute the W E I G H T E D S U M of the numbers, that

is, the sum of the numbers where each has been weighted according

to (that is, multiplied by) its weight. Recall the sum function from

Exercise 44 and the prods function from Section 7.3.1. The weighted

average of a pair-list can be computed by applying the sum function to

the result of applying the prods function to the list. Thus, weighted_-

sum is just the composition of sum and prods.

Problem 71

Provide an OCaml definition for a higher-order function @+ that takes two functions
as arguments and returns their composition. The function should have the following
behavior:

# let weighted_sum = sum @+ prods ;;
val weighted_sum : (int * int) list -> int = <fun>
# weighted_sum [(1, 3); (2, 4); (3, 5)] ;;
- : int = 26

Notice that by naming the function @+, it is used as an infix, right-associative operator.
See the operator table in the OCaml documentation for further information about the
syntactic properties of operators. When defining the function itself, though, you’ll want
to use it as a prefix operator by wrapping it in parentheses, as (@+).

Problem 72

What is the type of the @+ function?

9.6 Weak type variables

The List module provides polymorphic hd and tl functions for ex-

tracting the head and tail of a list.

Exercise 73

What are the types of the hd and tl functions? See if you can determine them without
looking them up.

These can be composed to allow, for instance, extracting the head of

the tail of a list, that is, the list’s second item.

# let second = List.hd @+ List.tl ;;

val second : '_weak1 list -> '_weak1 = <fun>

This definition works,

# second [1; 2; 3] ;;

- : int = 2

but why did the typing of second have those oddly named type vari-

ables?

Type variables like ’_weak1 (with the initial underscore) are W E A K

T Y P E VA R I A B L E S, not true type variables. They maintain their poly-

morphism only temporarily, until the first time they are applied. Weak

type variables arise because in certain situations OCaml’s type infer-

ence can’t figure out how to express the most general types and must

resort to this fallback approach.

http://caml.inria.fr/pub/docs/manual-ocaml/expr.html
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When a function with these weak type variables is applied to argu-

ments with a specific type, the polymorphism of the function disap-

pears. Having applied second to an int list, OCaml further instanti-

ates the type of second to only apply to int list arguments, losing its

polymorphism. We can see this in two ways, first by checking its type

directly,

# second ;;

- : int list -> int = <fun>

and second by attempting to apply it to a list of another type,

# second [1.0; 2.1; 3.2] ;;

Line 1, characters 8-11:

1 | second [1.0; 2.1; 3.2] ;;

^^^

Error: This expression has type float but an expression was

expected of type

int

To correct the problem, you can of course add in specific typing

information

# let second : float list -> float =

# List.hd @+ List.tl ;;

val second : float list -> float = <fun>

but this provides no polymorphism. Alternatively, you can provide a

full specification of the call pattern in the definition rather than the

partial application that was used above:

# let second x = (List.hd @+ List.tl) x ;;

val second : 'a list -> 'a = <fun>

which gives OCaml sufficient hints to infer types more generally. Of

course, in this case, the composition operator isn’t really helping. We

might as well have defined second more directly as

# let second x = List.hd (List.tl x) ;;

val second : 'a list -> 'a = <fun>

For the curious, if you want to see what’s going on in detail, you can

check out the discussion in the section “A function obtained through

partial application is not polymorphic enough” in the OCaml FAQ.

9.7 Supplementary material

• Lab 3: Polymorphism and record types

https://url.cs51.io/qv9
https://url.cs51.io/qv9
http://url.cs51.io/lab3
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Handling anomalous conditions

Despite best efforts, on occasion a condition arises – let’s call it an

A N O M A LY – that a function can’t handle. What to do? In this chap-

ter, we present two approaches. The function can return a value that

indicates the anomaly, thereby handling the anomaly explicitly. Alter-

natively, the function can stop normal execution altogether, throwing

control to some handler of the anomaly. In OCaml, the first approach

involves option types, the second exceptions.

As a concrete example, consider a function to calculate the M E D I A N

number in a list of integer values, that is, the value that has an equal

number of smaller and larger values. The median can be calculated by

sorting all of the values in the list and taking the middle element of the

sorted list. Taking advantage of a few functions from the List module

(sort, length, and nth) and the Stdlib module (compare),1 we can 1 Since we make heavy use of the List
module functions in this chapter, we
will open the module (but preserve
compare as the Stdlib version)

# open List ;;

# let compare = Stdlib.compare ;;

val compare : 'a -> 'a -> int = <fun>

so as to avoid having to prefix each use
of the functions with the List. module
qualifier. The issue will become clearer
when modules are fully introduced in
Chapter 12.

define

# let median (lst: 'a list) : 'a =

# nth (sort compare lst) (length lst / 2) ;;

val median : 'a list -> 'a = <fun>

We can test it out on a few lists:

# median [1; 5; 9; 7; 3] ;;

- : int = 5

# median [1; 2; 3; 4; 3; 2; 1] ;;

- : int = 2

# median [1; 1; 1; 1; 1] ;;

- : int = 1

# median [7] ;;

- : int = 7

The function works fine most of the time, but there is one anoma-

lous condition to consider, where the median isn’t well defined: What

should the median function do on the empty list?
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10.1 A non-solution: Error values

You might have thought to return a special E R RO R VA LU E in the

anomalous case. Perhaps 0 or -1 or MAX_INT come to mind as pos-

sible error values. Augmenting the code to return a globally defined

error value might look like this:

# let cERROR = -1 ;;

val cERROR : int = -1

# let median (lst: 'a list) : 'a =

# if lst = [] then cERROR

# else nth (sort compare lst) (length lst / 2) ;;

val median : int list -> int = <fun>

There are two problems. First, the method can lead to gratuitous type

instantiation; second, and more critically, it manifests in-band signal-

ing.

Check the types inferred for the two versions of median above. The

original is appropriately polymorphic, of type ’a list -> ’a. But

because the error value cERROR used in the second version is of type

int, median becomes instantiated to int list -> int. The code

no longer applies outside the type of the error value, restricting its

generality and utility. And there is a deeper problem.

Consider the sad fate of poor Christopher Null, a technology jour-

nalist with a rather inopportune name. Apparently, there is a fair

amount of software that uses the string "null" as an error value for

cases in which no last name was provided. Errors can then be checked

for using code like

if last_name = "null" then ...

You see the problem. Poor Mr. Null reports that

I’ve been embroiled in a cordial email battle with Bank of Amer-

ica, literally for years, over my email address, which is simply

null@nullmedia.com. Using null as a mailbox name simply does not

work at B of A. The system will not accept it, period. (Null, 2015)

These kinds of problems confront poor Mr. Null on a regular basis.

Null has fallen afoul of I N - B A N D S I G N A L I N G of errors, in which an

otherwise valid value is used to indicate an error. The string "null"

is, of course, a valid string that, for all the programmer knows, might

be someone’s name, yet it is used to indicate a failure condition in

which no name was provided. (The solution is not to use a string,

"dpfnzzlwrpf" say,2 that is less likely to be someone’s last name as the 2 In fact, “Dpfnzzlwrpf” is the name
of a fictitious corporation in Jonathan
Caws-Elwitt’s “Letter to a Customer”.
(Conley, 2009) Could it also be a last
name? Why not? For a while, it was my
username on Skype. True story.

error value. That merely postpones the problem.)

Similarly, 0 or -1 or MAX_INT are all possible values for the median

of an integer list. Using one of them as an in-band error value means

https://url.cs51.io/gpw
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that users of the median function can’t tell the difference between the

value being the true median or the median being undefined.

Having dismissed the in-band error signaling approach, we turn to

better solutions.

10.2 Option types

The first approach, like the in-band error value approach, still handles

the problem explicitly, right in the return value of the function. How-

ever, rather than returning an in-band value, an int (or whatever the

type of the list elements is), the function will return an out-of-band

None value, that has been added to the int type to form an optional

int, a value of type int option.

Option types are another kind of structured type, beyond the lists,

tuples, and records from Chapter 7. The postfix type constructor

option creates an option type from a base type, just as the postfix

type constructor list does. There are two value constructors for op-

tion type values: None (connoting an anomalous value), and the prefix

value constructor Some. The argument to Some is a value of the base

type.

For the median function, we’ll use an int option as the return

value, or, more generically, an ’a option. In the anomalous condition,

we return None, and in the normal condition in which a well-defined

median v can be computed, we return Some v .

# let median (lst: 'a list) : 'a option =

# if lst = [] then None

# else Some (nth (sort compare lst) (length lst / 2)) ;;

val median : 'a list -> 'a option = <fun>

# median [1; 2; 3; 4; 42] ;;

- : int option = Some 3

# median [] ;;

- : 'a option = None

This version of the median function when applied to an int list

does not return an int, even when the median is well defined. It re-

turns an int option, which is a distinct type altogether. Nonetheless,

a caller of this function might want access to the int wrapped inside

the int option value. As with all structured types, we access the com-

ponent elements of an option value via pattern matching, as in this

example function, which replicates the (deprecated) in-band value so-

lution, returning the median of the list, or the error value if no median

exists:

# let median_or_error (lst : int list) : int =

# match median lst with
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# | None -> cERROR

# | Some v -> v ;;

val median_or_error : int list -> int = <fun>

In implementing median above, we used the polymorphic function

nth : ’a list -> int -> ’a provided by the List module, which

given a list lst and an integer index returns the element of lst at the

given index (numbered starting with 0).

# List.nth [1; 2; 4; 8] 2 ;;

- : int = 4

# List.nth [true; false; false] 0 ;;

- : bool = true

Exercise 74

Why do you think nth was designed so as to take its list argument before its index argu-
ment? The designers expected that this would be a more commonly needed abstraction
than a function that returns the n-th element of a list for a particular n.

If we were to reimplement this function, it might look something

like this:

# let rec nth (lst : 'a list) (n : int) : 'a =

# match lst with

# | hd :: tl ->

# if n = 0 then hd

# else nth tl (n - 1) ;;

Lines 2-5, characters 0-19:

2 | match lst with

3 | | hd :: tl ->

4 | if n = 0 then hd

5 | else nth tl (n - 1)...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

[]

val nth : 'a list -> int -> 'a = <fun>

This definition works, as shown in the following examples:

# nth [1; 2; 3] 1 ;;

- : int = 2

# nth [0; 1; 2] (nth [1; 2; 3] 1) ;;

- : int = 2

However, OCaml has warned us that the pattern match in the def-

inition of nth is not exhaustive – there are possible values that will

match none of the provided patterns – and helpfully provides the miss-

ing case, the empty list. Of course, if we ask to take the n-th element of

an empty list, there is no element to take; this represents an anomalous

condition.

Leaving the handling of this case implicit violates the edict of inten-

tion; we should clearly express what happens in all cases. Once again,

we can use option types to explicitly mark the condition in the return

value. We do so in a function called nth_opt.3

3 We use the suffix _opt to mark func-
tions that return an optional value, as
is conventional in OCaml library func-
tions. In fact, as noted below, the List
module provides an nth_opt function
in addition to its nth function.
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# let rec nth_opt (lst : 'a list) (n : int) : 'a option =

# match lst with

# | [] -> None

# | hd :: tl ->

# if n = 0 then Some hd

# else nth_opt tl (n - 1) ;;

val nth_opt : 'a list -> int -> 'a option = <fun>

# nth_opt [1; 2; 3] 1 ;;

- : int option = Some 2

# nth_opt [1; 2; 3] 5 ;;

- : int option = None

Exercise 75

Another anomalous condition for nth and nth_opt is the use of a negative index. What
currently is the behavior of nth_opt with negative indices? Revise the definition of
nth_opt to appropriately handle this case as well.

Exercise 76

Define a function last_opt : ’a list -> ’a option that returns the last element in
a list (as an element of the option type) if there is one, and None otherwise.

# last_opt [] ;;
- : 'a option = None
# last_opt [1; 2; 3; 4; 5] ;;
- : int option = Some 5

Exercise 77

The variance of a sequence of n numbers x1, . . . , xn is given by the following equation:∑n
i=1(xi −m)2

n −1

where n is the number of elements in the sequence, m is the arithmetic mean (or
average) of the elements in the sequence, and xi is the i -th element in the sequence.
The variance is only well defined for sequences with two or more elements. (Do you see
why?)

Define a function variance : float list -> float option that returns None
if the list has fewer than two elements. Otherwise, it should return the variance of the
numbers in its list argument, wrapped appropriately for its return type.4 For example: 4 If you want to compare your output

with an online calculator, make sure you
find one that calculates the (unbiased)
sample variance.

# variance [1.0; 2.0; 3.0; 4.0; 5.0] ;;
- : float option = Some 2.5
# variance [1.0] ;;
- : float option = None

Remember to use the floating point version of the arithmetic operators when operating
on floats (+., *., etc). The function float can convert (“cast”) an int to a float.

10.2.1 Option poisoning

There is a problem with using option types to handle anomalies, as in

nth_opt. Whenever we want to use the value of an nth_opt element in

a further computation, we need to carefully extract the value from the

option type. We can’t, for instance, merely write

# nth_opt [0; 1; 2] (nth_opt [1; 2; 3] 1) ;;

Line 1, characters 18-39:

1 | nth_opt [0; 1; 2] (nth_opt [1; 2; 3] 1) ;;
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^^^^^^^^^^^^^^^^^^^^^

Error: This expression has type int option

but an expression was expected of type int

Instead we must work inside out, painstakingly extracting values and

passing on Nones:

# match (nth_opt [1; 2; 3] 1) with

# | None -> None

# | Some v -> nth_opt [0; 1; 2] v ;;

- : int option = Some 2

And if that result is part of a further computation, even something as

simple as adding 1 to it, we have to resort to

# match (nth_opt [1; 2; 3] 1) with

# | None -> None

# | Some v ->

# match nth_opt [0; 1; 2] v with

# | None -> None

# | Some v -> Some (v + 1) ;;

- : int option = Some 3

Much of the elegance of the functional programming paradigm, the

ability to simply embed function applications with other functional

applications, is lost. We call this phenomenon O P T I O N P O I S O N I N G:

The introduction of an option type in an embedded computation

requires verbose extraction of values and reinjecting them into option

types as the computation continues. (Option poisoning is a particular

instance of the dreaded programming phenomenon of the P Y R A M I D

O F D O O M.)

Functions that regularly display anomalous conditions that ought

to be directly handled by the caller are well suited for use of option

types. But where an anomalous condition is rare and isn’t the kind of

thing that the caller should handle, an alternative approach is useful,

to avoid the pyramid of doom. Rather than explicitly marking the

occurrence of an anomaly in the return value, it can be implicitly dealt

with by changing the flow of control of the program entirely. This is the

approach based on exceptions, to which we now turn.5

5 Newer techniques, such as O P T I O N A L

C H A I N I N G in the Swift programming
language, deal with option poisoning
in a more elegant way, providing a
middle ground between the verbose
option handling of OCaml and the use
of exceptions. For the programming-
language-theory-inclined, the M O N A D

concept from category theory, first
imported into programming languages
with Haskell, generalizes the concept.

The lesson here is that continuing
progress is being made in the design of
programming languages to deal with
new and recurring programming issues.

10.3 Exceptions

Instead of modifying the return type of nth to allow for returning a

None marker of an anomaly, we can leave the return type unchanged,

and in case of anomaly, raise an E XC E P T I O N.

When an exception is raised, execution of the function stops. Of

course, if execution stops, the function can’t return a value, which is

appropriate given that the existence of the anomaly means that there’s

no appropriate value to return.

https://url.cs51.io/t59
https://url.cs51.io/t59
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What about the function that called the one that raised the excep-

tion? It is expecting a value of a certain type to be returned, but in this

case, no such value is supplied. The calling function thus can’t return

either. It stops too. And so on and so forth.

We can write a version of nth that raises an exception when the

index is too large.

# let rec nth (lst : 'a list) (n : int) : 'a =

# match lst with

# | [] -> raise Exit

# | hd :: tl ->

# if n = 0 then hd

# else nth tl (n - 1) ;;

val nth : 'a list -> int -> 'a = <fun>

# nth [1; 2; 3] 1 ;;

- : int = 2

# nth [1; 2; 3] 5 ;;

Exception: Stdlib.Exit.

# (nth [0; 1; 2] (nth [1; 2; 3] 1)) + 1 ;;

- : int = 3

There are several things to notice here. First, the return type of nth re-

mains ’a, not ’a option. Under normal conditions, it returns the n-th

element itself, not an option-wrapped version thereof. This allows its

use in embedded applications (as in the third example above) without

leading to the dreaded option poisoning. When an error does occur, as

in the second example, execution stops and a message is printed by the

OCaml R E P L (“Exception: Stdlib.Exit.”) describing the exception

that was raised, namely, the Exit exception defined in the Stdlib li-

brary module. No value is returned from the computation at all, so no

value is ever printed by the R E P L.

The code that actually raises the Exit exception is in the third line

of nth: raise Exit. The built-in raise function takes as argument an

expression of type exn, the type for exceptions. As it turns out, Exit is

a value of that type, as can be verified directly:

# Exit ;;

- : exn = Stdlib.Exit

The Exit exception is provided in the Stdlib module as a kind of

catch-all exception, but other exceptions are more appropriate to raise

in different circumstances.

• The value constructor Invalid_argument : string -> exn, is

intended for use when an argument to a function is inappropriate.

It would be appropriate to use when the index of nth is negative.

• The value constructor Failure : string -> exn, is intended

for use when a function isn’t well-defined as called. It would be
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appropriate to use when the index of nth is too large for the given

list.

Both of these constructors take a string argument, typically used to

provide an explanation of what went wrong. The explanation can be

used when the exception information is handled, for instance, by the

R E P L printing its error message.

Taking advantage of these exceptions, nth can be rewritten as

# let rec nth (lst : 'a list) (n : int) : 'a =

# if n < 0 then

# raise (Invalid_argument "nth: negative index")

# else

# match lst with

# | [] -> raise (Failure "nth: index too large")

# | hd :: tl ->

# if n = 0 then hd

# else nth tl (n - 1) ;;

val nth : 'a list -> int -> 'a = <fun>

# nth [1; 2; 4; 8] ~-3 ;;

Exception: Invalid_argument "nth: negative index".

# nth [1; 2; 4; 8] 1 ;;

- : int = 2

# nth [1; 2; 4; 8] 42 ;;

Exception: Failure "nth: index too large".

We’ve dealt with both of the anomalous conditions by raising appropri-

ate exceptions.

Not coincidentally, the List.nth function (in the List library mod-

ule) works exactly this way, raising Invalid_argument and Failure

exceptions under just these circumstances. But a List.nth_opt func-

tion is also provided, for cases in which the explicit marking of anoma-

lies with an option type is more appropriate.

Returning to the median example above, and repeated here for

reference (but this time using our own implementation of nth),

# let median (lst : 'a list) : 'a =

# nth (sort compare lst) (length lst / 2) ;;

val median : 'a list -> 'a = <fun>

this code doesn’t use option types and doesn’t use the raise func-

tion to raise any exceptions. What does happen when the anomalous

condition occurs?

# median [] ;;

Exception: Failure "nth: index too large".

An exception was raised, not by the median function, but by our nth

function that it calls, which raises a Failure exception when it is called

to take an element of the empty list. The exception propagates from

the nth call to the median call to the top level of the R E P L.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
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10.3.1 Handling exceptions

Perhaps you, as the writer of some code, have an idea about how to

handle particular anomalies that might otherwise raise an excep-

tion. Rather than allow the exception to propagate to the top level,

you might want to handle the exception yourself. The try 〈〉 with 〈〉
construct allows for this.

The syntax of the construction is

〈expr〉 ::= try 〈exprvalue〉 with
| 〈exnpattern1〉 -> 〈expr1〉
| 〈exnpattern2〉 -> 〈expr2〉
. . .

where 〈exprvalue〉 is an expression that may raise an exception, and

the 〈exnpatterni〉 are patterns that match against OCaml exception

expressions, rather than the normal algebraic data structures.

If the 〈exprvalue〉 evaluates without exception, its value is returned.

However, if its evaluation raises an exception, that exception is pattern-

matched sequentially against the 〈exnpatterni〉 much as in a match

expression; for the first such pattern that matches, the corresponding

〈expri〉 is evaluated and its value returned from the try.

For example, we can implement nth_opt in terms of nth by embed-

ding the call to nth within a try 〈〉 with 〈〉 :6 6 We’ve taken advantage of the ability
to use the same result expression for
multiple patterns, as described in
Section 7.2.1.

# let nth_opt (lst : 'a list) (index : int) : 'a option =

# try

# Some (nth lst index)

# with

# | Failure _

# | Invalid_argument _ -> None ;;

val nth_opt : 'a list -> int -> 'a option = <fun>

# nth_opt [1; 2; 3] 0 ;;

- : int option = Some 1

# nth_opt [1; 2; 3] (-1) ;;

- : int option = None

# nth_opt [1; 2; 3] 4 ;;

- : int option = None

This implementation of nth_opt attempts to evaluate Some (nth lst

index). Under normal conditions, the call to nth returns a value v , in

which case Some v is the result of the try and of the function itself.

But if an exception is raised in the evaluation of the try – presumably

by an anomalous condition in the call to nth – the exception raised

will be matched against the two patterns and the result of that pattern

match will be used. If nth raises either a Failure exception or an

Invalid_argument exception, the result of the try...with will be
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None (as is appropriate for an implementation of nth_opt). If any

other exception is raised, no pattern will match and the exception will

continue to propagate.

10.3.2 Zipping lists

As another example of handling anomalous conditions, we consider

a function for “zipping” lists. The result of zipping two lists together

is a list of corresponding pairs of elements of the original lists. A zip

function in OCaml ought to have the following behavior:

# zip ['a'; 'b'; 'c']

# [ 1 ; 2 ; 3 ] ;;

- : (char * int) list = [('a', 1); ('b', 2); ('c', 3)]

Let’s try to define the function, starting with its type. The zip func-

tion takes two lists, with types, say, ’a list and ’b list, and returns

a list of pairs each of which has an element from the first list (of type

’a) and an element from the second (of type ’b). The pairs are thus of

type ’a * ’b and the return value of type (’a * ’b) list. The type

of the whole function, then, is ’a list -> ’b list -> (’a * ’b)

list. From this, the header follows directly.

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

...

We’ll need the first elements of each of the lists, so we match on

both lists (as a pair) to extract their parts

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

match xs, ys with

| [], [] -> ...

| xhd :: xtl, yhd :: ytl -> ...

If the lists are empty, the list of pairs of their elements is empty too.

let rec zip (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list =

match xs, ys with

| [], [] -> []

| xhd :: xtl, yhd :: ytl -> ...

Otherwise, the zip of the non-empty lists starts with the two heads

paired. The remaining elements are the zip of the tails.

let rec zip (xs : 'a list)

(ys : 'b list)
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: ('a * 'b) list =

match xs, ys with

| [], [] -> []

| xhd :: xtl, yhd :: ytl ->

(xhd, yhd) :: (zip xtl ytl) ;;

You’ll notice that there’s an issue. And if you don’t notice, the inter-

preter will, as soon as we enter this definition:

# let rec zip (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list =

# match xs, ys with

# | [], [] -> []

# | xhd :: xtl, yhd :: ytl ->

# (xhd, yhd) :: (zip xtl ytl) ;;

Lines 4-7, characters 0-27:

4 | match xs, ys with

5 | | [], [] -> []

6 | | xhd :: xtl, yhd :: ytl ->

7 | (xhd, yhd) :: (zip xtl ytl)...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

([], _::_)

val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

There are missing match cases, in particular, when one of the lists is

empty and the other isn’t. This can arise whenever the two lists are of

different lengths. In such a case, the zip of two lists is not well defined.

As usual, we have two approaches to addressing the anomaly, with

options and with exceptions. We’ll pursue them in order.

We can make explicit the possibility of error values by returning an

option type.

let rec zip_opt (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list option = ...

The normal match cases can return their corresponding option type

value using the Some constructor.

let rec zip_opt (xs : 'a list)

(ys : 'b list)

: ('a * 'b) list option =

match xs, ys with

| [], [] -> Some []

| xhd :: xtl, yhd :: ytl ->

Some ((xhd, yhd) :: (zip_opt xtl ytl)) ;;

Finally, we can add a wild-card match pattern for the remaining cases.

# let rec zip_opt (xs : 'a list)

# (ys : 'b list)
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# : ('a * 'b) list option =

# match xs, ys with

# | [], [] -> Some []

# | xhd :: xtl, yhd :: ytl ->

# Some ((xhd, yhd) :: (zip_opt xtl ytl))

# | _, _ -> None ;;

Line 7, characters 20-37:

7 | Some ((xhd, yhd) :: (zip_opt xtl ytl))

^^^^^^^^^^^^^^^^^

Error: This expression has type ('c * 'd) list option

but an expression was expected of type ('a * 'b) list

The interpreter tells us that there’s a type problem. The recursive

call zip_opt xtl ytl is of type (’c * ’d) list option but the

cons requires an (’a * ’b) list. What we have here is a bad case

of option poisoning. We’ll have to decompose the return value of the

recursive call to extract the list within, handling the None case at the

same time.

# let rec zip_opt (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list option =

# match xs, ys with

# | [], [] -> Some []

# | xhd :: xtl, yhd :: ytl ->

# match zip_opt xtl ytl with

# | None -> None

# | Some ztl -> Some ((xhd, yhd) :: ztl)

# | _, _ -> None ;;

Line 10, characters 2-6:

10 | | _, _ -> None ;;

^^^^

Error: This pattern matches values of type 'a * 'b

but a pattern was expected which matches values of type

('c * 'd) list option

Now what!? The interpreter complains of another type mismatch, this

time in the final pattern, which is of type ’a * ’b, but which, for

some reason, the interpreter thinks should be of type (’c * ’d) list

option. This kind of error is one of the most confusing for beginning

OCaml programmers.

Exercise 78

Try to see if you can diagnose the problem before reading on.

The indentation of this code notwithstanding, the final pattern

match is associated with the inner match, not the outer one. The inner

match is, indeed, for list options. The intention was that only the lines

beginning | None... and | Some ... be part of that match, but the

next line has been caught up in it as well.

One simple solution is to use parentheses to make explicit the

intended structure of the code.
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# let rec zip_opt (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list option =

# match xs, ys with

# | [], [] -> Some []

# | xhd :: xtl, yhd :: ytl ->

# (match zip_opt xtl ytl with

# | None -> None

# | Some ztl -> Some ((xhd, yhd) :: ztl))

# | _, _ -> None ;;

val zip_opt : 'a list -> 'b list -> ('a * 'b) list option = <fun>

Better yet is to make explicit the patterns that fall under the wildcard

allowing them to move up in the ordering.

# let rec zip_opt (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list option =

# match xs, ys with

# | [], [] -> Some []

# | [], _

# | _, [] -> None

# | xhd :: xtl, yhd :: ytl ->

# match zip_opt xtl ytl with

# | None -> None

# | Some ztl -> Some ((xhd, yhd) :: ztl) ;;

val zip_opt : 'a list -> 'b list -> ('a * 'b) list option = <fun>

Exercise 79

Why is it necessary to make the patterns explicit before moving them up in the ordering?
What goes wrong if we leave the pattern as _, _?

As an alternative, we can implement zip to raise an exception on

lists of unequal length. Doing so simplifies the matches, since there’s

no issue of option poisoning.

# let rec zip (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list =

# match xs, ys with

# | [], [] -> []

# | [], _

# | _, [] -> raise (Invalid_argument

# "zip: unequal length lists")

# | xhd :: xtl, yhd :: ytl ->

# (xhd, yhd) :: (zip xtl ytl) ;;

val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

Exercise 80

Define a function zip_safe that returns the zip of two equal-length lists, returning the
empty list if the arguments are of unequal length. The implementation should call zip.

# zip_safe [1; 2; 3] [3; 2; 1] ;;
- : (int * int) list = [(1, 3); (2, 2); (3, 1)]
# zip_safe [1; 2; 3] [3; 2] ;;
- : (int * int) list = []

What problems do you see in this function?
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10.3.3 Declaring new exceptions

Exceptions are first-class values, of the type exn. Like lists and options,

exceptions have multiple value constructors. We’ve seen some already:

Exit, Failure, Invalid_argument. (It’s for that reason that we can

pattern match against them in the try...with construct.)

Exceptions are exceptional in that new value constructors can be

added dynamically. Here we define a new exception value constructor:

# exception Timeout ;;

exception Timeout

It turns out that this exception will be used in Chapter 17.

Exception constructors can take arguments. We define an

UnboundVariable constructor that takes a string argument, used in

Chapter 13, as

# exception UnboundVariable of string ;;

exception UnboundVariable of string

Exercise 81

In Section 6.6, we noted a problem with the definition of fact for computing the
factorial function; it fails on negative inputs. Modify the definition of fact to raise an
exception to make that limitation explicit.

Exercise 82

What are the types of the following expressions (or the values they define)?

1. Some 42

2. [Some 42; None]

3. [None]

4. Exit

5. Failure "nth"

6. raise (Failure "nth")

7. raise

8. fun _ -> raise Exit

9. let failwith s =
raise (Failure s)

10. let sample x =
failwith "not implemented"

11. let sample (x : int) (b : bool) : int list option =
failwith "not implemented"

Problem 83

As in Problem 64, for each of the following OCaml function types define a function f

(with no explicit typing annotations, that is, no uses of the : operator) for which OCaml
would infer that type. (The functions need not be practical or do anything useful; they
need only have the requested type.)

1. int -> int -> int option

2. (int -> int) -> int option

3. ’a -> (’a -> ’b) -> ’b

4. ’a option list -> ’b option list -> (’a * ’b) list
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Problem 84

As in Problem 66, for each of the following function definitions of a function f, give
a typing for the function that provides its most general type (as would be inferred by
OCaml) or explain briefly why no type exists for the function.

1. let rec f x =
match x with
| [] -> f
| h :: t -> raise Exit ;;

2. let f x =
if x then (x, true)
else (true, not x) ;;

Problem 85

Provide a more succinct definition of the function f from Problem 84(2), with the same
type and behavior.

10.4 Options or exceptions?

Which should you use when writing code to handle anomalous con-

ditions? Options or exceptions? This is a design decision. There is no

universal right answer.

Anomalous conditions when running code cover a range of cases.

One class of anomalies are conditions that should never occur, follow-

ing from true bugs in code. For instance, when a function is applied to

a set of arguments for which it was explicitly not defined – for example,

applying the median function to an empty list, where the implementer

of the median function has specified that it is not defined in that case –

this constitutes a bug. The programmer who used the median function

in that way has made a mistake. Unfortunately, the bug appears only

at run time, when it is “too late”. The best we can do in such cases is

to abort the computation, returning control to some higher level for

which recovery from the bug is possible (if such a higher level even

exists), and providing as much information about the bug as possible.

Some programming languages provide specific tools for such cases. In

OCaml, exceptions are the right tool, raising an informative exception

and hoping that a higher level can recover. And proper programming

practice indicates doing just that.

For cases that are not simply bugs of this sort, that is, cases that

are anomalous from the usual course yet expected to be handled, the

choice between options and exceptions is governed by the properties

of the two approaches.

Options are explicit: The type gives an indication that an anomaly

might occur, and the compiler can make sure that such anomalies are

handled. Exceptions are implicit: You (and the compiler) can’t tell if an

exception might be raised while executing a function. But exceptions

are therefore more concise. The error handling doesn’t impinge on the

data and so doesn’t poison every downstream use of the data. Code to
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handle the anomaly doesn’t have to exist everywhere between where

the problem occurs and where it’s dealt with.

Which is more important, explicitness or concision? It depends.

• If the anomaly is a standard part of the computation, a frequent

occurrence, that argues for making it explicit in an option type.

• If the anomaly is a rare occurrence, that argues for hiding it implic-

itly in the code.

• If the anomaly is localized to a small part of the code within which it

can be handled, it makes sense to use an option type in that region.

• If the anomaly is ubiquitous, with the possibility of occurring any-

where in the code, the overhead of explicitly handling it everywhere

in the code with an option type is likely too cumbersome. For ex-

ample, a computation may run out of memory at more or less any

point. It makes no sense to have a function return an option type,

with None reserved for the case where the computation happened to

run out of memory in the function. Rather, running out of memory

is a natural use for an exception (and in fact, OCaml raises excep-

tions when it runs out of memory).

Is the anomalous occurrence a frequent case? Use options. A rare

event? Use exceptions. Is the anomalous occurrence intrinsic to the

conception? Use options. Extrinsic? Use exceptions.

Design decisions like this are ubiquitous. They are the bread and

butter of the programming process. The precursor to making these

decisions is possessing the tools that allow the alternative designs, the

understanding of what the ramifications are, and the judgement to

make a reasonable choice. The importance of having the choice is why,

for instance, the List module provides both nth and nth_opt.

10.5 Unit testing with exceptions

In Section 6.7, we called for unit testing of functions to verify their

correctness on representative inputs. Using the methodology of that

section, we might write a unit testing function for nth, call it nth_test:

# let nth_test () =

# unit_test (nth [5] 0 = 5) "nth singleton";

# unit_test (nth [1; 2; 3] 0 = 1) "nth start";

# unit_test (nth [1; 2; 3] 1 = 2) "nth middle" ;;

val nth_test : unit -> unit = <fun>

We run the tests by calling the function:
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# nth_test () ;;

nth singleton passed

nth start passed

nth middle passed

- : unit = ()

The test function provides a report of the performance on all of the

tests, showing that all tests are passed.

As mentioned in Section 6.7, we’ll want to unit test nth as com-

pletely as is practicable, trying examples representing as wide a range

of cases as possible. For instance, we might be interested in whether

nth works in selecting the first, a middle, and the last element of a list.

We’ve checked the first two of these conditions, but not the third. We

can adjust the testing function accordingly:

# let nth_test () =

# unit_test (nth [5] 0 = 5) "nth singleton";

# unit_test (nth [1; 2; 3] 0 = 1) "nth start";

# unit_test (nth [1; 2; 3] 1 = 2) "nth middle";

# unit_test (nth [1; 2; 3] 2 = 3) "nth last" ;;

val nth_test : unit -> unit = <fun>

What about selecting at an index that is too large, as in the example

nth [1; 2; 3] 4? We should make sure that nth works properly in

this case as well. But what does “works properly” mean? According

to the specification in the List module, nth should raise a Failure

exception in this case. So we’ll need a boolean expression that is true

just in case evaluating the expression nth [1; 2; 3] 4 raises the

proper exception. We can achieve this by using a try 〈〉 with 〈〉 to trap

any exception raised and verifying that it is the correct one. We might

start with

# try nth [1; 2; 3] 4

# with

# | Failure _ -> true

# | _ -> false ;;

Line 3, characters 15-19:

3 | | Failure _ -> true

^^^^

Error: This expression has type bool but an expression was expected

of type

int

but this fails to type-check, since the type of the nth expression is int

(since it was applied to an int list), whereas the with clauses return

a bool. We’ll need to return a bool in the try as well. In fact, we should

return false; if nth [1; 2; 3] 4 manages to return a value and not

raise an exception, that’s a sign that nth has a bug! We revise the test

condition to be

https://url.cs51.io/toc
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# try let _ = nth [1; 2; 3] 4 in

# false

# with

# | Failure _ -> true

# | _ -> false ;;

- : bool = true

Adding this unit test to the unit testing function gives us

# let nth_test () =

# unit_test (nth [5] 0 = 5) "nth singleton";

# unit_test (nth [1; 2; 3] 0 = 1) "nth start";

# unit_test (nth [1; 2; 3] 1 = 2) "nth middle";

# unit_test (nth [1; 2; 3] 2 = 3) "nth last";

# unit_test (try let _ = nth [1; 2; 3] 4 in

# false

# with

# | Failure _ -> true

# | _ -> false) "nth index too big";;

val nth_test : unit -> unit = <fun>

# nth_test () ;;

nth singleton passed

nth start passed

nth middle passed

nth last passed

nth index too big passed

- : unit = ()

We’ll later see more elegant ways to put together unit tests (Sec-

tion 17.6).

Exercise 86

Augment nth_test to verify that nth works properly under additional conditions: on the
empty list, with negative indexes, with lists other than integer lists, and so forth.

❧

With options and exceptions and their corresponding types, we’ve

completed the introduction of the major compound data types that are

built into the OCaml language. Table 10.1 provides a full list of these

compound types, with their type constructors and value constructors.

The advantages of compound types shouldn’t be limited to built-ins

though. In the next chapter, we’ll extend the type system to allow user-

defined compound types.

10.6 Supplementary material

• Lab 4: Error handling, options, and exceptions

http://url.cs51.io/lab4
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Type Type constructor Value constructors

functions 〈〉 -> 〈〉 fun 〈〉 -> 〈〉
tuples 〈〉 * 〈〉 〈〉 , 〈〉

〈〉 * 〈〉 * 〈〉 〈〉 , 〈〉 , 〈〉
· · ·

lists 〈〉 list []

〈〉 :: 〈〉
[ 〈〉 ; 〈〉 ; ...]

records { 〈〉 : 〈〉 ; 〈〉 : 〈〉 ; ...} { 〈〉 = 〈〉 ; 〈〉 = 〈〉 ; ...}

options 〈〉 option None

Some 〈〉
exceptions exn Exit

Failure 〈〉
· · ·

user-defined See Chapter 11

Table 10.1: Built-in compound data
types.
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Algebraic data types

Data types can be divided into the atomic types (with atomic type

constructors like int and bool) and the composite types (with parame-

terized type constructors like 〈〉 * 〈〉 , 〈〉 list, and 〈〉 option).

What is common to all of the built-in composite types introduced

so far1 is that they allow building data structures through the combina- 1 The exception is the composite type
of functions. Functions are the rare
case of a composite type in OCaml not
structured as an algebraic data type as
defined below.

tion of just two methods.

1. Conjunction: Multiple components can be conjoined to form a

composite value containing all of the components.

For instance, values of pair type, int * float say, are formed as

the conjunction of two components, the first component an int

and the second a float.

2. Alternation: Multiple components can be disjoined, serving as

alternatives to form a composite value containing one of the values.

For instance, values of type int list are formed as the alternation

of two components. One alternative is []; the other is the “cons”

(itself a conjunction of a component of type int and a component

of type int list).

Data types built by conjunction and disjunction are called A LG E B R A I C

D ATA T Y P E S.2 As mentioned, we’ve seen several examples already, as

2 Algebra is the mathematical study of
structures that obey certain laws. Typi-
cal of algebras is to form such structures
by operations that have exactly the
duality of conjunction and alternation
found here. For instance, arithmetic
algebras have multiplication and ad-
dition as, respectively, the conjunction
and alternation operators. Boolean
algebras have logical conjunction (‘and’)
and disjunction (‘or’). Set algebras have
cross-product and union. The term
algebraic data type derives from this
connection to these structured algebras.

built-in composite data types. But why should the power of algebraic

data types be restricted to built-in types? Such a simple and elegant

construction like algebraic types could well be a foundational con-

struct of the language, not only to empower programmers using the

language but also to provide a foundation for the built-in constructs

themselves.

OCaml inherits from its antecedents (especially, the Hope program-

ming language developed at the University of Edinburgh, the univer-

sity that brought us ML as well) the ability to define new algebraic data

types as user code.
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Let’s start with a simple example based on genome processing, ex-

emplifying the use of alternation. DNA sequences are long sequences

composed of only four base amino acids: guanine (G), cytosine (C),

adenine (A), and thymine (T).

Figure 11.1: DNA carries information
encoded as sequences of four amino
acids.

We can define an algebraic data type for the DNA bases via alter-

nation. The type, called base, will have four value constructors cor-

responding to the four base letters. The alternatives are separated by

vertical bars (|). Here is the definition of the base type, introduced by

the keyword type:

# type base = G | C | A | T ;;

type base = G | C | A | T

This kind of type declaration defines a VA R I A N T T Y P E, which lists a set

of alternatives, variant ways of building elements of the type: A or T

or C or G.3 Having defined the base type, we can refer to values of that 3 Using argumentless variants in this
way serves the purpose of enumerated
types in other languages – enum in C, C
derivatives, Java, and Perl, for instance.
Variants thus generalize enumerated
types.

type.

# A ;;

- : base = A

# G ;;

- : base = G

As with all composite types, computations that depend on the

particular values of the type use pattern-matching to structure the

cases. For instance, each DNA base has a complementary base: A

and T are complementary, as are G and C. A function to return the

complement of a base uses pattern-matching to individuate the cases:

# let comp_base bse =

# match bse with

# | A -> T

# | T -> A

# | G -> C

# | C -> G ;;

val comp_base : base -> base = <fun>

# comp_base G ;;

- : base = C

Variants correspond to the alternation approach to building com-

posite values. The conjunction approach is enabled by allowing the

alternative value constructors to take an argument of a specified type.

That argument itself can conjoin components by tupling.

As an example, DNA sequences themselves can be implemented as

an algebraic data type that we’ll call dna. Taking inspiration from the

list type for sequences, DNA sequences can be categorized into two

alternatives, two variants – the empty sequence, for which we will use

the value constructor Nil; and non-empty sequences, for which we

will use the value constructor Cons. The Cons constructor will take two

https://url.cs51.io/za0
https://url.cs51.io/za0
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arguments (uncurried), one for the first base in the sequence and one

for the rest of the dna sequence.4 4 � There is a subtle distinction con-
cerning when type constructors take a
single tuple argument or multiple argu-
ments written with tuple notation. For
the most part, the issue can be ignored,
so long as the type definition doesn’t
place the argument sequence within
parentheses. For the curious, see the
“Note on tupled constructors” in the
OCaml documentation.

# type dna =

# | Nil

# | Cons of base * dna ;;

type dna = Nil | Cons of base * dna

The Cons constructor takes two arguments (using tuple notation), the

first of type base and the second of type dna. It thus serves to conjoin a

base element and another dna sequence.

Having defined this new type, we can construct values of that type:

# let seq = Cons (A, Cons (G, Cons (T, Cons (C, Nil)))) ;;

val seq : dna = Cons (A, Cons (G, Cons (T, Cons (C, Nil))))

and pattern-match against them:

# let first_base =

# match seq with

# | Cons (x, _) -> x

# | Nil -> failwith "empty sequence" ;;

val first_base : base = A

The dna type is defined recursively,5 as one of its variants (Cons) 5 In value definitions (with let), recur-
sion must be marked explicitly with
the rec keyword. In type definitions,
no such explicit marking is required,
and in fact nonrecursive definitions
can only be formed using distinct type
names. This design decision was pre-
sumably motivated by the ubiquity of
recursive type definitions as compared
to recursive value definitions. It’s a
contentious matter as to whether this
quirk of OCaml is a feature or a bug.

includes another value of the same type. By using recursion, we can

define data types whose values can be of arbitrary size.

To process data values of arbitrary size, recursive functions are an

ideal match. A function to construct the complement of an entire DNA

sequence is naturally recursive.

# let rec complement seq =

# match seq with

# | Nil -> Nil

# | Cons (b, seq) -> Cons (comp_base b, complement seq) ;;

val complement : dna -> dna = <fun>

# complement seq ;;

- : dna = Cons (T, Cons (C, Cons (A, Cons (G, Nil))))

11.1 Built-in composite types as algebraic types

The dna type looks for all the world just like the list type built into

OCaml, except for the fact that its elements are always of type base.

Indeed, our choice of names of the value constructors (Nil and Cons)

emphasizes the connection.

In fact, many of the built-in composite types can be implemented as

algebraic data types in this way. Boolean values are essentially a kind of

enumerated type, hence algebraic.6

6 We name the type bool_ so as not to
shadow the built-in type bool. Similarly
for the underscore versions list_ and
option_ below.

Value constructors in defined alge-
braic types are restricted to starting with
capital letters in OCaml. The built-in
type differs only in using lower case
constructors true and false.

# type bool_ = True | False ;;

type bool_ = True | False

https://url.cs51.io/9f1
https://blog.janestreet.com/ocaml-annoyance-23-type-declarations-are-implicitly-recursive/
https://blog.janestreet.com/ocaml-annoyance-23-type-declarations-are-implicitly-recursive/


140 P RO G R A M M I N G W E L L

We’ve already seen an algebraic type implementation of base lists.

Similar implementations could be generated for lists of other types.

# type int_list = INil | ICons of int * int_list ;;

type int_list = INil | ICons of int * int_list

# type float_list = FNil | FCons of float * float_list ;;

type float_list = FNil | FCons of float * float_list

Following the edict of irredundancy, we’d prefer not to write this same

code repeatedly, differing only in the type of the list elements. Fortu-

nately, variant type declarations can be polymorphic.

# type 'a list_ = Nil | Cons of 'a * 'a list_ ;;

type 'a list_ = Nil | Cons of 'a * 'a list_

In polymorphic variant data type declarations like this, a new type

constructor (list_ in this case) is defined that takes a type argument

(here, the type variable ’a). The type constructor is always postfix, like

the built-in constructors list and option that you’ve already seen.7 7 If we need a type constructor that takes
more than one type as an argument, we
use the cross-product type notation, as
in the (’key, ’value) dictionary

type defined in Section 11.3.

Option types can be viewed as a polymorphic variant type with two

constructors for the None and Some cases.

# type 'a option_ = None | Some of 'a ;;

type 'a option_ = None | Some of 'a

The point of seeing these alternative implementations of the built-

in composite types (booleans, lists, options) is not that one would

actually use these implementations. That would flout the edict of

irredundancy. And the reimplementations of lists and options don’t

benefit from the concrete syntax niceties of the built-in versions; no

infix :: for instance, or bracketed lists. Rather than defining a dna type

in this way, in a real application we’d just use the base list type. If a

name for this type is desired the type name dna can be defined by

type dna = base list ;;

The point instead is to demonstrate the power of algebraic data type

definitions and show that even more of the language can be viewed

as syntactic sugar for pre-provided user code. Thus, the language can

again be seen as deploying a small core of basic notions to build up a

highly expressive medium.

11.2 Example: Boolean document search

The variant type definitions in this chapter aren’t the first examples of

algebraic type definitions you’ve seen. In Section 7.4, we noted that

record types were user-defined types, defined with the type keyword,

as well.
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Record types are a kind of dual to variant types. Instead of starting

with alternation – this or that or the other – record types start with

conjunction – this and that and the other.

As an example, consider a data type for documents. A document

will be made up of a list of words (each a string), as well as some meta-

data about the document, perhaps its title, author, and so forth. For

this example, we’ll stick just to titles, so an appropriate type definition

would be

# type document = { title : string;

# words : string list } ;;

type document = { title : string; words : string list; }

A corpus of such documents can be implemented as a document

list. We build a small corpus of first lines of novels.8

8 As an aid in building a document
corpus, it will be useful to have a func-
tion tokenize : string -> string

list that splits up a string into its
component words (here defined as any
characters separated by whitespace).
We use some functions from the Str
library module, made available using
the #load directive to the R E P L, to split
up the string.

# #load "str.cma" ;;

# let tokenize : string -> string list =

# Str.split (Str.regexp "[ \t\n]+") ;;

val tokenize : string -> string list = <fun>

Did you notice the use of partial appli-
cation?

We’ve also suppressed the output for
this R E P L input to save space, as indi-
cated by the (* output suppressed

*) comment here and elsewhere.

# let first_lines : document list = (* output suppressed *)

# [ {title = "Moby Dick";

# words = tokenize

# "Call me Ishmael ."};

# {title = "Pride and Prejudice";

# words = tokenize

# "It is a truth universally acknowledged , \

# that a single man in possession of a good \

# fortune must be in want of a wife ."};

# {title = "1984";

# words = tokenize

# "It was a bright cold day in April , and \

# the clocks were striking thirteen ."};

# {title = "Great Gatsby";

# words = tokenize

# "In my younger and more vulnerable years \

# my father gave me some advice that I've \

# been turning over in my mind ever since ."}

# ] ;;

We might want to query for documents with particular patterns of

words. A boolean query allows for different query types: requesting

documents in which a particular word occurs; or (inductively) docu-

ments that satisfy both one query and another query; or documents

that satisfy either one query or another query. We instantiate the idea

in a variant type definition.

# type query =

# | Word of string

# | And of query * query

# | Or of query * query ;;

type query = Word of string | And of query * query | Or of query *
query

To evaluate such queries against a document, we’ll write a function

eval : document -> query -> bool, which should return true just

in case the document satisfies the query.
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let rec eval ({title; words} : document)

(q : query)

: bool = ...

Note the use of pattern-matching right in the header line, as well as the

use of field punning to simplify the pattern.

The evaluation of the query depends on its structure, so we’ll want

to match on that.

let rec eval ({title; words} : document)

(q : query)

: bool =

match q with

| Word word -> ...

| And (q1, q2) -> ...

| Or (q1, q2) -> ...

For the first variant, we merely check that the word occurs in the list of

words:

let rec eval ({title; words} : document)

(q : query)

: bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> ...

| Or (q1, q2) -> ...

(The function List.mem : ’a -> ’a list -> bool is useful here,

a good reason to familiarize yourself with the rest of the List library

module.)

What about the other variants? In these cases, we’ll want to recur-

sively evaluate the subparts of the query (q1 and q2) against the same

document. We’ve already decomposed the document into its compo-

nents title and words. We could reconstruct the document as needed

for the recursive evaluations:

let rec eval ({title; words} : document)

(q : query)

: bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> (eval {title; words} q1)

&& (eval {title; words} q2)

| Or (q1, q2) -> (eval {title; words} q1)

|| (eval {title; words} q2) ;;

but this seems awfully verbose. We refer to {title; words} four

different times. It would be helpful if we could both pattern match

against the document argument and name it as a whole as well. OCaml

provides a special pattern constructed as

〈pattern〉 as 〈var〉
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for just such cases. Such a pattern both pattern matches against the

〈pattern〉 as well as binding the 〈var〉 to the expression being matched

against as a whole. We use this technique both to provide a name for

the document as a whole (doc) and to extract its components. (Once

we have a variable doc for the document as a whole, we no longer need

to refer to title, so we use an anonymous variable instead.)

let rec eval ({words; _} as doc : document)

(q : query)

: bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> (eval doc q1) && (eval doc q2)

| Or (q1, q2) -> (eval doc q1) || (eval doc q2) ;;

That’s better. But we’re still calling eval doc four times on different

subqueries. We can abstract that function and reuse it; call it eval’:

let eval ({words; _} as doc : document)

(q : query)

: bool =

let rec eval' (q : query) : bool =

match q with

| Word word -> List.mem word words

| And (q1, q2) -> (eval' q1) && (eval' q2)

| Or (q1, q2) -> (eval' q1) || (eval' q2) in

... ;;

There’s an important idea hidden here, which follows from the scoping

rules of OCaml. Because the eval’ definition falls within the scope

of the definition of eval and the associated variables words and q,

those variables are available in the body of the eval’ definition. And in

fact, we make use of that fact by referring to words in the first pattern-

match. (The outer q is actually shadowed by the inner q, so it isn’t

referred to in the body of the eval’ definition. The occurrence of q in

the match q is a reference to the q argument of eval’.)

Now that we have eval’ defined it suffices to call it on the main

query and let the recursion do the rest. At this point, however, the

alternative variable name doc is no longer referenced, and can be

eliminated.

# let eval ({words; _} : document)

# (q : query)

# : bool =

# let rec eval' (q : query) : bool =

# match q with

# | Word word -> List.mem word words

# | And (q1, q2) -> (eval' q1) && (eval' q2)

# | Or (q1, q2) -> (eval' q1) || (eval' q2) in

# eval' q ;;

val eval : document -> query -> bool = <fun>
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Let’s try it on some sample queries. We’ll use the first line of The Great

Gatsby.

# let gg = nth first_lines 3 ;; (* output suppressed *)

# eval gg (Word "the") ;;

- : bool = false

# eval gg (Word "and") ;;

- : bool = true

# eval gg (And ((Word "the"), (Word "and"))) ;;

- : bool = false

# eval gg (Or ((Word "the"), (Word "and"))) ;;

- : bool = true

Now, we return to the original goal, to search among a whole corpus

of documents for those satisfying a query. The function eval_all :

document list -> query -> string list will return the titles of all

documents in the document list that satisfy the query.

The eval_all function should be straightforward to write, as it

involves filtering the document list for those satisfying the query, then

extracting their titles. The filter and map list-processing functions are

ideal for this.

# let eval_all (docs : document list)

# (q : query)

# : string list =

# List.map (fun doc -> doc.title)

# (List.filter (fun doc -> (eval doc q))

# docs) ;;

val eval_all : document list -> query -> string list = <fun>

We start with the docs, filter them with a function that applies eval to

select only those that satisfy the query, and then map a function over

them to extract their titles.

From a readability perspective, it is unfortunate that the description

of what the code is doing – start with the corpus, then filter, then map

– is “inside out” with respect to how the code reads. This follows from

the fact that in OCaml, functions come before their arguments in

applications, whereas in this case, we like to think about a data object

followed by a set of functions that are applied to it. A language with

backwards application would be able to structure the code in the more

readable manner.

Happily, the Stdlib module provides a B AC K WA R D S A P P L I C AT I O N

infix operator |> for just such occasions.

# succ 3 ;;

- : int = 4

# 3 |> succ ;; (* start with 3; increment *)

- : int = 4

# 3 |> succ (* start with 3; increment; ... *)
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# |> (( * ) 2) ;; (* ... and double *)

- : int = 8

Exercise 87

What do you expect the type of |> is?

Exercise 88

How could you define the backwards application operator |> as user code?

Taking advantage of the backwards application operator can make

the code considerably more readable. Instead of

List.filter (fun doc -> (eval doc q))

docs

we can start with docs and then filter it:

docs

|> List.filter (fun doc -> (eval doc q))

Then we can map the title extraction function over the result:

docs

|> List.filter (fun doc -> (eval doc q))

|> List.map (fun doc -> doc.title)

The final definition of eval_all is then

# let eval_all (docs : document list)

# (q : query)

# : string list =

# docs

# |> List.filter (fun doc -> (eval doc q))

# |> List.map (fun doc -> doc.title) ;;

val eval_all : document list -> query -> string list = <fun>

Some examples:

# eval_all first_lines (Word "and") ;;

- : string list = ["1984"; "Great Gatsby"]

# eval_all first_lines (Word "me") ;;

- : string list = ["Moby Dick"; "Great Gatsby"]

# eval_all first_lines (And (Word "and", Word "me")) ;;

- : string list = ["Great Gatsby"]

# eval_all first_lines (Or (Word "and", Word "me")) ;;

- : string list = ["Moby Dick"; "1984"; "Great Gatsby"]

The change in readability from using backwards application has

a moral. Concrete syntax can make a big difference in the human

usability of a programming language. The addition of a backwards

application adds not a jot to the expressive power of the language, but

when used appropriately it can dramatically reduce the cognitive load

on a human reader.9

9 Not coincidentally, natural languages
often allow alternative orders for
phrases for just this same goal of
moving “heavier” phrases to the right.
For example, the normal order for verb
phrases with the verb “give” places
the object before the recipient, as in
“Arden gave the book to Bellamy”. But
when the object is very “heavy” (long
and complicated), it sounds better to
place the object later, as in “Arden gave
to Bellamy every last book in the P. G.
Wodehouse collection.” Backwards
application gives us this same flexibility,
to move “heavy” expressions (like
complicated functions) later in the
code.
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11.3 Example: Dictionaries

A dictionary is a data structure that manifests a relationship between

a set of keys and their associated values. In an English dictionary, for

instance, the keys are the words of the language and the associated

values are their definitions. But dictionaries can be used in a huge

variety of applications.

A dictionary data type will depend on the types of the keys and the

values. We’ll want to define the type, then, as polymorphic – a (’key,

’value) dictionary.10 One approach (an exceptionally poor one 10 Names of type variables are arbitrary,
so we might as well use that ability to
give good mnemonic names to them
– ’key and ’value instead of’a and
’b – following the edict of intention in
making our intentions clear to readers
of the code.

as it will turn out, but bear with us) is to store the keys and values as

separate equal-length lists in two record fields.

# type ('key, 'value) dictionary = { keys : 'key list;

# values : 'value list } ;;

type ('key, 'value) dictionary = { keys : 'key list; values :

'value list; }

Looking up an entry in the dictionary by key, returning the correspond-

ing value, can be performed in a few ways. Here’s one:

# let rec lookup ({keys; values} : ('key, 'value) dictionary)

# (request : 'key)

# : 'value option =

# match keys, values with

# | [], [] -> None

# | key :: keys, value :: values ->

# if key = request then Some value

# else lookup {keys; values} request ;;

Lines 4-8, characters 0-34:

4 | match keys, values with

5 | | [], [] -> None

6 | | key :: keys, value :: values ->

7 | if key = request then Some value

8 | else lookup {keys; values} request...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

([], _::_)

val lookup : ('key, 'value) dictionary -> 'key -> 'value option =

<fun>

The problem with this dictionary representation is obvious. The

entire notion of a dictionary assumes that for each key there is a single

value. But this approach to implementing dictionaries provides no

such guarantee. An illegal dictionary – like {keys = [1; 2; 3];

values = ["first"; "second"]}, in which one of the keys has no

value – is representable. In such cases, the lookup function will raise

an exception.

# let bad_dict = {keys = [1; 2; 3];

# values = ["first"; "second"]} ;;
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val bad_dict : (int, string) dictionary =

{keys = [1; 2; 3]; values = ["first"; "second"]}

# lookup bad_dict 4 ;;

Exception: Match_failure ("//toplevel//", 4, 0).

# lookup bad_dict 3 ;;

Exception: Match_failure ("//toplevel//", 4, 0).

Adding additional match cases merely postpones the problem.

# let rec lookup ({keys; values} : ('key, 'value) dictionary)

# (request : 'key)

# : 'value option =

# match keys, values with

# | [], _

# | _, [] -> None

# | key :: keys, value :: values ->

# if key = request then Some value

# else lookup {keys; values} request ;;

val lookup : ('key, 'value) dictionary -> 'key -> 'value option =

<fun>

# lookup bad_dict 4 ;;

- : string option = None

# lookup bad_dict 3 ;;

- : string option = None

The function still allows data structures that do not express legal dic-

tionaries to be used. Indeed, we can no longer even distinguish be-

tween simple cases of lookup of a missing key and problematic cases of

lookup in an ill-formed dictionary structure.

A better dictionary design would make such illegal structures im-

possible to even represent. This idea is important enough for its own

edict.

Edict of prevention:

Make the illegal inexpressible.

We’ve seen this idea before in the small. It’s the basis of type checking

itself, which allows the use of certain values only with functions that

are appropriate to apply to them – integers with integer functions,

booleans with boolean functions – preventing all other uses. In a

strongly typed language like OCaml, illegal operations, like applying

an integer function to a boolean value, simply can’t be expressed as

valid well-typed code.

The edict of prevention11 challenges us to find an alternative struc-

11 This idea has a long history in func-
tional programming with algebraic
data types, but seen in its crispest form
is likely due to Yaron Minsky, who
phrases it as “Make illegal states unrep-
resentable.” Ben Feldman uses “Make
impossible states impossible.” But the
idea dates back to at least the begin-
nings of statically typed programming
languages. By referring to inexpressibil-
ity, rather than unrepresentability, we
generalize the notion to include cases
we consider in Chapter 12.

ture in which this kind of mismatch between the keys and values can’t

occur. Such a structure may already have occurred to you. Instead

of thinking of a dictionary as a pair of lists of keys and values, we can

think of it as a list of pairs of keys and values.12

12 An idiosyncrasy of OCaml requires
that the dictionary type be defined in
stages in this way, rather than all at once
as

# type ('key, 'value) dictionary =

# { key : 'key; value : 'value } list ;;

Line 2, characters 31-35:

2 | { key : 'key; value : 'value } list ;;

^^^^

Error: Syntax error

The use of and to combine multiple type
definitions into a single simultaneous
definition isn’t required here, but is
when the type definitions are mutually
recursive.

# type ('key, 'value) dict_entry =

# { key : 'key; value : 'value }

https://url.cs51.io/80h
https://url.cs51.io/80h
https://url.cs51.io/5bk
https://url.cs51.io/5bk
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# and ('key, 'value) dictionary =

# ('key, 'value) dict_entry list ;;

type ('key, 'value) dict_entry = { key : 'key; value : 'value; }

and ('key, 'value) dictionary = ('key, 'value) dict_entry list

The type system will now guarantee that every dictionary is a list

whose elements each have a key and a value. A dictionary with un-

equal numbers of keys and values is not even expressible. The lookup

function can still recur through the pairs, looking for the match:

# let rec lookup (dict : ('key, 'value) dictionary)

# (request : 'key)

# : 'value option =

# match dict with

# | [] -> None

# | {key; value} :: tl ->

# if key = request then Some value

# else lookup tl request ;;

val lookup : ('key, 'value) dictionary -> 'key -> 'value option =

<fun>

# let good_dict = [{key = 1; value = "one"};

# {key = 2; value = "two"};

# {key = 3; value = "three"}] ;;

val good_dict : (int, string) dict_entry list =

[{key = 1; value = "one"}; {key = 2; value = "two"};

{key = 3; value = "three"}]

# lookup good_dict 3 ;;

- : string option = Some "three"

# lookup good_dict 4 ;;

- : string option = None

In this particular case, changing the structure of dictionaries to make

the illegal inexpressible also very slightly simplifies the lookup code

as well. But even if pursuing the edict of prevention makes code a bit

more complex, it can be well worth the trouble in preventing bugs

from arising in the first place.

Not all illegal states can be prevented by making them inexpressible

through the structuring of the types. For instance, this updated dictio-

nary structure still allows dictionaries that are ill-formed in allowing

the same key to occur more than once. We’ll return to this issue when

we further apply the edict of prevention in Chapter 12.
Problem 89

The game of mini-poker is played with just six playing cards: You use only the face cards
(king, queen, jack) of the two suits spades and diamonds. There is a ranking on the cards:
Any spade is better than any diamond, and within a suit, the cards from best to worst are
king, queen, jack.

In this two-player game, each player picks a single card at random, and the player
with the better card wins.

For the record, it’s a terrible game.
Provide appropriate type definitions to represent the cards used in the game. It

should contain structured information about the suit and value of the cards.
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Figure 11.2: The cards of mini-poker,
depicted in order from best to worst.

Problem 90

What is an appropriate type for a function better that determines which of two cards is
“better” in the context of mini-poker, returning true if and only if the first card is better
than the second?

Problem 91

Provide a definition of the function better.

11.4 Example: Arithmetic expressions

One of the elegancies admitted by the generality of algebraic data types

is their use in capturing languages.

By way of example, a language of simple integer arithmetic expres-

sions can be defined by the following grammar, written in Backus-Naur

form as described in Section 3.1.

〈expr〉 ::= 〈integer〉
| 〈expr1〉 + 〈expr2〉
| 〈expr1〉 - 〈expr2〉
| 〈expr1〉 * 〈expr2〉
| 〈expr1〉 / 〈expr2〉
| ~- 〈expr〉

(We’ll take this to define the abstract syntax of the language. Concrete

syntax notions like precedence and associativity of the operators and

parentheses for disambiguating structure will be left implicit in the

usual way.)

We can define a type for abstract syntax trees for these arithmetic

expressions as an algebraic data type. The definition follows the gram-

mar almost trivially, one variant for each line of the grammar.

# type expr =

# | Int of int

# | Plus of expr * expr

# | Minus of expr * expr

# | Times of expr * expr

# | Div of expr * expr

# | Neg of expr ;;

type expr =

Int of int

| Plus of expr * expr

| Minus of expr * expr
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| Times of expr * expr

| Div of expr * expr

| Neg of expr

The arithmetic expression given in OCaml concrete syntax as (3 + 4)

* ~- 5 corresponds to the following value of type expr:

# Times (Plus (Int 3, Int 4), Neg (Int 5)) ;;

- : expr = Times (Plus (Int 3, Int 4), Neg (Int 5))

A natural thing to do with expressions is to evaluate them. The

recursive definition of the expr type lends itself to recursive evaluation

of values of that type, as in this definition of a function eval : expr

-> int.

# let rec eval (exp : expr) : int =

# match exp with

# | Int v -> v

# | Plus (x, y) -> (eval x) + (eval y)

# | Minus (x, y) -> (eval x) - (eval y)

# | Times (x, y) -> (eval x) * (eval y)

# | Neg x -> ~- (eval x) ;;

Lines 2-7, characters 0-29:

2 | match exp with

3 | | Int v -> v

4 | | Plus (x, y) -> (eval x) + (eval y)

5 | | Minus (x, y) -> (eval x) - (eval y)

6 | | Times (x, y) -> (eval x) * (eval y)

7 | | Neg x -> ~- (eval x)...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Div (_, _)

val eval : expr -> int = <fun>

Helpfully, the interpreter warns us of a missing case in the match.

One of the variants in the algebraic type definition, division, is not

covered by the match. A key feature of defining variant types is that

the interpreter can perform these kinds of checks on your behalf. The

oversight is easily corrected.

# let rec eval (exp : expr) : int =

# match exp with

# | Int v -> v

# | Plus (x, y) -> eval x + eval y

# | Minus (x, y) -> eval x - eval y

# | Times (x, y) -> eval x * eval y

# | Div (x, y) -> eval x / eval y

# | Neg x -> ~- (eval x) ;;

val eval : expr -> int = <fun>

We can test the evaluator with examples like the one above.

# eval (Times (Plus (Int 3, Int 4), Neg (Int 5))) ;;

- : int = -35
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# eval (Int 42) ;;

- : int = 42

# eval (Div (Int 5, Int 0)) ;;

Exception: Division_by_zero.

Of course, we already have a way of doing these arithmetic calcula-

tions in OCaml. We can just type the expressions into OCaml directly

using OCaml’s concrete syntax.

# (3 + 4) * ~- 5 ;;

- : int = -35

# 42 ;;

- : int = 42

# 5 / 0 ;;

Exception: Division_by_zero.

So what use is this kind of thing?

This evaluator is not trivial. By making the evaluation of this lan-

guage explicit, we have the power to change the language to diverge

from the language it is implemented in. For instance, OCaml’s inte-

ger division truncates the result towards zero. But maybe we’d rather

round to the nearest integer? We can implement the evaluator to do

that instead.

Exercise 92

Define a version of eval that implements a different semantics for the expression
language, for instance, by rounding rather than truncating integer divisions.

Exercise 93

Define a function e2s : expr -> string that returns a string that represents the fully
parenthesized concrete syntax for the argument expression. For instance,

# e2s (Times (Plus (Int 3, Int 4), Neg (Int 5))) ;;
- : string = "((3 + 4) * (~- 5))"
# e2s (Int 42) ;;
- : string = "42"
# e2s (Div (Int 5, Int 0)) ;;
- : string = "(5 / 0)"

The opposite process, recovering abstract syntax from concrete syntax, is called parsing.
More on this in the final project (Chapter A).

11.5 Problem section: Binary trees

Trees are a class of data structures that store values of a certain type

in a hierarchically structured manner. They constitute a fundamental

data structure, second only perhaps to lists in their repurposing flexi-

bility. Indeed, the arithmetic expressions of Section 11.4 are a kind of

tree structure.

(a)

(b)

Figure 11.3: Two trees: (a) an integer
tree, and (b) a string tree.

In this section, we concentrate on a certain kind of polymorphic

B I N A RY T R E E, a kind of tree whose nodes have distinct left and right

subtrees, possibly empty. Some examples can be seen in Figure 11.3.

A binary tree can be an empty tree (depicted with a bullet symbol (•)
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in the diagrams), or a node that stores a single value (of type ’a, say)

along with two subtrees, referred to as the left and right subtrees.

A polymorphic binary tree type can thus be defined by the following

algebraic data type definition:

# type 'a bintree =

# | Empty

# | Node of 'a * 'a bintree * 'a bintree ;;

type 'a bintree = Empty | Node of 'a * 'a bintree * 'a bintree

For instance, the tree of Figure 11.3(a) can be encoded as an instance

of an int bintree as

# let int_bintree =

# Node (16,

# Node (93, Empty, Empty),

# Node (3,

# Node (42, Empty, Empty),

# Empty)) ;;

val int_bintree : int bintree =

Node (16, Node (93, Empty, Empty),

Node (3, Node (42, Empty, Empty), Empty))

Exercise 94

Construct a value str_bintree of type string bintree that encodes the tree of
Figure 11.3(b).

Now let’s write a function to sum up all of the elements stored in an

integer tree. The natural approach to carrying out the function is to

follow the recursive structure of its tree argument.

# let rec sum_bintree (t : int bintree) : int =

# match t with

# | Empty -> 0

# | Node (n, left, right) -> n + sum_bintree left

# + sum_bintree right ;;

val sum_bintree : int bintree -> int = <fun>

Exercise 95

Define a function preorder of type ’a bintree -> ’a list that returns a list of all of
the values stored in a tree in P R E O R D E R, that is, placing values stored at a node before
the values in the left subtree, in turn before the values in the right subtree. For instance,

# preorder int_bintree ;;
- : int list = [16; 93; 3; 42]

You’ll notice a certain commonality between the sum_bintree and

preorder functions. Both operate by “walking” the tree, traversing it

from its root down, recursively operating on the subtrees, and then

combining the value stored at a node and the recursively computed

values for the subtrees into the value for the tree as a whole. What

differs among them is what value to return for empty trees and what

function to apply to compute the overall value from the subparts. We
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can abstract this tree walk functionality with a function that takes three

arguments: (i) the value to use for empty trees, (ii) the function to ap-

ply at nodes to the value stored at the node and the values associated

with the two subtrees, along with (iii) a tree to walk; it carries out the

recursive process on that tree. Since this is a kind of “fold” operation

over binary trees, we’ll name the function foldbt.

Exercise 96

What is the appropriate type for the function foldbt just described?

Exercise 97

Define the function foldbt just described.

Exercise 98

Redefine the function sum_bintree using foldbt.

Exercise 99

Redefine the function preorder using foldbt.

Exercise 100

Define a function find : ’a bintree -> ’a -> bool in terms of foldbt, such that
find t v is true just in case the value v is found somewhere in the tree t.

# find int_bintree 3 ;;
- : bool = true
# find int_bintree 7 ;;
- : bool = false

11.6 Supplementary material

• Lab 5: Variants, algebraic types, and pattern matching

• Problem set A.3: Bignums and RSA encryption

• Lab 6: Recursive algebraic types

• Problem set A.4: Symbolic differentiation

http://url.cs51.io/lab5
http://url.cs51.io/lab6
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Abstract data types and modular programming

The algebraic data types introduced in the last chapter are an expres-

sive tool for defining sophisticated data structures. But with great

power comes great responsibility.

As an example, consider one of the most fundamental of all data

structures, the QU E U E. A queue is a collection of elements that admits

of operations like creating an empty queue, adding elements one by

one (called E N QU E U E I N G), and removing them one-by-one (called

D E QU E U I N G), where crucially the first element enqueued is the first to

be dequeued. The common terminology for this regimen is F I R S T- I N -

F I R S T- O U T or FIFO.

We can provide a concrete implementation of the queue data type

using the list data type, along with functions for enqueueing and de-

queueing. An empty queue will be implemented as the empty list, with

non-empty queues storing elements in order of their enqueueing, so

newly enqueued elements are added at the end of the list.

# (* empty_queue -- An empty queue *)

# let empty_queue = [] ;;

val empty_queue : 'a list = []

# (* enqueue elt q -- Returns a queue resulting from

# enqueuing a new elt onto q. *)

# let enqueue (elt : 'a) (q : 'a list) : 'a list =

# q @ [elt] ;;

val enqueue : 'a -> 'a list -> 'a list = <fun>

# (* dequeue q -- Returns a pair of the next element

# in q and the queue resulting from dequeueing

# that element. *)

# let dequeue (q : 'a list) : 'a * 'a list =

# match q with

# | [] -> raise (Invalid_argument

# "dequeue: empty queue")

# | hd :: tl -> hd, tl ;;

val dequeue : 'a list -> 'a * 'a list = <fun>
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We can use these functions to enqueue and then dequeue a series

of integers. Notice how the first element enqueued (the 1) is the first

element dequeued.

# let q = empty_queue

# |> enqueue 1 (* enqueue 1, 2, and 4 *)

# |> enqueue 2

# |> enqueue 4 ;;

val q : int list = [1; 2; 4]

# let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 1

val q : int list = [2; 4]

# let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : int list = [4]

# let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 4

val q : int list = []

Data structures built in this way can be used as intended, as they

were above. (You’ll note the FIFO behavior.) But if used in unexpected

ways, things can go wrong quickly. Here, for instance, we enqueue

some integers, then reverse the queue before dequeuing the elements

in a last-in-first-out (LIFO) order. That’s not supposed to happen.

# let q = empty_queue

# |> enqueue 1 (* enqueue 1, 2, and 4 *)

# |> enqueue 2

# |> enqueue 4

# |> List.rev ;; (* yikes! *)

val q : int list = [4; 2; 1]

# let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 4

val q : int list = [2; 1]

# let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : int list = [1]

# let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 1

val q : int list = []

Of course, reversing the elements is not an operation that ought to be

possible on a queue. Queues, like other data structures, are defined

by what operations can be performed on them, namely, enqueue

and dequeue. These operations obey an I N VA R I A N T, that the order

in which elements appear when dequeued is the same as the order

in which they were enqueued. Performing inappropriate operations

on data structures is the path to violating such invariants, leading to

software errors. Our implementation of queues as lists allows all sorts

of inappropriate operations, like reversal of the enqueued elements,

or taking the n-th element, or mapping over the elements, or any
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other operation appropriate for lists but not queues. What we need is

the ability to enforce restraint on the operations applicable to a data

structure so as to preserve the invariants.

(a) (b)
Figure 12.1: Two approaches to pre-
serving the invariant that the lights
are off when the room is vacant: (a) an
exhortation documenting the invariant;
(b) a key card switch that disables the
lights when the key is removed.

An analogy: The lights and heating in hotel rooms are intended to

be on when the room is occupied, but they should be lowered when

the room is empty. We can think of this as an invariant: If the room is

unoccupied, the lights and heating are off. One approach to increasing

compliance with this invariant is through documentation, placing a

sign at the door “Please turn off the lights when you leave.” But many

hotels now use a key card switch, a receptacle near the door in which

you insert the key card for the hotel room when you enter, in order

to enable the lights and heating. (See Figure 12.1.) Since you have

to bring your key card with you when you leave the room, thereby

disabling the lights and heating, there is literally no way to violate

the invariant. The state of California estimates that widespread use

of hotel key card switches saves tens of millions of dollars per year

(California Utilities Statewide Codes and Standards Team, 2011, page

6). Preventing violation of an invariant beats documenting it.

We’ve seen this idea of avoiding illegal states before in the edict of

prevention. But in the queue example, type checking doesn’t stop us

from representing a bad state, and simple alternative representations

for queues that prevent inappropriate operations don’t come to mind.

We need a way to implement new data types and operations such that

the values of those types can only be used with the intended opera-

tions. We can’t make the bad queues unrepresentable, but perhaps we

can make them inexpressible, which should be sufficient for gaining

the benefit of the edict of prevention.

The key idea is to provide an A B S T R AC T D ATA T Y P E (ADT), a data

type definition that provides not only a concrete I M P L E M E N TAT I O N

of the data type values and operations on them, but also enforces that

only those operations can be applied, making it impossible to express

the application of other operations. This influential idea, the basis for

modular programming, was pioneered by Barbara Liskov (Figure 12.2)

in her CLU programming language.

The allowed operations are specified in a S I G N AT U R E; no other

aspects of the implementation of the data type can be seen other

than those specified by the signature. Users of the abstract data type

can avail themselves of the functionality specified in the signature,

while remaining oblivious of the particularities of the implementa-

tion. The signature specifies an interface to using the data structure,

which serves as an A B S T R AC T I O N B A R R I E R; only the aspects of the

implementation specified in the signature may be made use of.

Figure 12.2: The idea of abstract data
types – grouping some functionality
over types and hiding the implementa-
tion of that functionality behind a strict
interface – is due to computer scientist
Barbara Liskov, and is first seen in her
influential CLU programming language
from 1974. Her work on data abstraction
and object-oriented programming led
to her being awarded the 2008 Turing
Award, computer science’s highest
honor.

The idea of hiding aspects of the implementation from those who
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shouldn’t need access to those aspects is fundamental enough for an

edict of its own, the edict of compartmentalization:

Edict of compartmentalization:

Limit information to those with a need to know.

In the case of the queue abstract data type, all that users of the

implementation have a need to know is the types for the operations

involving queues, viz., the creation of queues and the enqueueing and

dequeueing of elements; that’s all the signature should specify. The im-

plementation may be in terms of lists (or any of a wide variety of other

methods) but the users of the abstract data type should not be able to

avail themselves of the further aspects of the implementation. By pre-

venting them from using aspects of the implementation, the invariants

implicit in the signature can be maintained. A further advantage of

hiding the details of the implementation of a data structure behind the

abstraction barrier (in addition to making illegal operations inexpress-

ible) is that it becomes possible to modify the implementation without

affecting its use. This aspect of abstract data types is tremendously

powerful.

We’ve seen other applications of the edict of compartmentaliza-

tion before, for instance, in the use of helper functions local to (and

therefore only accessible to) a function being defined. The alternative,

defining the helper function globally could lead to unintended use of

and reliance on that function, which had been intended only for its

more focused purpose.

12.1 Modules

In OCaml, abstract data types are implemented using M O D U L E S. Mod-

ules provide a way of packaging together several components – types

and values involving those types, including functions manipulating

values of those types – subject to constraints of a signature. A module

is specified by placing the definitions of its components between the

keywords struct and end:

struct

〈definition1〉
〈definition2〉
〈definition3〉
...

end

Each 〈definition〉 is a definition of a type or value (including functions,

and even exceptions).
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Just as values can be named using the let construct, modules can

be named using the module construct:

module 〈modulename〉 =

〈moduledefinition〉

12.2 A queue module

As a first example of the use of modules to provide for abstract data

types, we return to the queue data type that we started with, which

provides a type for, say, integer queues, int_queue, together with func-

tions enqueue : int -> int_queue -> int_queue and dequeue :

int_queue -> int * int_queue. (Even better would be to general-

ize queues as polymorphically allowing for elements of any base type.

We’ll do so in Section 12.4.)

A module IntQueue1 implementing the queue abstract data type is 1 Module names are required to begin
with an uppercase letter. You’ve seen
examples before in the Stdlib and List

module names.

# (* IntQueue -- An implementation of integer queues as

# int lists, where the elements are kept with older

# elements closer to the head of the list. *)

# module IntQueue =

# struct

# type int_queue = int list

# let empty_queue : int_queue = []

# let enqueue (elt : int) (q : int_queue)

# : int_queue =

# q @ [elt]

# let dequeue (q : int_queue) : int * int_queue =

# match q with

# | [] -> raise (Invalid_argument

# "dequeue: empty queue")

# | hd :: tl -> hd, tl

# end ;;

module IntQueue :

sig

type int_queue = int list

val empty_queue : int_queue

val enqueue : int -> int_queue -> int_queue

val dequeue : int_queue -> int * int_queue

end

Exercise 101

Define a different implementation of integer queues as int lists where the elements
are kept with older elements farther from the head of the list. What are the advantages
and disadvantages of this implementation?

Components of a module are referenced using the already fa-

miliar notation of prefixing the module name and a dot before the

component. We’ve seen this already in examples like List.nth or

Str.split. Similarly, users of the IntQueue module can refer to

IntQueue.empty_queue or IntQueue.enqueue. Let’s use this mod-

ule to perform various queue operations:
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# let q = IntQueue.empty_queue

# |> IntQueue.enqueue 1 (* enqueue 1, 2, and 4 *)

# |> IntQueue.enqueue 2

# |> IntQueue.enqueue 4 ;;

val q : IntQueue.int_queue = [1; 2; 4]

All of this module prefixing gets cumbersome quickly. We can instead

just “open” the module to gain access to all of its components.2

2 A useful technique to simplify access
to a module without opening it (and
thereby shadowing any existing names)
is to provide a short alternative name for
the module.

# module IQ = IntQueue ;;

module IQ = IntQueue

# let q = IQ.empty_queue

# |> IQ.enqueue 1

# |> IQ.enqueue 2

# |> IQ.enqueue 4 ;;

val q : IQ.int_queue = [1; 2; 4]

Also of great utility is to open a module
just within a particular local scope.
OCaml provides for this with its L O C A L

O P E N construct:

# let q =

# let open IntQueue in

# empty_queue

# |> enqueue 1

# |> enqueue 2

# |> enqueue 4 ;;

val q : IntQueue.int_queue = [1; 2; 4]

# open IntQueue ;;

# let q = empty_queue

# |> enqueue 1 (* enqueue 1, 2, and 4 *)

# |> enqueue 2

# |> enqueue 4 ;;

val q : IntQueue.int_queue = [1; 2; 4]

# let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 1

val q : IntQueue.int_queue = [2; 4]

# let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : IntQueue.int_queue = [4]

# let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 4

val q : IntQueue.int_queue = []

Unfortunately, nothing restricts us from using arbitrary aspects of

the module’s implementation, for instance, reversing the elements of

the queue.

# let q = empty_queue

# |> enqueue 1 (* enqueue 1, 2, and 4 *)

# |> enqueue 2

# |> enqueue 4

# |> List.rev (* this shouldn't be allowed *) ;;

val q : int list = [4; 2; 1]

# let next, q = dequeue q ;; (* dequeue 1 *)

val next : int = 4

val q : IntQueue.int_queue = [2; 1]

# let next, q = dequeue q ;; (* dequeue 2 *)

val next : int = 2

val q : IntQueue.int_queue = [1]

# let next, q = dequeue q ;; (* dequeue 4 *)

val next : int = 1

val q : IntQueue.int_queue = []

What we need is a signature that restricts the use of the compo-

nents of a module, just as a type restricts use of a value. This signa-

ture/module pairing carefully separates what the caller of code sees

– the module signature, which provides the abstract type structure

of the components, that is, how they are used – from what the imple-

menter or developer sees – the module implementation, including the

concrete types and values for the components, that is, how they are

implemented.
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The notation for specifying signatures is similar to that for modules,

except for the use of sig instead of struct; and naming signatures is

like naming modules with the addition of the evocative type keyword.

module type 〈moduletype〉 =

sig

〈definition1〉
〈definition2〉
〈definition3〉
...

end

We can define a signature INT_QUEUE3 for an integer queue module: 3 Signature names must also begin
with an uppercase letter. We follow
the stylistic convention of using all
uppercase for signature names.

# module type INT_QUEUE =

# sig

# type int_queue

# val empty_queue : int_queue

# val enqueue : int -> int_queue -> int_queue

# val dequeue : int_queue -> int * int_queue

# end ;;

module type INT_QUEUE =

sig

type int_queue

val empty_queue : int_queue

val enqueue : int -> int_queue -> int_queue

val dequeue : int_queue -> int * int_queue

end

The signature provides a full listing of all the aspects of a module that

are visible to users of the module. In particular, the module provides a

type called int_queue, but since the concrete implementation of that

type is not provided in the signature, it is unavailable to users of mod-

ules satisfying the signature. The signature states that the module must

provide a value empty_queue but what the concrete implementation of

that value is is again hidden. And so on.

Notice that where the module implementation defines named

values using the let construct, the signature uses the val construct,

which provides a name and a type, but no definition of what is named.

Extending the analogy between signatures and types further, we can

specify that a module satisfies and is constrained by a signature with a

notation almost identical to that constraining a value to a certain type.

module 〈modulename〉 : 〈signature〉 =

〈moduledefinition〉
We could define IntQueue as satisfying the INT_QUEUE signature by

adding this kind of “typing” as in the highlighted addition below:

# (* IntQueue -- An implementation of integer queues as

# int lists, where the elements are kept with older
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# elements closer to the head of the list. *)

# module IntQueue : INT_QUEUE =

# struct

# type int_queue = int list

# let empty_queue : int_queue = []

# let enqueue (elt : int) (q : int_queue)

# : int_queue =

# q @ [elt]

# let dequeue (q : int_queue) : int * int_queue =

# match q with

# | [] -> raise (Invalid_argument

# "dequeue: empty queue")

# | hd :: tl -> hd, tl

# end ;;

module IntQueue : INT_QUEUE

This module implements integer queues abstractly, allowing access

only as specified by the INT_QUEUE signature. For instance, after build-

ing a queue, we no longer have access to its concrete implementation.

# open IntQueue ;;

# let q = empty_queue

# |> enqueue 1 (* enqueue 1, 2, and 4 *)

# |> enqueue 2

# |> enqueue 4 ;;

val q : IntQueue.int_queue = <abstr>

The value of q is reported simply as <abstr> connoting an abstract

value hidden behind the abstraction barrier. We can’t “see inside”.

Similarly, application of an operation not sanctioned by the signature,

like list reversal, now fails.

# List.rev q ;;

Line 1, characters 9-10:

1 | List.rev q ;;

^

Error: This expression has type IntQueue.int_queue

but an expression was expected of type 'a list

OCaml reports a type error. The function List.rev requires an ar-

gument of type ’a list, but it is being applied to a queue, of type

IntQueue.int_queue. True, the type IntQueue.int_queue is im-

plemented as an ’a list, but that fact is hidden from users of the

module by the signature, hidden behind the abstraction barrier.

12.3 Signatures hide extra components

What happens when a module defines more components than its sig-

nature provides for? As a trivial example, we will define an O R D E R E D

T Y P E as a type that has an associated comparison function that pro-

vides an ordering on elements of the type. The definition of such a
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module provides for these two components: a type, call it t, and a

function that takes two elements x and y of type t and returns an inte-

ger indicating the ordering of the two, -1 if x is smaller, +1 if x is larger,

and 0 if the two are equal in the ordering.4 4 We use this arcane approach for
the compare function to mimic the
Stdlib.compare library function.
Frankly, a better approach would be to
take the result of the comparison to be
a value in an enumerated type defined
as type order = Less | Equal |

Greater.

This specification of what constitutes an ordered type can be cap-

tured in a signature ORDERED_TYPE:

# module type ORDERED_TYPE =

# sig

# type t

# val compare : t -> t -> int

# end ;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> int

end

A simple implementation of an ordered type is based on the string

type. Notice that we explicitly specify the signature for the module:

# module StringOrderedType : ORDERED_TYPE =

# struct

# type t = string

# let compare = Stdlib.compare

# end ;;

module StringOrderedType : ORDERED_TYPE

We take advantage of the built in compare function in the Stdlib

module,5 which is a general purpose comparison function that uses 5 Although the Stdlib prefix isn’t
needed – the components of the Stdlib
module are always available – we add it
here for clarity.

the same return value convention of -1, 0, +1 for elements that are less

than, equal, and greater than, respectively. A more interesting example

is an ordered type for points (pairs of floats) where the ordering on

points is based on which is closer to the origin. This time, however, we

don’t specify a signature for the module:

# module PointOrderedType =

# struct

# type t = float * float

# let norm (x, y) =

# x ** 2. +. y ** 2.

# let compare p1 p2 =

# Stdlib.compare (norm p1) (norm p2)

# end ;;

module PointOrderedType :

sig

type t = float * float

val norm : float * float -> float

val compare : float * float -> float * float -> int

end

We can make use of the module to see how this ordering works on

some examples.

# let open PointOrderedType in

# compare (1., 1.) (5., 0.),
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# compare (1., 1.) (-1., -1.),

# compare (1., 1.) (0., 1.1) ;;

- : int * int * int = (-1, 0, 1)

Note that the PointOrderedType module contains three compo-

nents: the type t, and functions norm and compare. It goes beyond the

ORDERED_TYPE signature in providing an extra function,

# PointOrderedType.norm ;;

- : float * float -> float = <fun>

# PointOrderedType.norm (1., 1.) ;;

- : float = 2.

since we did not explicitly restrict it to that signature. If instead we

restrict PointOrderedType to the ORDERED_TYPE signature, only the

components in that signature are made available.

# module PointOrderedType : ORDERED_TYPE =

# struct

# type t = float * float

# let norm (x, y) =

# x ** 2. +. y ** 2.

# let compare p1 p2 =

# Stdlib.compare (norm p1) (norm p2)

# end ;;

module PointOrderedType : ORDERED_TYPE

The norm function is no longer defined:

# PointOrderedType.norm ;;

Line 1, characters 0-21:

1 | PointOrderedType.norm ;;

^^^^^^^^^^^^^^^^^^^^^

Error: Unbound value PointOrderedType.norm

In general, only the aspects of a module consistent with its signature are

visible outside of its implementation to users of the module. All other

aspects are hidden behind the abstraction barrier. In particular, the

norm function is not available, and the identity of the type t is hidden

as well. We can tell, because we no longer can compare two points.

# PointOrderedType.compare (1., 1.) (5., 0.) ;;

Line 1, characters 25-33:

1 | PointOrderedType.compare (1., 1.) (5., 0.) ;;

^^^^^^^^

Error: This expression has type 'a * 'b

but an expression was expected of type PointOrderedType.t

The arguments we are providing are expected to be of type t but we

are providing arguments of type float * float. Although the im-

plementation equates these types, outside of the abstraction barrier

their equality isn’t known. (Yes, this is a problem. We’ll address it using

sharing constraints later in Section 12.5.2.)
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A fundamental role of modules and their signatures is to establish

these abstraction barriers so that information about how data types

happen to be implemented can’t leak out and be taken advantage of.

12.4 Modules with polymorphic components

Returning to the queue example, there’s no reason to restrict queues to

integer elements. We can make the components of the module poly-

morphic, using type variables as usual to capture the places where

arbitrary types can appear. We start with a polymorphic queue signa-

ture:

# module type QUEUE = sig

# type 'a queue

# val empty_queue : 'a queue

# val enqueue : 'a -> 'a queue -> 'a queue

# val dequeue : 'a queue -> 'a * 'a queue

# end ;;

module type QUEUE =

sig

type 'a queue

val empty_queue : 'a queue

val enqueue : 'a -> 'a queue -> 'a queue

val dequeue : 'a queue -> 'a * 'a queue

end

and define a queue module satisfying the signature:

# (* Queue -- An implementation of polymorphic queues

# as lists, where the elements are kept with older

# elements closer to the head of the list. *)

# module Queue : QUEUE = struct

# type 'a queue = 'a list

# let empty_queue : 'a queue = []

# let enqueue (elt : 'a) (q : 'a queue) : 'a queue =

# q @ [elt]

# let dequeue (q : 'a queue) : 'a * 'a queue =

# match q with

# | [] -> raise (Invalid_argument

# "dequeue: empty queue")

# | hd :: tl -> hd, tl

# end ;;

module Queue : QUEUE

Now we can avail ourselves of queues of different types:

# open Queue ;;

# let intq = empty_queue

# |> enqueue 1

# |> enqueue 2 ;;

val intq : int Queue.queue = <abstr>

# let boolq = empty_queue

# |> enqueue true
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# |> enqueue false ;;

val boolq : bool Queue.queue = <abstr>

# dequeue intq ;;

- : int * int Queue.queue = (1, <abstr>)

# dequeue boolq ;;

- : bool * bool Queue.queue = (true, <abstr>)

Exercise 102

In Section 11.3, we provided a data type for dictionaries that makes sure that the keys
and values match up properly. We noted, however, that nothing prevents building a
dictionary with multiple occurrences of the same key.

Define a dictionary module signature and implementation that implements dictio-
naries using the type from Section 11.3, and provides a function

add : (’key, ’value) dictionary -> ’key -> ’value ->

(’key, ’value) dictionary

for adding a key and its value to a dictionary, and a function

lookup : (’key, ’value) dictionary -> ’key -> ’value

option

for looking keys up in the dictionary. The add function should raise an appropriate
exception if the key being added already appears in the dictionary. The lookup function
should return None if the key being looked up does not appear in the dictionary. The
signature should hide the implementation of the type and the functions so that the only
access to the dictionary is through these two functions.

Can you express a dictionary built using this module that has duplicate keys?

12.5 Abstract data types and programming for change

One of the primary advantages of using abstract data types (as op-

posed to concrete data structures) is that by hiding the data type im-

plementations, the implementations can be changed without affecting

users of the data types.

Recall the query type from Section 11.2.

# type query =

# | Word of string

# | And of query * query

# | Or of query * query ;;

type query = Word of string | And of query * query | Or of query *
query

In that section, a corpus of documents was structured as a list of pairs,

each containing a name and a list of strings, the words in the docu-

ment. Given that we’ll be searching for particular words in documents,

an alternative data structure useful for search is the R E V E R S E I N D E X,

a kind of dictionary with words as the keys and a set of document

identifiers (the title strings, say) as the values.

If we implement this concretely, using a list of pairs for the dictio-

nary and a string list for the set of document titles, we end up with the

following type:
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# type index = (string * (string list)) list ;;

type index = (string * string list) list

Using a reverse index, the code for evaluating a query is quite simple:

# let rec eval (q : query)

# (idx : index)

# : string list =

# match q with

# | Word word ->

# let (_key, targets) =

# List.find (fun (w, _lst) -> w = word) idx

# in targets

# | And (q1, q2) ->

# intersection (eval q1 idx) (eval q2 idx)

# | Or (q1, q2) ->

# (eval q1 idx) @ (eval q2 idx) ;;

Line 10, characters 0-12:

10 | intersection (eval q1 idx) (eval q2 idx)

^^^^^^^^^^^^

Error: Unbound value intersection

Of course, we’ll need code for the intersection of two lists. Here’s an

approach, in which the lists are kept sorted to facilitate finding dupli-

cates:

# let rec intersection set1 set2 =

# match set1, set2 with

# | [], _

# | _, [] -> []

# | h1 :: t1, h2 :: t2 ->

# if h1 = h2 then h1 :: intersection t1 t2

# else if h1 < h2 then intersection t1 set2

# else intersection set1 t2 ;;

val intersection : 'a list -> 'a list -> 'a list = <fun>

Now, we might get lucky and notice a problematic clash of assump-

tions in the eval function. The intersection function assumes the

lists are sorted, but the final match in eval just appends two lists to

form the union of their elements. Nothing guarantees that the result of

the union is sorted. We can fix that up by using a sort function from the

List module.

# let rec eval (q : query)

# (idx : index)

# : string list =

# match q with

# | Word word ->

# let (_, targets) =

# List.find (fun (w, _lst) -> w = word) idx

# in targets

# | And (q1, q2) ->

# intersection (eval q1 idx) (eval q2 idx)

# | Or (q1, q2) ->
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# List.sort_uniq compare

# ((eval q1 idx) @ (eval q2 idx)) ;;

val eval : query -> index -> string list = <fun>

But maybe then we notice that in our application, this List.find

lookup takes too much time. It has to look through the elements of

the list sequentially to find the one for the word we’re looking up. That

takes time proportional to the number of words being indexed. (More

on this kind of issue in Chapter 14.) Maybe you recall from an earlier

course that hash tables allow lookup in constant time, and you think to

use them. Luckily, the Hashtbl library module provides hash tables. To

incorporate hash tables, we have to change the index type:

# type index = (string, string list) Hashtbl.t ;;

type index = (string, string list) Hashtbl.t

as well as the word query lookup:

# let rec eval (q : query)

# (idx : index)

# : string list =

# match q with

# | Word word -> Hashtbl.find idx word

# | And (q1, q2) ->

# intersection (eval q1 idx) (eval q2 idx)

# | Or (q1, q2) ->

# List.sort_uniq compare

# ((eval q1 idx) @ (eval q2 idx)) ;;

val eval : query -> index -> string list = <fun>

There’s a theme here. Every change to the underlying data repre-

sentation requires multiple changes to the code, even though nothing

has changed conceptually in the underlying use of the data. We’re still

searching in the data, taking unions and intersections.

Let’s go back to the original specification of the reverse index: “a

kind of dictionary with words as the keys and a set of document identi-

fiers (the title strings, say) as the values.” This specification talks about

abstract data types like dictionaries and sets, but we’ve been trying to

directly implement them in terms of lists and pairs and hash tables.

By embracing the abstractions, we can hide all of the details from our

indexing code.

Suppose we had modules for string sets and for indexes. The string

set module, call it StringSet, would presumably provide set functions

like union and intersection. The index module, call it Index would

provide a lookup function. The eval function using these modules

then becomes

let rec eval (q : query)

(idx : Index.dict)

: StringSet.set =
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match q with

| Word word -> (match Index.lookup idx word with

| None -> StringSet.empty

| Some v -> v)

| And (q1, q2) -> StringSet.intersection (eval q1 idx)

(eval q2 idx)

| Or (q1, q2) -> StringSet.union (eval q1 idx)

(eval q2 idx) ;;

This is much nicer. It says what the code does at the right level of ab-

straction, in terms of high-level operations like dictionary lookup, or

set intersection and union. It remains silent, as it should, about exactly

how those operations are implemented.

Now we’ll need module definitions for Index and StringSet. We

start with StringSet first, and in particular, its module signature,

since this specifies how the module can be used.

12.5.1 A string set module

A string set module needs to provide some operations for creating and

manipulating the sets. The requirements can be specified in a module

signature. Here’s a first cut:

# module type STRING_SET =

# sig

# (* Type of string sets *)

# type set

# (* An empty set *)

# val empty : set

# (* Returns true if set is empty, false otherwise *)

# val is_empty : set -> bool

# (* Adds string to existing set (if not already a member) *)

# val add : string -> set -> set

# (* Union of two sets *)

# val union : set -> set -> set

# (* Intersection of two sets *)

# val intersection : set -> set -> set

# (* Returns true iff string is in set *)

# val member: string -> set -> bool

# end ;;

module type STRING_SET =

sig

type set

val empty : set

val is_empty : set -> bool

val add : string -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : string -> set -> bool

end

Any implementation of this signature must provide:
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• a type, called set;

• an element of that type called empty;

• a function that maps elements of the type to bool, called is_empty;

• and so forth.

From the point of view of the users (callers) of this abstract data

type, this is all they need to know: The name of the type and the func-

tions that apply to values of that type.

To drive this point home, we’ll make use of an implementation

(StringSet) of this abstract data type before even looking at the im-

plementing code.

# let s = StringSet.add "c"

# (StringSet.add "b"

# (StringSet.add "a" StringSet.empty)) ;;

val s : StringSet.set = <abstr>

Note that the string set we’ve called s is of the abstract type

StringSet.set and the particulars of the value implementing the

set are hidden from us as <abstr>.

The types, values, and functions provided in the signature are nor-

mal OCaml objects that interact with the rest of the language as usual.

We can still avail ourselves of the rest of OCaml. For instance, we can

clean up the definition of s using reverse application and a local open:

# let s =

# let open StringSet in

# empty

# |> add "a"

# |> add "b"

# |> add "c" ;;

val s : StringSet.set = <abstr>

Other operations work as well.

# StringSet.member "a" s ;;

- : bool = true

# StringSet.member "d" s ;;

- : bool = false

Of course, the ADT must have an actual implementation for it to work.

We’ve just been assuming one, but we can provide a possible imple-

mentation (the one we’ve been using as it turns out), obeying the

specific signature we just defined.6

6 You’ll notice that we don’t bother
adding types to the definitions of the
values in this module implementation.
Since the signature already provided
explicit types (satisfying the edict of
intention), OCaml can verify that the
implementation respects those types.
Nonetheless, it can sometimes be useful
to provide further typing information in
a module implementation.

module StringSet : STRING_SET =

(* Implementation of STRING_SET as list of strings.

Assumes list may be unsorted but with no duplicates. *)

struct
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type set = string list

let empty = []

let is_empty set = (set = [])

let member = List.mem

let add elt set =

if List.mem elt set then set

else elt :: set

let union = List.fold_right add

let rec intersection set1 set2 =

match set1 with

| [] -> []

| hd :: tl -> let tlint = intersection tl set2 in

if member hd set2 then add hd tlint

else tlint

end ;;

In this implementation, sets are implemented as string lists. A com-

ment documents the invariant in the implementation that the lists

have no duplicates, though they might not be sorted. But there’s no

way for a user of this module to know any of that; the signature doesn’t

reveal anything about the implementation type. Even though the sets

are implemented as string lists, if we try to do string-list-like opera-

tions, we’ll be thwarted.

# s @ ["b"; "e"] ;;

Line 1, characters 0-1:

1 | s @ ["b"; "e"] ;;

^

Error: This expression has type StringSet.set

but an expression was expected of type 'a list

And it’s a good thing too, because if we could have added the "b"

to the list, suddenly, the list doesn’t obey the invariant required by

the implementation that there be no duplicates. But because of the

abstraction barrier, there’s no way for a user of the module to break the

invariant, so long as the implementation maintains it.

Because the sets are implemented as unsorted lists, when taking the

union of two sets set1 and set2, we must traverse the entirety of the

set2 list once for each element of set1. For small sets, this is not likely

to be problematic, and worrying about this inefficiency may well be a

premature effort at optimization.7 But for a set implementation likely 7 In the introduction to Chapter 14 you’ll
learn that “premature optimization is
the root of all evil.”

to be used widely and on very large sets, it may be useful to address the

issue.

A better alternative from an efficiency point of view is to implement

sets as sorted lists. This requires a bit more work in adding elements

to a set to place them in the right order, but saves effort for union and

intersection. We redefine the StringSet module accordingly, still

satisfying the same STRING_SET signature.

# (* Implementation of STRING_SET as list of strings.
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# Assumes list is *sorted* with no duplicates. *)

# module StringSet : STRING_SET =

# struct

# type set = string list

# let empty = []

# let is_empty s = (s = [])

# let rec member elt s =

# match s with

# | [] -> false

# | hd :: tl -> if elt = hd then true

# else if elt < hd then false

# else member elt tl

# let rec add elt s =

# match s with

# | [] -> [elt]

# | hd :: tl -> if elt < hd then elt :: s

# else if elt = hd then s

# else hd :: add elt tl

# let union = List.fold_right add

# let rec intersection set1 set2 =

# match set1, set2 with

# | [], _ -> []

# | _, [] -> []

# | h1::t1, h2::t2 ->

# if h1 = h2 then h1 :: intersection t1 t2

# else if h1 < h2 then intersection t1 set2

# else intersection set1 t2

# end ;;

module StringSet : STRING_SET

Now we can test the revised definition.

# let s =

# let open StringSet in

# empty

# |> add "a"

# |> add "b"

# |> add "c" ;;

val s : StringSet.set = <abstr>

# StringSet.member "a" s ;;

- : bool = true

# StringSet.member "d" s ;;

- : bool = false

And here’s the payoff. Even though we’ve completely changed the

implementation of string sets, even using a data structure obeying a

different invariant, the code for using string sets changes not at all.

12.5.2 A generic set signature

For document querying, we needed a string set module. For other

purposes we may need sets of other element types. We could generate

similar modules for, say, integer sets, with an appropriate signature:
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# module type INT_SET =

# sig

# (* Type of integer sets *)

# type set

# (* The empty set *)

# val empty : set

# (* Returns true if set is empty; false otherwise *)

# val is_empty : set -> bool

# (* Adds integer to existing set (if not already a member) *)

# val add : int -> set -> set

# (* Union of two sets *)

# val union : set -> set -> set

# (* Intersection of two sets *)

# val intersection : set -> set -> set

# (* Returns true iff integer is in set *)

# val member: int -> set -> bool

# end ;;

module type INT_SET =

sig

type set

val empty : set

val is_empty : set -> bool

val add : int -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : int -> set -> bool

end

but we’d be violating the edict of irredundancy. Rather, we’d prefer

a generic signature for set modules that provides a set type for any

element type.

Here is such a signature. We’ve added a new type to the module, the

type element for elements of the set, and we use it in the types of the

various functions.

# module type SET =

# sig

# (* Type of sets *)

# type set

# (* and their elements *)

# type element

# (* The empty set *)

# val empty : set

# (* Returns true if set is empty; false otherwise *)

# val is_empty : set -> bool

# (* Adds element to existing set (if not already a member) *)

# val add : element -> set -> set

# (* Union of two sets *)

# val union : set -> set -> set

# (* Intersection of two sets *)

# val intersection : set -> set -> set

# (* Returns true iff element is in set *)

# val member: element -> set -> bool
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# end ;;

module type SET =

sig

type set

type element

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

A string set implementation satisfying this signature defines the

element type as string:

# module StringSet : SET =

# struct

# type element = string

# type set = element list

# let empty = []

# let is_empty s = (s = [])

# let rec member elt s =

# match s with

# | [] -> false

# | hd :: tl -> if elt = hd then true

# else if elt < hd then false

# else member elt tl

# let rec add elt s =

# match s with

# | [] -> [elt]

# | hd :: tl -> if elt < hd then elt :: s

# else if elt = hd then s

# else hd :: add elt tl

# let union = List.fold_right add

# let rec intersection set1 set2 =

# match set1, set2 with

# | [], _ -> []

# | _, [] -> []

# | h1::t1, h2::t2 ->

# if h1 = h2 then h1 :: intersection t1 t2

# else if h1 < h2 then intersection t1 set2

# else intersection set1 t2

# end ;;

module StringSet : SET

We can use this StringSet to, for instance, generate an empty

string set:

# StringSet.empty ;;

- : StringSet.set = <abstr>

We run into a major problem, though, in the simple act of checking if a

string is a member of the set.
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# StringSet.member "a" StringSet.empty ;;

Line 1, characters 17-20:

1 | StringSet.member "a" StringSet.empty ;;

^^^

Error: This expression has type string but an expression was

expected of type

StringSet.element

What’s the problem? It turns out that the abstraction barrier provided

by the SET signature is doing exactly what it should. The implementa-

tion promises to deliver something that satisfies and reveals SET. And

that’s all. The SET signature reveals types set and element, not string

list and string. Viewed from within the implementation, the types

element and string are the same. But from outside the module im-

plementation, only element is available, leading to the type mismatch

with string.

This is a case in which the abstraction barrier is too strict. (We

saw this before in Section 12.3.) We do want to allow the user of the

module to have access to the implementation of the element type, if

only so that module users can provide elements of that type. Rather

than using the too abstract SET signature, we can define slightly less

abstract signatures using S H A R I N G C O N S T R A I N T S, which augment

a signature with one or more type equalities across the abstraction

barrier, identifying abstract types within the signature (element) with

implementations of those types accessible outside the implementation

(string).8 8 Notice how in printing out the result
of defining the new STRING_SET signa-
ture, OCaml specifies that the type of
elements is string. Compare this with
the version above without the sharing
constraint.

This example requires only a single
sharing constraint, but multiple con-
straints can be useful as well. They are
combined with the and keyword, for
example, the pair of sharing constraints
with type key = D.key and type

value = D.value used in the definition
of the MakeOrderedDict module in
Section 12.6.

# module type STRING_SET = SET with type element = string ;;

module type STRING_SET =

sig

type set

type element = string

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

Now we can declare the implementation as satisfying this relaxed

signature.

# module StringSet : STRING_SET =

# struct

# type element = string

# type set = element list

# let empty = []

# let is_empty s = (s = [])

# let rec member elt s =

# match s with
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# | [] -> false

# | hd :: tl -> if elt = hd then true

# else if elt < hd then false

# else member elt tl

# let rec add elt s =

# match s with

# | [] -> [elt]

# | hd :: tl -> if elt < hd then elt :: s

# else if elt = hd then s

# else hd :: add elt tl

# let union = List.fold_right add

# let rec intersection set1 set2 =

# match set1, set2 with

# | [], _ -> []

# | _, [] -> []

# | h1::t1, h2::t2 ->

# if h1 = h2 then h1 :: intersection t1 t2

# else if h1 < h2 then intersection t1 set2

# else intersection set1 t2

# end ;;

module StringSet : STRING_SET

This implementation now allows us to perform operations involving

particular strings.

# StringSet.empty ;;

- : StringSet.set = <abstr>

# StringSet.member "a" StringSet.empty ;;

- : bool = false

# let s =

# let open StringSet in

# empty

# |> add "first"

# |> add "second"

# |> add "third" ;;

val s : StringSet.set = <abstr>

# StringSet.union s s ;;

- : StringSet.set = <abstr>

# StringSet.member "a" s ;;

- : bool = false

12.5.3 A generic set implementation

Sharing constraints solve the problem of duplicative signatures, be-

cause we can define different signatures by adding different sharing

constraints to the generic SET signature:

# module type STRING_SET =

# SET with type element = string ;;

# module type INT_SET =

# SET with type element = int ;;

# module type INTBOOL_SET =

# SET with type element = int * bool ;;
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Unfortunately, they do nothing for the problem of duplicative imple-

mentations. To implement a module satisfying the INT_SET signature,

we’d need to build the whole module from scratch, like this:

# module IntSet : INT_SET =

# struct

# type element = int

# type set = element list

# let empty = []

# let is_empty s = (s = [])

# let rec member elt s =

# match s with

# | [] -> false

# | hd :: tl -> if elt = hd then true

# else if elt < hd then false

# else member elt tl

# let rec add elt s =

# match s with

# | [] -> [elt]

# | hd :: tl -> if elt < hd then elt :: s

# else if elt = hd then s

# else hd :: add elt tl

# let union = List.fold_right add

# let rec intersection set1 set2 =

# match set1, set2 with

# | [], _ -> []

# | _, [] -> []

# | h1::t1, h2::t2 ->

# if h1 = h2 then h1 :: intersection t1 t2

# else if h1 < h2 then intersection t1 set2

# else intersection set1 t2

# end ;;

The redundancy is massive; the only differences from the StringSet

implementation are those highlighted in red. To solve this violation of

the edict of irredundancy requires more powerful tools.

What we need is a way of generating implementations that depend

on some stuff. In the case at hand, the stuff is just the implementation

of the element type, and perhaps some functionality involving that

type. For instance, in the implementations of the StringSet and

IntSet modules, we availed ourselves of comparing elements using

the < operator. Any type we build a set from using this implementation

approach needs some way of performing such comparisons, but the

< operator may not always be appropriate for that purpose. More

generally, the implementations may depend not only on a type but on

some values of that type or functions over the type, or even multiple

types.

If only we had a way of packaging up some types and related values

and functions. But we do have such a way: the module system itself. In

effect, what we need is something akin to a function that takes as ar-
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gument a module defining the parameters of the implementation and

returns the desired module. We call these “functions” from modules to

modules F U N C TO R S.

We can use the StringSet and IntSet implementations as the

basis for a functor MakeOrderedSet, which takes a module as argu-

ment to provide the element type and returns a module satisfying the

SET signature. As described above, the argument module should have

a type (call it t) and a way of comparing elements of the type (call it

compare). We’ll have the compare function take two elements of type

t and return an integer specifying whether the first integer is less than

(-1), equal to (0), or greater than (1) the second integer.

You may recognize this signature. It’s the ORDERED_TYPE signature

from Section 12.3, repeated here for reference.

# module type ORDERED_TYPE =

# sig

# type t

# val compare : t -> t -> int

# end ;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> int

end

The argument to the functor should satisfy this signature.

A functor that takes a module with this signature and delivers a SET

implementation can be constructed just by factoring out the type and

the comparison from our previous implementations of IntSet and

StringSet.

# module MakeOrderedSet (Elements : ORDERED_TYPE) : SET =

# struct

# type element = Elements.t

# type set = element list

# let empty = []

# let is_empty s = (s = [])

# let rec member elt s =

# match s with

# | [] -> false

# | hd :: tl ->

# (match Elements.compare elt hd with

# | 0 (* equal *) -> true

# | -1 (* less *) -> false

# | _ (* greater *) -> member elt tl)

# let rec add elt s =

# match s with

# | [] -> [elt]

# | hd :: tl ->

# (match Elements.compare elt hd with

# | 0 (* equal *) -> s

# | -1 (* less *) -> elt :: s

# | _ (* greater *) -> hd :: add elt tl)

# let union = List.fold_right add
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# let rec intersection set1 set2 =

# match set1, set2 with

# | [], _ -> []

# | _, [] -> []

# | h1::t1, h2::t2 ->

# (match Elements.compare h1 h2 with

# | 0 (* equal *) -> h1 :: intersection t1 t2

# | -1 (* less *) -> intersection t1 set2

# | _ (* greater *) -> intersection set1 t2)

# end ;;

module MakeOrderedSet : functor (Elements : ORDERED_TYPE) -> SET

But this won’t do. The returned module satisfies SET, but we’ve

already seen how this is too strong a requirement. The solution is the

same as before, use sharing constraints to allow access to the element

type.

# module MakeOrderedSet (Elements : ORDERED_TYPE)

# : (SET with type element = Elements.t) =

# struct

# type element = Elements.t

# type set = element list

# let empty = []

# let is_empty s = (s = [])

# let rec member elt s =

# match s with

# | [] -> false

# | hd :: tl ->

# (match Elements.compare elt hd with

# | 0 (* equal *) -> true

# | -1 (* less *) -> false

# | _ (* greater *) -> member elt tl)

# let rec add elt s =

# match s with

# | [] -> [elt]

# | hd :: tl ->

# (match Elements.compare elt hd with

# | 0 (* equal *) -> s

# | -1 (* less *) -> elt :: s

# | _ (* greater *) -> hd :: add elt tl)

# let union = List.fold_right add

# let rec intersection set1 set2 =

# match set1, set2 with

# | [], _ -> []

# | _, [] -> []

# | h1::t1, h2::t2 ->

# (match Elements.compare h1 h2 with

# | 0 (* equal *) -> h1 :: intersection t1 t2

# | -1 (* less *) -> intersection t1 set2

# | _ (* greater *) -> intersection set1 t2)

# end ;;

module MakeOrderedSet :

functor (Elements : ORDERED_TYPE) ->

sig
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type set

type element = Elements.t

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

Here we finally have a functor that can generate a set module for any

type. Let’s generate a few, starting with a string set module, which we

can generate by applying the MakeOrderedSet functor to a module

satisfying ORDERED_TYPE linking the string type to an appropriate

ordering function (here, the default Stdlib.compare function).

# module StringSet = MakeOrderedSet

# (struct

# type t = string

# let compare = compare

# end) ;;

module StringSet :

sig

type set

type element = string

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

It works as expected:

# let s =

# let open StringSet in

# empty

# |> add "first"

# |> add "second"

# |> add "third" ;;

val s : StringSet.set = <abstr>

# StringSet.union s s ;;

- : StringSet.set = <abstr>

# StringSet.member "a" s ;;

- : bool = false

How about an integer set module? Again, a couple of lines of code

suffice.

# module IntSet = MakeOrderedSet

# (struct

# type t = int

# let compare = compare
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# end) ;;

module IntSet :

sig

type set

type element = int

val empty : set

val is_empty : set -> bool

val add : element -> set -> set

val union : set -> set -> set

val intersection : set -> set -> set

val member : element -> set -> bool

end

# let s =

# let open IntSet in

# empty

# |> add 1

# |> add 2

# |> add 3 ;;

val s : IntSet.set = <abstr>

# IntSet.union s s ;;

- : IntSet.set = <abstr>

# IntSet.member 4 s ;;

- : bool = false

12.6 A dictionary module

The query evaluation application we’ve been working on (remember

that?) required not only an implementation of a set ADT, but also a

dictionary ADT. Dictionaries are data structures that associate keys to

values, and allow for insertion and deletion of key-value associations,

and looking up of the value associated with a given key (if one exists).

We now have all the tools to build that as well. An appropriate

signature for a dictionary is

# module type DICT =

# sig

# type key

# type value

# type dict

#

# (* empty -- An empty dictionary *)

# val empty : dict

# (* lookup dict key -- Returns as an option the value

# associated with the provided key. If the key is

# not in the dictionary, returns None. *)

# val lookup : dict -> key -> value option

# (* member dict key -- Returns true if and only if the

# key is in the dictionary. *)

# val member : dict -> key -> bool

# (* insert dict key value -- Inserts a key-value pair into

# dict. If the key is already present, updates the key to

# have the new value. *)
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# val insert : dict -> key -> value -> dict

# (* remove dict key -- Removes the key and its value from the

# dictionary, if present. If the key is not present,

# returns the original dictionary. *)

# val remove : dict -> key -> dict

# end ;;

module type DICT =

sig

type key

type value

type dict

val empty : dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> dict

val remove : dict -> key -> dict

end

We’ll want a functor that builds dictionaries for all kinds of keys

and values. In order to make sure we can compare the keys properly,

including ordering them, we’ll need a comparison function for keys as

well. While we’re at it, we might as well use a nicer convention for the

comparison function, which will return a value of type

type order = Less | Equal | Greater ;;

The argument to the functor should thus satisfy the following signa-

ture:

# module type DICT_ARG =

# sig

# type key

# type value

# (* We need to reveal the order type so users of the

# module can match against it to implement compare *)

# type order = Less | Equal | Greater

# (* Comparison function on keys compares two elements

# and returns their order *)

# val compare : key -> key -> order

# end ;;

module type DICT_ARG =

sig

type key

type value

type order = Less | Equal | Greater

val compare : key -> key -> order

end

An implementation of such a functor is given here. It takes a module

D satisfying DICT_ARG, providing all the needed information about the

key and value types and the ordering of keys. It allows access to the key

and value types via sharing constraints, so users of modules generated
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by the functor can provide values of those types. This particular imple-

mentation of dictionaries is a simple list of key-value pairs, sorted by

unique keys.

# module MakeOrderedDict (D : DICT_ARG)

# : (DICT with type key = D.key

# and type value = D.value) =

# struct

# type key = D.key

# type value = D.value

#

# (* Invariant: sorted by key, no duplicate keys *)

# type dict = (key * value) list

#

# let empty = []

#

# let rec lookup d k =

# match d with

# | [] -> None

# | (k1, v1) :: d1 ->

# let open D in

# match compare k k1 with

# | Equal -> Some v1

# | Greater -> lookup d1 k

# | Less -> None

#

# let member d k =

# match lookup d k with

# | None -> false

# | Some _ -> true

#

# let rec insert d k v =

# match d with

# | [] -> [k, v]

# | (k1, v1) :: d1 ->

# let open D in

# match compare k k1 with

# | Less -> (k, v) :: d

# | Equal -> (k, v) :: d1

# | Greater -> (k1, v1) :: (insert d1 k v)

#

# let rec remove d k =

# match d with

# | [] -> []

# | (k1, v1) :: d1 ->

# let open D in

# match compare k k1 with

# | Equal -> d1

# | Greater -> (k1, v1) :: (remove d1 k)

# | Less -> d

# end ;;

module MakeOrderedDict :

functor (D : DICT_ARG) ->

sig
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type key = D.key

type value = D.value

type dict

val empty : dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> dict

val remove : dict -> key -> dict

end

A reverse index, recall, is just a dictionary for mapping string

keys to string set values. (The latter we’ve already built as the type

StringSet.set.) Let’s build one using the MakeOrderedDict functor.

The argument to the functor should specify the key and value types

and the ordering on keys:

# module StringStringSetDictArg

# : (DICT_ARG with type key = string

# and type value = StringSet.set) =

# struct

# type key = string

# type value = StringSet.set

# type order = Less | Equal | Greater

# let compare x y = if x < y then Less

# else if x = y then Equal

# else Greater

# end ;;

module StringStringSetDictArg :

sig

type key = string

type value = StringSet.set

type order = Less | Equal | Greater

val compare : key -> key -> order

end

Now to generate an index module requires only a single line.

# module Index = MakeOrderedDict (StringStringSetDictArg) ;;

module Index :

sig

type key = StringStringSetDictArg.key

type value = StringStringSetDictArg.value

type dict = MakeOrderedDict(StringStringSetDictArg).dict

val empty : dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> dict

val remove : dict -> key -> dict

end

By making use of these generic constructs for sets and dictionaries,

we can build a reverse index type easily, and implement query evalu-

ation in a manner that is oblivious to, hence robust to any changes in,
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the implementation of the sets and dictionaries. The code for eval can

be as specified before, and repeated here.

# let rec eval (q : query)

# (idx : Index.dict)

# : StringSet.set =

# match q with

# | Word word -> (match Index.lookup idx word with

# | None -> StringSet.empty

# | Some v -> v)

# | And (q1, q2) -> StringSet.intersection (eval q1 idx)

# (eval q2 idx)

# | Or (q1, q2) -> StringSet.union (eval q1 idx)

# (eval q2 idx) ;;

val eval : query -> Index.dict -> StringSet.set = <fun>

More generally, modules allow separating an interface from its

implementation, the key premise of abstract data types and modular

programming, and OCaml’s functors provide for constructing modules

that operate generically.

12.7 Alternative methods for defining signatures and mod-

ules

We’ve already seen two ways to define a module subject to a particular

signature. First is to name the signature explicitly using module type,

and use that name in defining the module itself.

module type SIG_NAME =

sig

...component declarations...

end ;;

module ModuleName : SIG_NAME =

struct

...component implementations...

end ;;

Second is to place an unnamed signature directly constraining the

module definition

module ModuleName : sig

...component declarations...

end =

struct

...component implementations...

end ;;

useful on occasions where the signature is quite short and will only be

used once, so retaining a name for it isn’t needed.

There is a third method, widely used within OCaml’s own imple-

mentation of library modules. All of the components defined in a .ml
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file automatically constitute a module, whose name is generated by

converting the first letter of the filename to uppercase. For example, if

we have a file named queue.ml whose contents is

type 'a queue = 'a list

let empty_queue : 'a queue = []

let enqueue (elt : 'a) (q : 'a queue) : 'a queue =

q @ [elt]

let dequeue (q : 'a queue) : 'a * 'a queue =

match q with

| [] -> raise (Invalid_argument

"dequeue: empty queue")

| hd :: tl -> hd, tl

then we can refer in other files to Queue.queue to gain access to the

type defined in that file, to Queue.enqueue to access the enqueueing

function, and so forth. We can even place an open Queue at the top

of another file to have unprefixed access to the components of the

module.

How to define a signature for such a module though? OCaml looks

for a file with the same prefix but the extension .mli (the i is for “in-

terface”), which holds the component declarations for the signature.

Thus, we should place in a file queue.mli these declarations:

type 'a queue

val empty_queue : 'a queue

val enqueue : 'a -> 'a queue -> 'a queue

val dequeue : 'a queue -> 'a * 'a queue

The Queue module will then be constrained by this signature, simply by

virtue of the matching filenames.

12.7.1 Set and dictionary modules

The facilities for generating set modules – including the SET signature

and MakeOrderedSet functor – might well be packaged up into a single

module themselves. A file set.ml providing such a module might look

like the following:

(* A Set Module *)

(*.......................................................

Set interface

*)

module type SET =

sig

type element (* elements of the set *)

type set (* sets formed from the elements *)

(* The empty set *)
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val empty : set

(* Returns true if set is empty; false otherwise *)

val is_empty : set -> bool

(* Adds element to existing set (if not already a member) *)

val add : element -> set -> set

(* Union of two sets *)

val union : set -> set -> set

(* Intersection of two sets *)

val intersection : set -> set -> set

(* Returns true iff element is in set *)

val member : element -> set -> bool

end ;;

(*.......................................................

An implementation for elements of ordered type

*)

(* Module for types with a comparison function *)

module type COMPARABLE =

sig

(* The type of comparable elements *)

type t

(* We need to reveal the order type so users of the

module can match against it *)

type order = Less | Equal | Greater

(* Comparison function compares two elements of the

type and returns their order *)

val compare : t -> t -> order

end

(* Functor that generates sets for any comparable type *)

module MakeOrderedSet (Elements : COMPARABLE)

: (SET with type element = Elements.t) =

(* Implementation of SET as list of elements. Assumes

list is sorted with no duplicates. *)

struct

type element = Elements.t

type set = element list

let empty = []

let is_empty s = (s = [])

let rec member elt s =

match s with

| [] -> false

| hd :: tl ->

let open Elements in

(* so that Elements.compare, Elements.Less,

etc. are in scope *)

match compare elt hd with

| Equal -> true

| Less -> false

| Greater -> member elt tl
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let rec add elt s =

(* add the elt in the proper place in the

ordered list *)

match s with

| [] -> [elt]

| hd :: tl ->

let open Elements in

match compare elt hd with

| Less -> elt :: s

| Equal -> s

| Greater -> hd :: add elt tl

let union s1 s2 = List.fold_right add s1 s2

let rec intersection xs ys =

match xs, ys with

| [], _ -> []

| _, [] -> []

| xh :: xt, yh :: yt ->

let open Elements in

match compare xh yh with

| Equal -> xh :: intersection xt yt

| Less -> intersection xt ys

| Greater -> intersection xs yt

end ;;

This file defines a module called set that enables usage like the

following, to define and use a StringSet module:

module StringSet =

let open Set in

MakeOrderedSet

(struct

type t = string

type order = Less | Equal | Greater

let compare s t = if s < t then Less

else if s = t then Equal

else Greater

end) ;;

let s = StringSet.create

|> StringSet.add "a"

|> StringSet.add "b"

|> StringSet.add "a" ;;

12.8 Library Modules

Data structures like sets and dictionaries are so generally useful that

you might think the language ought to provide them so that each indi-

vidual programmer doesn’t need to implement them. In fact, OCaml

does provide these and many other data structures – as L I B R A RY M O D -

U L E S.
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In particular, the Set library module provides functionality much

like the Set module in the previous section, and the Map library mod-

ule provides functionality much like our dictionary module and its

MakeOrderedDict functor.

In later chapters, we’ll happily avail ourselves of these built-in li-

braries. Nonetheless, it’s still important to see how such simple and

general abstract data structures can be provided as modules, for sev-

eral reasons: to demystify what’s going on in the library-provided

modules, to instantiate the idea that the language itself is sufficient for

implementing these ideas, and as examples to inspire ways to imple-

ment other, more application-specific abstract data structures.

12.9 Problem section: Image manipulation

We define here a signature for modules that deal with images and their

manipulation.

module type IMAGING =

sig

(* types for images, which are composed of pixels *)

type image

type pixel

(* an image size is a pair of ints giving number of

rows and columns *)

type size = int * int

(* converting between integers and pixels *)

val to_pixel : int -> pixel

val from_pixel : pixel -> int

(* apply an image filter, a function over pixels,

to every pixel in an image *)

val filter : (pixel -> pixel) -> image -> image

(* apply an image filter to two images, combining

the images pixel by pixel *)

val filter2 : (pixel -> pixel -> pixel)

-> image -> image -> image

(* return a "constant" image of the specified size

where every pixel has the same value *)

val const : pixel -> size -> image

(* display the image in a graphics window *)

val depict : image -> unit

end ;;

The pixels that make up an image are specified by the following signa-

ture:

module type PIXEL =

sig

type t

val to_pixel : int -> t

val from_pixel : t -> int

end

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.html
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Problem 103

We’d like to implement a functor named MakeImaging for generating implementations
of the IMAGING signature based on modules satisfying the PIXEL signature. How should
such a functor start? Give the header line of such beginning with the keyword module

and ending with the = struct....

Here is a module implementing the PIXEL signature for integer

pixels.

module IntPixel : (PIXEL with type t = int) =

struct

type t = int

let to_pixel x = x

let from_pixel x = x

end ;;

Problem 104

Write code that uses the IntPixel module to define an imaging module called
IntImaging.

Problem 105

Write code to use the IntImaging module that you defined in Problem 104 to display a
100 by 100 pixel image where all of the pixels have the constant integer value 5000.

12.10 Problem section: An abstract data type for intervals

A good candidate for an abstract data type is the I N T E RVA L. Abstractly

speaking, an interval is a region between two points, where all that is

required of points is that we be able to compare them as an ordering

(so that we have a well-defined notion of “between”). That is, points

ought to obey the following signature, which may look familiar, as

you’ve seen it in other contexts:

module type COMPARABLE =

sig

type t

type order = Less | Equal | Greater

val compare : t -> t -> order

end ;;

Intervals come up in many different contexts. As an informal ex-

ample, calendars need to associate events with time intervals, such as

3-4pm or 11:30am-3:30pm; the endpoints in this case would be times.

Natural operations over intervals include: the construction of an inter-

val between two points, the extraction of the endpoints of an interval,

taking the union of two intervals (the smallest interval containing

both) or their intersection, and determining the relation between two

intervals (whether they are disjoint, overlapping, or one contains the

other). Here is a signature that provides for this functionality.

module type INTERVAL =

sig
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type point

type interval

type relation = Disjoint | Overlaps | Contains

(* Returns the interval between two points *)

val interval : point -> point -> interval

(* Returns the endpoints of an interval as a pair

with the first point less than the second. *)

val endpoints : interval -> point * point

(* Returns the union of two intervals *)

val union : interval -> interval -> interval

(* Returns the relation holding between two intervals *)

val relation : interval -> interval -> relation

end ;;

The possible relations between two intervals are depicted in Fig-

ure 12.3. (For the interval arithmetic cognoscenti, we’ve left out

many details, such as whether intervals are open or closed; more

fine-grained relations; and many other useful operations on intervals.

These issues are beyond the scope of this problem.)

Overlaps

Contains

Disjoint

Figure 12.3: A diagrammatic depiction
of the possible relations holding be-
tween two intervals. In the diagram, the
gray intervals in the three groups below
the black interval are in the “overlaps”
(top 2), “contains” (next 5), and “dis-
joint” (bottom 3) relations, respectively,
with the black interval at top. The verti-
cal dotted lines depict the endpoints of
the black interval.

Problem 106

We’d like to have a functor named MakeInterval for generating implementations of the
INTERVAL signature based on modules satisfying the COMPARABLE signature. How should
such a functor start? Give the header line of such a functor definition beginning with the
keyword module and ending with the = struct....

Problem 107

An appropriate module satisfying COMPARABLE for the purpose of generating discrete
time intervals would be one where the type is int, with an appropriate comparison
function. Define a module named DiscreteTime satisfying COMPARABLE where the type
is int. Make sure the type is accessible outside the module.

Problem 108

Now use the functor MakeInterval to define a module DiscreteTimeInterval
that provides interval functionality over discrete times as defined by the module
DiscreteTime above.

Problem 109

The intersection of two intervals is only well-defined if the intervals are not disjoint. As-
sume that the DiscreteTimeInterval module has been opened, allowing you to make
use of everything in its signature. Now, define a function intersection : interval

-> interval -> interval option that takes two intervals and returns None if they are
disjoint and otherwise returns their intersection (embedded appropriately in the option
type).

Problem 110

Provide three different unit tests that would be useful in testing the correctness of the
DiscreteTimeInterval module.

12.11 Problem section: Mobiles

The artist Alexander Calder (1898-1976) is well known for his distinc-

tive mobiles, sculptures with different shaped objects hung from a

cascade of connecting metal bars. An example is given in Figure 12.4.

Figure 12.4: Alexander Calder’s
L’empennage (1953).

His mobiles are made with varying shapes at the ends of the con-

nectors – circles, ovals, fins. The exquisite balance of the mobiles



192 P RO G R A M M I N G W E L L

depends on the weights of the various components. In the next few

exercises of this problem, you will model the structure of mobiles as

binary trees such that one can determine if a Calder-like mobile design

is balanced or not. Let’s start with the objects at the ends of the con-

nectors. For our purposes, the important properties of an object will be

its shape and its weight (in arbitrary units; you can interpret them as

pounds).
Problem 111

Define a weight type consisting of a single floating point weight.

Problem 112

Define a shape type, a variant type that allows for three different shapes: circles, ovals,
and fins.

Problem 113

Define an object type that will be used to store information about the objects at the
ends of the connectors, in particular, their weight and their shape.

A mobile can be modeled as a kind of binary tree, where the leaves

of the tree, representing the objects, are elements of type obj, and

the internal nodes, representing the connectors, have a weight, and

each internal node (connector) connects two submobiles. Rather than

directly writing code for a mobile type, though, we’ll digress to build a

more general binary tree module, and then model mobiles using that.

An appropriate signature BINTREE for a simple binary tree module

might be the following:

module type BINTREE =

sig

type leaft (* the type for the leaves of the tree *)

type nodet (* the type for the internal nodes of the tree *)

type tree (* the type for the trees themselves *)

val make_leaf : leaft -> tree

val make_node : nodet -> tree -> tree -> tree

val walk : (leaft -> 'a)

-> (nodet -> 'a -> 'a -> 'a) -> tree -> 'a

end ;;

This module signature specifies separate types for the leaves of trees

and the internal nodes of trees, along with a type for the trees them-

selves; functions for constructing leaf and node trees; and a single

function to "walk" the tree. (We’ll come back to the walk function

later.) In addition to the signature for binary tree modules, we would

need a way of generating implementations of modules satisfying the

BINTREE signature, which we’ll do with a functor MakeBintree. The

MakeBinTree functor takes an argument module of type BINTREE_ARG

that packages up the particular types for the leaves and nodes, that is,

the types to use for leaft and nodet. The following module signature

will work:
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module type BINTREE_ARG =

sig

type leaft

type nodet

end ;;

Problem 114

Write down the header of a definition of a functor named MakeBintree taking a
BINTREE_ARG argument, which generates modules satisfying the BINTREE signature.
Keep in mind the need for users of the functor-generated modules to access appropriate
aspects of the generated trees. (You don’t need to fill in the actual implementation of the
functor.)

Using the MakeBintree functor described above, you can now

generate a Mobile module, which has objs at the leaves and weights

at the interior nodes.
Problem 115

Define a module Mobile using the functor MakeBintree.

Problem 116

You’ve just used the MakeBintree functor without ever seeing its implementation. Why
is this possible?

Figure 12.5: A simple Calder-style
mobile. The depicted mobile has two
connectors and three objects (an oval
and two fins). The connectors each
weigh 1.0, and the objects’ weights are
as given in the figure.

You can now build a representation of a mobile using the functions

that the Mobile module makes available.
Problem 117

Define a value mobile1 of type Mobile.tree that represents a mobile structured as the
one depicted in Figure 12.5.

The walk function, of type (leaft -> ’a) -> (nodet -> ’a

-> ’a -> ’a) -> tree -> ’a, is of special interest, since it is the

sole method for performing computations over these binary trees.

The function is a kind of fold that works over trees instead of lists. It

takes two functions – one for leaves and one for nodes – and applies

these functions to a tree to generate a single value. The leaf function

takes a leaft and returns some value of type ’a. The node function

takes a nodet, as well as the two ’a values recursively returned by

walking its two subtrees, and computes the value for the node itself.

For example, we can use walk to define a function size that counts

how many objects there are in a mobile. The function uses the fact that

leaves are of size 1 and the size of a non-leaf is the sum of the sizes of

its subtrees.

let size mobile =

Mobile.walk (fun _leaf -> 1)

(fun _node left_size right_size ->

left_size + right_size)

mobile ;;

Problem 118

What is the type of size?

Problem 119

Use the fact that the walk function is curried to give a slightly more concise definition for
size.
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Problem 120

Use the walk function to implement a function shape_count : shape ->

Mobile.tree -> int that takes a shape and a mobile (in that order), and returns
the number of objects in the mobile that have that particular shape.

A mobile is said to be balanced if every connector has the property

that the total weight of all components (that is, objects and connec-

tors) of its left submobile is the same as the total weight of all com-

ponents of its right submobile. (In actuality, we’d have to worry about

other things like the relative lengths of the arms of the connectors, but

we’ll ignore all that.)
Problem 121

Is the mobile shown balanced? Why or why not?

Problem 122

Implement a function balance : Mobile.tree -> weight option that takes a
mobile, and returns None if the argument mobile is not balanced, and Some w if the
mobile is balanced, where w is the total weight of the mobile.

12.12 Supplementary material

• Lab 7: Modules and abstract data types

• Lab 8: Functors

• Problem set A.5: Ordered collections

http://url.cs51.io/lab7
http://url.cs51.io/lab8
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Semantics: The substitution model

We’ve introduced a broad swath of OCaml, describing both the syntax

of different constructions and their use in constructing programs. But

why the expressions of OCaml actually have the meanings they have

has been dealt with only informally.

Semantics is about what expressions mean. As described so far, ask-

ing what an OCaml expression means is tantamount to asking what it

evaluates to, what value it “means the same” as. Before getting into the

details, however, it bears considering why a formal, rigorous, precise

semantics of a programming language is even useful. Why not stick

to the informal discussion of what the constructs of a programming

language do? After all, such informal discussions, written in a natural

language (like English), seem to work just fine for reference manuals

and training videos.

There are three reasons that formalizing a semantics with mathe-

matical rigor is beneficial.

Mental hygiene Programming is used to communicate our com-

putational intentions to others. But what exactly is being com-

municated? Without a precise meaning to the expressions of the

programming language, there is room for miscommunication from

program author to reader.

Interpreters Computers generate computation by interpreting the

expressions of the programming language. Developers of inter-

preters (or compilers) for a programming language implement their

understanding of the meaning of the constructs of the program-

ming language. Without a precise meaning to the expressions of

the programming language, two interpreters might generate differ-

ent computations for the same expression, even though both were

written in good faith efforts to manifest the interpreter developers’

understandings of the language.

Metaprogramming Programs that operate over expressions of the
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programming language – such as programs to verify correctness of a

program or transform it for efficiency or analyze it for errors – must

use a precise notion of the meanings of those expressions.

For these reasons, we introduce in this chapter a technique for giving a

semantics to some small subsets of OCaml. We continue this exercise

in Chapter 19. The final project described in Chapter A – the imple-

mentation of a small subset of OCaml – relies heavily on the discussion

in these two chapters.

As noted, we’ll cash out the meaning of an expression by gener-

ating a simpler expression that “means the same”. In essence, this is

the notion of evaluation that we’ve seen before. In this chapter we’ll

introduce a first method for providing a rigorous semantics of a pro-

gramming language, based on the substitution of subexpressions,

substituting for particular expressions expressions that “mean the

same” but that are simpler.

Figure 13.1: Gottfried Wilhelm Leibniz
(1646–1716), German philosopher, (co-
)inventor of the differential and integral
calculus, and philosopher. His law of
the identity of indiscernibles underlies
substitution semantics.

The underlying conception of substitution as the basis for seman-

tics dates from 1677 in Gottfried Leibniz’s statement of the identity of

indiscernibles:

That A is the same as B signifies that the one can be substituted for the

other, salva veritate, in any proposition whatever.

Salva veritate – preserving the truth. Leibniz claims that substituting

one expression with another that means the same thing preserves the

truth of expressions.

We’ll see later (Chapters 15 and 16) that a naive interpretation of

Leibniz’s law isn’t sustainable. In particular, in the presence of state

and state change, the province of imperative programming, the law

seems to fail. But for the portion of OCaml we’ve seen so far, Leibniz’s

statement works quite well.

Following Leibniz’s view, in this chapter we provide a semantics

for a language that can be viewed as a (simple and untyped) subset

of OCaml, with constructs like arithmetic and boolean operators,

conditionals, functions (including recursive functions), and local

naming.

We provide these semantic notions in two ways: as formal rule

systems that define the evaluation relation, and as computer programs

to evaluate expressions to their values.

The particular method of providing formal semantics that we in-

troduce in this chapter is called large-step operational semantics and

is based on the N AT U R A L S E M A N T I C S method of computer scientist

Gilles Kahn (Figure 13.2).

Figure 13.2: Gilles Kahn (1946–2006),
French computer scientist, developer
of the natural semantics approach to
programming language semantics.
Kahn was president of the French
research institute INRIA, where OCaml
was developed.

The semantics we provide is F O R M A L in the sense that the semantic

rules rely only on manipulations based on the forms of the notations



S E M A N T I C S : T H E S U B S T I T U T I O N M O D E L 197

we introduce. The semantics we provide is an O P E R AT I O N A L S E M A N -

T I C S because we provide a formal specification of what programs

evaluate to, rather than what they denote.1 The semantics we provide is

1 The primary alternative method
of providing a formal semantics is
D E N OTAT I O N A L S E M A N T I C S, which
addresses exactly this issue of what
expressions denote.

a L A RG E - S T E P semantics because it characterizes directly the relation

between expressions and what they (eventually, after perhaps many

individual small steps) evaluate to, rather than characterizing the rela-

tion between expressions and what they lead to after each individual

small step. (That would be a S M A L L - S T E P S E M A N T I C S.) Notationally,

we characterize this relation between an expression P and the value v

it evaluates to with an evaluation J U D G E M E N T notated P ⇓ v , which

can be read as “the expression P evaluates to the value v”.

13.1 Semantics of arithmetic expressions

Recall the language of arithmetic expressions from Section 11.4. We

start by augmenting that language with a local naming construct, the

let 〈〉 in 〈〉 . We’ll express the abstract syntax of the language using the

following BNF:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉

Exercise 123

For brevity, we left off unary operators. Extend the grammar to add unary operators
(negation, say).

With this grammar, we can express the abstract syntax of the con-

crete expression

let x = 3 in

let y = 5 in

x * y
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as the tree

〈expr〉

〈expr〉

〈expr〉

〈expr〉

〈expr〉

〈var〉

y

〈binop〉

*

〈expr〉

〈var〉

x

in〈expr〉

〈integer〉

5

=〈var〉

y

let

in〈expr〉

〈integer〉

3

=〈var〉

x

let

What rules shall we use for evaluating the expressions of the lan-

guage? Recall that we write a judgement P ⇓ v to mean that the expres-

sion P evaluates to the value v . The VA LU E S, the results of evaluation,

are those expressions that evaluate to themselves. By convention, we’ll

use italic capitals like P , Q, etc. to stand for arbitrary expressions, and

v (possibly subscripted) to stand for expressions that are values. You

should think of P and v as expressions structured as per the abstract

syntax of the language – it is the abstract, structured expressions that

have well-defined meanings by the rules we’ll provide – though we

notate them using the concrete syntax of OCaml, since we need some

linear notation for specifying them.

Certain cases are especially simple. Numeric literal expressions like

3 or 5 are already as simplified as they can be. They evaluate to them-

selves; they are values. We could enumerate a plethora of judgements

that express this self-evaluation, like

1 ⇓ 1
2 ⇓ 2
3 ⇓ 3
4 ⇓ 4
5 ⇓ 5
· · ·

but we’d need an awful lot of them. Instead, we’ll just use a schematic

rule for capturing permissible judgements:

n ⇓ n (Rint )
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Here, we use a schematic variable n to stand for any integer, and use

the notation n for the OCaml numeral expression that encodes the

number n.

Using this schematic rule notation we can provide general rules for

evaluating other arithmetic expressions. To evaluate an expression of

the form P + Q, where P and Q are two subexpressions, we first need

to know what values P and Q evaluate to; since they will be numeric

values, we can take them to be m and n, respectively. Then the value

that P + Q evaluates to will be m +n. We’ll write the rule as follows:

P + Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ m +n

(R+)

In this rule notation, the first line is intended to indicate that we are

evaluating P + Q, the blank space to the right of the ⇓ indicating that

some further evaluation judgements are required. Those are the two

indented judgements provided to the right of the long vertical bar

between the two occurrences of ⇓. The final line provides the value

that the original expression evaluates to.

Thus, this rule can be glossed as “To evaluate an expression of

the form P + Q, first evaluate P to an integer value m and Q to an

integer value n. The value of the full expression is then the integer

literal representing the sum of m and n.” The two subderivations for

P ⇓ m and Q ⇓ n are derived independently, and not in any particular

order.

Using these two rules, we can now show a particular evaluation, like

that of the expression 3 + 5:2 2 Wait, where did that 8 come from
exactly? Since 3 ≡ 3 and 5 ≡ 5, the rule
Rint gives the result as 3+5 ≡ 8 ≡ 8.3 + 5 ⇓∣∣∣∣∣ 3 ⇓ 3

5 ⇓ 5
⇓ 8

or the evaluation of 3 + 5 + 7:

3 + 5 + 7 ⇓∣∣∣∣∣∣∣∣∣∣∣∣

3 + 5 ⇓∣∣∣∣∣ 3 ⇓ 3
5 ⇓ 5

⇓ 8
7 ⇓ 7

⇓ 15
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Exercise 124

Why is the proof for the value of 3 + 5 + 7 not structured as

3 + 5 + 7 ⇓∣∣∣∣∣∣∣∣∣∣∣

3 ⇓ 3
5 + 7 ⇓∣∣∣∣ 5 ⇓ 5

7 ⇓ 7
⇓ 12

⇓ 15 ?

We should have similar rules for other arithmetic operators. Here’s a

possible rule for division:

P / Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ ⌊m/n⌋

(R/)

In this rule, we’ve used some standard mathematical notation in the

final result: / for numeric division and ⌊ ⌋ for truncating a real number

to an integer.

These rules for addition and division may look trivial, but they are

not. The division rule specifies that the / operator in OCaml when

applied to two numerals specifies the integer portion of their ratio. The

language being specified might have been otherwise.3 The language

3 What may be mind-boggling here is
the role of the mathematical notation
used in the result part of the rule. How
is it that we can make use of notations
like ⌊m/n⌋ in defining the semantics of
the / operator? Doesn’t appeal to that
kind of mathematical notation beg the
question? Or at least call for its own
semantics? Yes, it does, but since we
have to write down the semantics of
constructs somehow or other, we use
commonly accepted mathematical
notation applied in the context of
natural language (in the case at hand,
English). You may think that this merely
postpones the problem of giving OCaml
semantics by reducing it to the problem
of giving semantics for mathematical
notation and English. You would
be right, and the problem is further
exacerbated when the semantics makes
use of mathematical notation that is not
so familiar, for instance, the substitution
notation to be introduced shortly. But
we have to start somewhere.

might have used a different operator (like //) for integer division,

P // Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ ⌊m/n⌋
(as happens to be used in Python 3 for instance). The example should

make clear the distinction between the O B J E C T L A N G UAG E whose

semantics is being defined and the M E TA L A N G UAG E being used to

define it.

Similarly, the rule could have defined the result differently, say

P / Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n ,

⇓ ⌈m/n⌉
which specifies that the result of the division is the integer resulting

from rounding up, rather than down.

Nonetheless, there is not too much work being done by these rules,

and if that were all there were to defining a semantics, there would be
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little reason to go to the trouble. Things get more interesting, however,

when additional constructs such as local naming are considered,

which we turn to next.

Exercise 125

Write evaluation rules for the other binary operators and the unary operators you added
in Exercise 123.

13.2 Semantics of local naming

The 〈expr〉 language defined in the grammar above includes a lo-

cal naming construct, whose concrete syntax is expressed with

let 〈〉 in 〈〉 . What is the semantics of such an expression? It is here

that substitution starts to play a critical role. We will take the meaning

of this local naming construct to work by substituting the value of the

definition for occurrences of the variable in the body. More precisely, we

use the following evaluation rule:

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD ] ⇓ vB

⇓ vB

(Rlet )

We’ve introduced a new notation – Q[x 7→ P ] – for substituting the

expression P for occurrences of the variable x in the expression Q. For

instance,

(x * x)[x 7→ 5] = 5 * 5

that is, substituting 5 for x in the expression x * x yields 5 * 5. (It

doesn’t yield 25 though. That would require a further evaluation, which

is what the part of the rule B [x 7→ vD ] ⇓ vB does.)

The evaluation rule Rlet can be glossed as follows: “To evaluate an

expression of the form let x = D in B , first evaluate the expres-

sion D to a value vD and evaluate the result of substituting vD for

occurrences of x in the expression B to a value vB . The value of the full

expression is then vB .”

Using this rule (and the others), we can now show

let x = 5 in x * x ⇓ 25
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as per the following derivation:

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣∣∣ 5 ⇓ 5

5 ⇓ 5
⇓ 25

⇓ 25

Let’s put this first derivation together step by step so the steps are

clear. We want a derivation that demonstrates what let x = 5 in x

* x evaluates to. It will be of the form

let x = 5 in x * x ⇓∣∣∣ ...

⇓ ·· ·

This pattern matches rule Rlet , where x plays the role of the schematic

variable x, 5 plays the role of the schematic expression D , and x *
x plays the role of B . We will plug these into the two subderivations

required. First is the subderivation evaluating D (that is, 5):

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣

5 ⇓∣∣∣ ...

⇓ ·· ·
· · ·

⇓ · · ·

This subderivation can be completed using the Rint rule, which re-

quires no subderivations itself.

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣
5 ⇓
|
⇓ 5

· · ·
⇓ · · ·

Thus, the result of this subderivation, vD is 5.

Second is the subderivation for evaluating B [x 7→ vD ] to its value vB .
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Now

B [x 7→ vD ] = (x * x)[x 7→ 5]

= x[x 7→ 5] * x[x 7→ 5]

= 5 * 5

(We’ll define this substitution operation carefully in Section 13.3.) So

the second subderivation must evaluate the expression 5 * 5:

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣ ...

⇓ ·· ·
⇓ · · ·

This second subderivation matches a rule R∗ analogous to R+. (You

would have written it in Exercise 125.) Here, 5 plays the role of both P

and Q:

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣∣∣ 5 ⇓ m

5 ⇓ n

⇓ m ·n

⇓ ·· ·

Now, the subderivations of the 5 * 5 subderivation both evaluate to

5. We use the Rint rule twice, with 5 for both m and n, so m and n are

both 5, and m ·n is 25. The result for the original expression as a whole

is therefore also 25.

let x = 5 in x * x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

5 ⇓ 5
5 * 5 ⇓∣∣∣∣∣ 5 ⇓ 5

5 ⇓ 5
⇓ 25

⇓ 25

Exercise 126

Carry out derivations for the following expressions:

1. let x = 3 in let y = 5 in x * y
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2. let x = 3 in let y = x in x * y

3. let x = 3 in let x = 5 in x * y

4. let x = 3 in let x = x in x * x

5. let x = 3 in let x = y in x * x

Are the values for these expressions according to the semantics consistent with how
OCaml evaluates them?

13.3 Defining substitution

Because of the central place of substitution in providing the semantics

of the language, this approach to semantics is referred to as a S U B S T I -

T U T I O N S E M A N T I C S.

Some care is needed in precisely defining this substitution opera-

tion. A start (which we’ll see in Section 13.3.2 isn’t fully correct) is given

by the following recursive equational definition:4 4 The ≡ operator here is intended to
indicate syntactic identity, that is, that
its arguments are the same (syntactic)
expression. Thus, x ̸≡ y specifies that
the two variables notated x and y
are not two occurrences of the same
variable.

m[x 7→Q] = m

x[x 7→Q] =Q

y[x 7→Q] = y where x ̸≡ y

(P + R)[x 7→Q] = P [x 7→Q] + R[x 7→Q]

and similarly for other binary operators

(let y = D in B)[x 7→Q] = let y = D[x 7→Q] in B [x 7→Q]

Exercise 127

Verify using this definition for substitution the derivation above showing that
(x * x)[x 7→ 5] = 5 * 5.

13.3.1 A problem with variable scope

You may have noticed in Exercise 126 that some care must be taken

when substituting. Consider the following case:

let x = 3 in let x = 5 in x

Intuitively, given the scope rules of OCaml described informally in Sec-

tion 5.5, this expression should evaluate to 5, since the final occurrence

of x is bound by the inner let (defined to be 5), not the outer one.
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However, if we’re not careful, we’ll get a derivation like this:

let x = 3 in let x = 5 in x

⇓∣∣∣∣∣∣∣∣∣∣∣∣

3 ⇓ 3
let x = 5 in 3 ⇓∣∣∣∣∣ 5 ⇓ 5

3 ⇓ 3
⇓ 3

⇓ 3

The highlighted expression is supposed to be the result of replacing x

with its value 3 in the body of the definition let x = 5 in x, that is,

(let x = 5 in x)[x 7→ 3] .

Using the equational definition given above, we have

(let x = 5 in x)[x 7→ 3]

= let x = 5[x 7→ 3] in x[x 7→ 3]

= let x = 5 in x[x 7→ 3]

= let x = 5 in 3 .

13.3.2 Free and bound occurrences of variables

It appears we must be very careful in how we define this substitution

operation P [x 7→ Q]. In particular, we don’t want to replace every

occurrence of the token x in P , only the free occurrences. The variable

being introduced in a let should definitely not be replaced, nor should

any occurrences of x within the body of a let that also introduces x.

A binding construct (a let or a fun) is said to B I N D the variable

that it introduces. A variable occurrence is said to be B O U N D if it falls

within the scope of a construct that binds that variable. Thus, in the

expressions fun x -> x + y or let x = 3 in x + y, the high-

lighted occurrences of x are bound occurrences, bound by the fun or

let, respectively, in the expressions.

A variable occurrence is said to be F R E E if it is not bound. Thus,

in the expressions fun x -> x + y or let x = 3 in x + y , the

occurrences of y are free occurrences.

Exercise 128

In the following expressions, draw a line connecting each bound variable to the binding
construct that binds it. Then circle all of the free occurrences of variables.

1. x

2. x + y
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3. let x = 3 in x

4. let f = f 3 in x + y

5. (fun x -> x + x) x

6. fun x -> let x = y in x + 3

We can define the set5 of F R E E VA R I A B L E S in an expression P , no- 5 For a review of the set notations that
we use, see Section B.5.tated FV (P ), through the recursive definition in Figure 13.3. By way

of example, the definition says that the free variables in the expres-

sion fun y -> f (x + y) are just f and x, as shown in the following

derivation:

FV (fun y -> f (x + y)) = FV (f (x + y))− {y}

= FV (f)∪FV (x + y)− {y}

= {f}∪FV (x)∪FV (y)− {y}

= {f}∪ {x}∪ {y}− {y}

= {f,x,y}− {y}

= {f,x}

Exercise 129

Use the definition of FV to derive the set of free variables in the expressions below.
Circle all of the free occurrences of the variables.

1. let x = 3 in let y = x in f x y

2. let x = x in let y = x in f x y

3. let x = y in let y = x in f x y

4. let x = fun y -> x in x

Exercise 130

The definition of FV in Figure 13.3 is incomplete, in that it doesn’t specify the free
variables in a let rec expression. Add appropriate rules for this construct of the
language, being careful to note that in an expression like let rec x = fun y -> x in

x, the variable x is not free. (Compare with Exercise 129(4).)

13.3.3 Handling variable scope properly

Now that we have formalized the idea of free and bound variables,

it may be clearer what is going wrong in the previous substitution

example. The substitution rule for substituting into a let expression

(let y = D in B)[x 7→Q] = let y = D[x 7→Q] in B [x 7→Q]

shouldn’t apply when x and y are the same variable. In such a case, the

occurrences of x in D or B are not free occurrences, but are bound by

the let. We modify the definition of substitution accordingly:
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m[x 7→Q] = m

x[x 7→Q] =Q

y[x 7→Q] = y where x ̸≡ y

(P + R)[x 7→Q] = P [x 7→Q] + R[x 7→Q] and similarly for other binary operators

(let y = D in B)[x 7→Q] = let y = D[x 7→Q] in B [x 7→Q] where x ̸≡ y

(let x = D in B)[x 7→Q] = let x = D[x 7→Q] in B

Exercise 131

Use the definition of the substitution operation above to give the expressions (in con-
crete syntax) specified by the following substitutions:

1. (x + x)[x 7→ 3]

2. (x + x)[y 7→ 3]

3. (x * x)[x 7→ 3 + 4]

4. (let x = y in y + x)[y 7→ z]

5. (let x = y in y + x)[x 7→ z]

Exercise 132

Use the semantic rules developed so far (see Figure 13.5) to reduce the following expres-
sions to their values. Show the derivations.

1. let x = 3 * 4 in
x + x

2. let y = let x = 5
in x + 1

in y + 2

13.4 Implementing a substitution semantics

Given a grammar and appropriate semantic evaluation rules and def-

initions for substitution, it turns out to be quite simple to implement

the corresponding semantics, as a function that evaluates expressions

to their values.

The grammar defining the abstract syntax of the language (repeated

here for reference)

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉

can be implemented, as we have done before (Section 11.4), with an

algebraic type definition
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# type binop = Plus | Divide ;;

type binop = Plus | Divide

# type varspec = string ;;

type varspec = string

# type expr =

# | Int of int

# | Var of varspec

# | Binop of binop * expr * expr

# | Let of varspec * expr * expr ;;

type expr =

Int of int

| Var of varspec

| Binop of binop * expr * expr

| Let of varspec * expr * expr

The varspec type specifies strings as a means to differentiate distinct

variables. The binop type enumerates the various binary operators.

(For brevity, in this example, we’ve only included two binary operators,

for addition and division.) The expr type provides the alternative

methods for building expressions recursively.

Then, the abstract syntax for the concrete expression

let x = 3 in

let y = 5 in

x / y

is captured by the OCaml expression

# Let ("x", Int 3,

# Let ("y", Int 5,

# Binop (Divide, Var "x", Var "y"))) ;;

- : expr =

Let ("x", Int 3, Let ("y", Int 5, Binop (Divide, Var "x", Var

"y")))

Exercise 133

Augment the type definitions to allow for other binary operations (subtraction and
multiplication, say) and for unary operations (negation).

13.4.1 Implementing substitution

With a representation of expressions in hand, we can proceed to im-

plement various useful functions over the expressions. Rather than

provide implementations, we leave them as exercises.

Exercise 134

Write a function subst : expr -> varspec -> expr -> expr that performs substi-
tution, that is, subst p x q returns the expression that is the result of substituting q for
the variable x in the expression p. For example,
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# subst (Binop (Plus, Var "x", Var "y")) "x" (Int 3) ;;
- : expr = Binop (Plus, Int 3, Var "y")
# subst (Binop (Plus, Var "x", Var "y")) "y" (Int 3) ;;
- : expr = Binop (Plus, Var "x", Int 3)
# subst (Binop (Plus, Var "x", Var "y")) "z" (Int 3) ;;
- : expr = Binop (Plus, Var "x", Var "y")

13.4.2 Implementing evaluation

Now the semantics of the language – the evaluation of expressions

to their values – can be implemented as a recursive function eval :

expr -> expr, which follows the evaluation rules just introduced. The

type of the function indicates that the header line should be

let rec eval (exp : expr) : expr = ...

The computation proceeds based on the structure of exp, which might

be any of the structures introducing the semantic rules. Consequently,

we match on these structures:

let rec eval (exp : expr) : expr =

match exp with

| Int n -> ...

| Var x -> ...

| Binop (Plus, e1, e2) -> ...

| Binop (Divide, e1, e2) -> ...

| Let (var, def, body) -> ...

The computation for each of the cases mimics the computations in the

evaluation rules exactly. Integers, for instance, are self-evaluating.

let rec eval (exp : expr) : expr =

match exp with

| Int n -> Int n

| Var x -> ...

| Binop (Plus, e1, e2) -> ...

| Binop (Divide, e1, e2) -> ...

| Let (var, def, body) -> ...

The second pattern concerns what should be done for evaluating free

variables in expressions. (Presumably, any bound variables were sub-

stituted away by virtue of the final pattern-match.) We have provided

no evaluation rule for free variables, and for good reason. Expressions

with free variables, called O P E N E X P R E S S I O N S, don’t have a value in

and of themselves. Consequently, we can simply report an error upon

evaluation of a free variable. We introduce an exception for this pur-

pose.

let rec eval (exp : expr) : expr =

match exp with

| Int n -> Int n

| Var x -> raise (UnboundVariable x)

| Binop (Plus, e1, e2) -> ...

| Binop (Divide, e1, e2) -> ...

| Let (var, def, body) -> ...
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The binary operator rules work by recursively evaluating the operands

and applying an appropriate computation to the results.

let rec eval (exp : expr) : expr =

match exp with

| Int n -> Int n

| Var x -> raise (UnboundVariable x)

| Binop (Plus, e1, e2) ->

let Int m = eval e1 in

let Int n = eval e2 in

Int (m + n)

| Binop (Divide, e1, e2) ->

let Int m = eval e1 in

let Int n = eval e2 in

Int (m / n)

| Let (var, def, body) -> ...

Finally, the naming rule Rlet performs substitution of the value of

the definition in the body, and evaluates the result. We appeal to the

function subst from Exercise 134.

# exception UnboundVariable of string ;;

exception UnboundVariable of string

# let rec eval (exp : expr) : expr =

# match exp with

# | Int n -> Int n (* R_int *)

# | Var x -> raise (UnboundVariable x)

# | Binop (Plus, e1, e2) -> (* R_+ *)

# let Int m = eval e1 in

# let Int n = eval e2 in

# Int (m + n)

# | Binop (Divide, e1, e2) -> (* R_/ *)

# let Int m = eval e1 in

# let Int n = eval e2 in

# Int (m / n)

# | Let (var, def, body) -> (* R_let *)

# let def' = eval def in

# eval (subst body var def') ;;

Lines 7-8, characters 0-11:

7 | let Int n = eval e2 in

8 | Int (m + n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

Lines 6-8, characters 0-11:

6 | let Int m = eval e1 in

7 | let Int n = eval e2 in

8 | Int (m + n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

Lines 11-12, characters 0-11:

11 | let Int n = eval e2 in
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12 | Int (m / n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

Lines 10-12, characters 0-11:

10 | let Int m = eval e1 in

11 | let Int n = eval e2 in

12 | Int (m / n)

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Var _|Binop (_, _, _)|Let (_, _, _))

val eval : expr -> expr = <fun>

Two problems jump out: First, violating the edict of intention,

we’ve not provided information about what to do in cases where the

arguments to an integer operator evaluate to something other than in-

tegers. These show up as “pattern-matching not exhaustive” warnings.

Second, violating the edict of irredundancy, the code for binary op-

erators is quite redundant. We’ll solve both problems simultaneously

by factoring out the redundancy into a function for evaluating binary

operator expressions. We’ll introduce another exception for reporting

ill-formed expressions.

# exception UnboundVariable of string ;;

exception UnboundVariable of string

# exception IllFormed of string ;;

exception IllFormed of string

# let binopeval (op : binop) (v1 : expr) (v2 : expr)

# : expr =

# match op, v1, v2 with

# | Plus, Int x1, Int x2 -> Int (x1 + x2)

# | Plus, _, _ ->

# raise (IllFormed "can't add non-integers")

# | Divide, Int x1, Int x2 -> Int (x1 / x2)

# | Divide, _, _ ->

# raise (IllFormed "can't divide non-integers") ;;

val binopeval : binop -> expr -> expr -> expr = <fun>

# let rec eval (e : expr) : expr =

# match e with

# | Int _ -> e

# | Var x -> raise (UnboundVariable x)

# | Binop (op, e1, e2) ->

# binopeval op (eval e1) (eval e2)

# | Let (x, def, body) ->

# eval (subst body x (eval def)) ;;

val eval : expr -> expr = <fun>

This function allows evaluating expressions in the language reflecting

the semantics of those expressions.

# eval (Binop (Plus, Int 5, Int 10)) ;;

- : expr = Int 15
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# eval (Let ("x", Int 3,

# Let ("y", Int 5,

# Binop (Divide, Var "x", Var "y")))) ;;

- : expr = Int 0

13.5 Problem section: Semantics of booleans and condi-

tionals

Exercise 135

Augment the abstract syntax of the language to introduce boolean literals true and
false. Add substitution semantics rules for the new constructs. Adjust the definitions of
subst and eval to handle these new literals.

Exercise 136

Augment the abstract syntax of the language to add conditional expressions (if 〈〉
then 〈〉 else 〈〉 ). Add substitution semantics rules for the new construct. Adjust the
definitions of subst and eval to handle conditionals.

13.6 Semantics of function application

We can extend our language further, by introducing (anonymous)

functions and their application. We augment the language with two

rules for function expressions and function applications as follows:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉
| fun 〈var〉 -> 〈exprbody〉
| 〈exprfun〉 〈exprarg〉

To complete the semantics for this language, we simply have to add

rules for the evaluation of functions and applications.

The case of functions is especially simple. Functions are pending

computations; they don’t take effect until they are applied. So we can

take functions to be values, that is, they self-evaluate.

fun x -> B ⇓ fun x -> B (Rfun)

All the work happens upon application. To evaluate an application,

we must evaluate the function part to get the function to be applied

and evaluate the argument part to get the argument’s value, and then

evaluate the body of the function, after substituting in the argument
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for the variable bound by the function.

P Q ⇓∣∣∣∣∣∣∣
P ⇓ fun x -> B

Q ⇓ vQ

B [x 7→ vQ ] ⇓ vB

⇓ vB

(Rapp)

Exercise 137

Give glosses for these two rules Rfun and Rapp, as was done for the previous rules R+ and
Rlet .

Let’s try an example:

(fun x -> x + x) (3 * 4)

Intuitively, this should evaluate to 24. The derivation proceeds as

follows:

(fun x -> x + x) (3 * 4)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(fun x -> x + x) ⇓ (fun x -> x + x)

3 * 4 ⇓∣∣∣∣∣ 3 ⇓ 3
4 ⇓ 4

⇓ 12
12 + 12 ⇓∣∣∣∣∣ 12 ⇓ 12

12 ⇓ 12
⇓ 24

⇓ 24

The combination of local naming and anonymous functions gives

us the ability to give names to functions:

let double = fun x -> 2 * x in

double (double 3)
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The derivations start getting a bit complicated:

let double = fun x -> 2 * x in double (double 3)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> 2 * x ⇓ fun x -> 2 * x

(fun x -> 2 * x) ((fun x -> 2 * x) 3)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> 2 * x ⇓ fun x -> 2 * x

(fun x -> 2 * x) 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> 2 * x ⇓ fun x -> 2 * x

3 ⇓ 3
2 * 3 ⇓∣∣∣∣∣ 2 ⇓ 2

3 ⇓ 3
⇓ 6

⇓ 6
2 * 6 ⇓ 12

⇓ 12
⇓ 12

Exercise 138

Carry out similar derivations for the following expressions:

1. (fun x -> x + 2) 3

2. let f = fun x -> x in
f (f 5)

3. let square = fun x -> x * x in
let y = 3 in
square y

4. let id = fun x -> x in
let square = fun x -> x * x in
let y = 3 in
id square y

13.6.1 More on capturing free variables

There is still a problem in our definition of substitution. Consider the

following expression: let f = fun x -> y in (fun y -> f 3)

1. Intuitively speaking, this expression seems ill-formed; it defines a

function f that makes use of an unbound variable y in its body. But

using the definitions that we have given so far, we would have the
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following derivation:

let f = fun x -> y in (fun y -> f 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> y ⇓ fun x -> y

(fun y -> (fun x -> y) 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(fun y -> (fun x -> y) 3) ⇓ (fun y -> (fun x -> y) 3)

1 ⇓ 1
(fun x -> 1) 3 ⇓∣∣∣∣∣∣∣

fun x -> 1 ⇓ fun x -> 1

1 ⇓ 1
1 ⇓ 1

⇓ 1
⇓ 1

⇓ 1
The problem happens in the highlighted expression, where according

to the Rlet rule we should be evaluating ((fun y -> f 3) 1)[f 7→
fun x -> y], which according to our current understanding of sub-

stitution should be the highlighted (fun y -> (fun x -> y) 3)

1.

We’re sneaking the y in fun x -> y inside the scope of the fun y.

That’s not kosher. And the OCaml interpreter seems to agree:

# let f = fun x -> y in (fun y -> f 3) 1 ;;

Line 1, characters 17-18:

1 | let f = fun x -> y in (fun y -> f 3) 1 ;;

^

Error: Unbound value y

We need to change the definition of substitution to make sure that

such VA R I A B L E C A P T U R E doesn’t occur. The following rules for sub-

stituting inside a function work by replacing the bound variable y with

a new freshly minted variable, say z, that doesn’t occur elsewhere,

renaming all occurrences of y accordingly.

(fun x -> P)[x 7→Q] = fun x -> P

(fun y -> P)[x 7→Q] = fun y -> P [x 7→Q]

where x ̸≡ y and y ̸∈ FV (Q)

(fun y -> P)[x 7→Q] = fun z -> P [y 7→ z][x 7→Q]

where x ̸≡ y and y ∈ FV (Q) and z is a fresh variable
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Exercise 139

Carry out the derivation for

let f = fun x -> y in (fun y -> f 3) 1

as above but with this updated definition of substitution. What happens at the step
highlighted above?

Exercise 140

What should the corresponding rule or rules defining substitution on let · · · in · · ·
expressions be? That is, how should the following rule be completed? You’ll want to think
about how this construct reduces to function application in determining your answer.

(let y = Q in R)[x 7→ P ] = ·· ·

Try to work out your answer before checking it with the full definition of substitution in
Figure 13.4.

Exercise 141

Use the definition of the substitution operation above to determine the results of the
following substitutions:

1. (fun x -> x + x)[x 7→ 3]

2. (fun x -> y + x)[x 7→ 3]

3. (let x = y * y in x + x)[x 7→ 3]

4. (let x = y * y in x + x)[y 7→ 3]

The implementation of substitution should be updated to han-

dle this issue of avoiding the capture of free variables. The next two

exercises do so.

Exercise 142

Write a function free_vars : expr -> varspec Set.t that returns a set of varspecs
corresponding to the free variables in the expression as per Figure 13.3. (Recall the
discussion of the OCaml library module Set in Section 12.8.)

Exercise 143

Revise the definition of the function subst from Section 13.4.1 to eliminate the problem
of variable capture by implementing the set of rules given in Figure 13.4.

FV (m) =∅ (integers) (13.1)

FV (x) = {x} (variables) (13.2)

FV (P + Q) = FV (P )∪FV (Q) (and similarly for other binary operators) (13.3)

FV (P Q) = FV (P )∪FV (Q) (applications) (13.4)

FV (fun x -> P ) = FV (P )− {x} (functions) (13.5)

FV (let x = P in Q) = (FV (Q)− {x})∪FV (P ) (binding) (13.6)

Figure 13.3: Definition of FV , the set
of free variables in expressions for a
functional language with naming and
arithmetic.
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m[x 7→ P ] = m (13.7)

x[x 7→ P ] = P (13.8)

y[x 7→ P ] = y where x ̸≡ y (13.9)

(Q + R)[x 7→ P ] =Q[x 7→ P ] + R[x 7→ P ] (13.10)

and similarly for other binary operators

Q R[x 7→ P ] =Q[x 7→ P ]R[x 7→ P ] (13.11)

(fun x -> Q)[x 7→ P ] = fun x -> Q (13.12)

(fun y -> Q)[x 7→ P ] = fun y -> Q[x 7→ P ] (13.13)

where x ̸≡ y and y ̸∈ FV (P )

(fun y -> Q)[x 7→ P ] = fun z -> Q[y 7→ z][x 7→ P ] (13.14)

where x ̸≡ y and y ∈ FV (P ) and z is a fresh variable

(let x = Q in R)[x 7→ P ] = let x = Q[x 7→ P ] in R (13.15)

(let y = Q in R)[x 7→ P ] = let y = Q[x 7→ P ] in R[x 7→ P ] (13.16)

where x ̸≡ y and y ̸∈ FV (P )

(let y = Q in R)[x 7→ P ] = let z = Q[x 7→ P ] in R[y 7→ z][x 7→ P ] (13.17)

where x ̸≡ y and y ∈ FV (P ) and z is a fresh variable

Figure 13.4: Definition of substitution of
expressions for variables in expressions
for a functional language with naming
and arithmetic.
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13.7 Substitution semantics of recursion

You may observe that the rule for evaluating let 〈〉 in 〈〉 expressions

doesn’t allow for recursion. For instance, the Fibonacci example pro-

ceeds as follows:

let f = fun n -> if n = 0 then 1 else n * f (n - 1) in f 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun n -> if n = 0 then 1 else n * f (n - 1) ⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

(fun n -> if n = 0 then 1 else n * f (n - 1)) 2

⇓∣∣∣∣∣∣∣
fun n -> if n = 0 then 1 else n * f (n - 1) ⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

2 ⇓ 2
if 2 = 0 then 1 else 2 * f (2 - 1) ⇓ ???

⇓ ???

⇓ ???

The highlighted expression, if 2 = 0 then 1 else 2 * f (2 - 1),

eventually leads to an attempt to apply the unbound variable f to its

argument 1.

Occurrences of the name definiendum in the body are properly

replaced with the definiens, but occurrences in the definiens itself are

not. But what should those recursive occurrences of f be replaced by?

It doesn’t suffice simply to replace them with the definiens, as that

still has a free occurrence of the definiendum. Rather, we’ll replace

them with their own recursive let construction, thereby allowing

later occurrences to be handled as well. In the factorial example, we’ll

replace the free occurrence of f in the definiens by let rec f = fun

n -> if n = 0 then 1 else n * f (n - 1) in f, that is, an

expression that evaluates to whatever f evaluates to in the context of

the recursive definition itself.

Thus the substitution semantics rule for let rec, subtly different

from the let rule, will be as follows:

let rec x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD [x 7→ let rec x = vD in x]] ⇓ vB

⇓ vB

(Rletrec)

Continuing the factorial example above, we would substitute for f in

the third line the expression let rec f = fun n -> if n = 0 then

1 else n * f (n - 1) in f, forming

https://en.wiktionary.org/wiki/definiendum
https://en.wiktionary.org/wiki/definiens
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(fun n -> if n = 0 then 1
else n * (let rec f = fun n -> if n = 0 then 1

else n * f (n-1) in f) (n-1)) 2

Proceeding further, the final line becomes

if 2 = 0 then 1
else 2 * (let rec f = fun n -> if n = 0 then 1

else n * f (n-1) in f) (2-1))

which will (eventually) evaluate to 2.

Exercise 144

Thanklessly continue this derivation until it converges on the final result for the factorial
of 2, viz., 2. Then thank your lucky stars that we have computers to do this kind of rote
repetitive task for us.

We’ll provide an alternative approach to semantics of recursion

when we introduce environment semantics in Chapter 19.

❧

We defined a set of formal rules providing the meanings of OCaml

expressions via simplifying substitutions of equals for equals, resulting

finally in the values that most simply encapsulate the meanings of

complex expressions.

An interpreter for a programming language (the object language)

written in the same programming language (as metalanguage) – a

M E TAC I RC U L A R I N T E R P R E T E R – provides another way of getting at the

semantics of a language. In fact, the first semantics for the program-

ming language L I S P was given as a metacircular interpreter.

In both cases, we see the advantage of having a language with a

small core, sprinkled liberally with syntactic sugar, since only the core

need be given the formal treatment through rules or metacircular

interpretation. The syntactic sugar can be translated out. For instance,

although the metacircular interpreter that we started developing here

does not handle the more compact function definition notation seen

in

let f x = x + 1

this expression can be taken as syntactic sugar for (that is, a variant

concrete syntax for the abstract syntax of) the expression

let f = fun x -> x + 1

which we already have defined formal rules to handle. In the case of a

metacircular interpreter, we can imagine that the parser for the former

expression will simply provide the abstract syntax of the latter.

Our exploration of rigorous semantics for programs will continue

once the substitution approach starts to falter in the presence of state

change and imperative programming.
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n ⇓ n (Rint )

fun x -> B ⇓ fun x -> B (Rfun)

P + Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ m +n

(R+)

P / Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ ⌊m/n⌋

(R/)

P Q ⇓∣∣∣∣∣∣∣
P ⇓ fun x -> B

Q ⇓ vQ

B [x 7→ vQ ] ⇓ vB

⇓ vB

(Rapp)

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD ] ⇓ vB

⇓ vB

(Rlet )

let rec x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD [x 7→ let rec x = vD in x]] ⇓ vB

⇓ vB

(Rletrec)

Figure 13.5: Substitution semantics
rules for evaluating expressions, for a
functional language with naming and
arithmetic.
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13.8 Supplementary material

• Lab 9: Substitution semantics

http://url.cs51.io/lab9




14

Efficiency, complexity, and recurrences

We say that some agent is efficient if it makes the best use of a scarce

resource to generate a desired output. Furnaces turn the scarce re-

source of fuel into heating, so an efficient furnace is one that generates

the most heat using the least fuel. Similarly, an efficient shooter in

basketball generates the most points using the fewest field goal at-

tempts. Standard measurements of efficiency reflect these notions.

Furnaces are rated for Annual Fuel Utilization Efficiency, NBA players

for Effective Field Goal Percentage.

Computer programs use scarce resources to generate desired out-

puts as well. Most prominently, the resources expended are time and

“space” (the amount of memory required during the computation),

though power is increasingly becoming a resource of interest.

Up to this point, we haven’t worried about the efficiency of the pro-

grams we’ve written. And for good reason. Donald Knuth, Professor

Emeritus of the Art of Computer Programming at Stanford Univer-

sity and Turing-Award–winning algorithmist, warns of P R E M AT U R E

O P T I M I Z AT I O N:

Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs, and

these attempts at efficiency actually have a strong negative impact when

debugging and maintenance are considered. We should forget about

small efficiencies, say about 97% of the time: premature optimization is

the root of all evil. (Knuth, 1974)

Knuth’s point is that programmers’ time is a scarce resource too, and

often the most important one.

Figure 14.1: Donald Knuth (1938–
), Professor Emeritus of the Art of
Computer Programming at Stanford
University. In this photo, he holds a
volume of his seminal work The Art of
Computer Programming.

Nonetheless, sometimes issues of code efficiency become impor-

tant – Knuth’s 3% – and in any case the special ways of thinking and

tools for reasoning about efficiency of computation are important

aspects of computational literacy, most centrally ideas of

• Complexity as the scaling of resource usage,

https://url.cs51.io/bep
https://url.cs51.io/at4
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• Comparison of asymptotic scaling,

• Big-O notation for specifying asymptotic scaling, and

• Recurrences as the means to capture and solve for resource usage.

In this chapter, we describe these important computational notions

in the context of an extended example, the comparison of two sorting

functions.

14.1 The need for an abstract notion of efficiency

With furnaces and basketball players, we can express a notion of ef-

ficiency as a single number – Annual Fuel Utilization Efficiency or

Effective Field Goal Percentage. With computer programs, things are

not so simple. Consider, for example, one of the most fundamental of

all computations, S O RT I N G – ordering the elements of a list according

to a comparison function. Given a particular function to sort lists, we

can’t characterize its efficiency – how long it takes to sort lists – as a

single number. What number would we use? That is, how long does it

take to sort a list of integers using the function? The answer, of course,

is “it depends”; in particular, it depends on

• Which input? How many elements are in the list? What order are

they in? Are there a lot of duplicate items, or very few?

• How computed? Which computer are you using, and which soft-

ware environment? How long does it take to execute the primitive

computations out of which the function is built?

All of these issues affect the running time of a particular sorting func-

tion. To make any progress on comparing the efficiency of functions in

the face of such intricacy, it is clear that we will need to come up with a

more abstract way of characterizing the efficiency of computations.

We address these two issues separately. To handle the question of

“which input”, we might characterize the efficiency of the sorting pro-

gram not as a number (a particular running time), but as a function

from inputs to numbers. However, this doesn’t seem an appealing

option; we want to be able to draw some general conclusions for com-

paring sorting programs, not have to reassess for each possible input.

Nonetheless, the idea of characterizing efficiency in terms of some

function is a useful one. Broadly speaking, algorithms take longer on

bigger problems, so we might use a function that provides the time re-

quired as a function of the size of the input. In the case of sorting lists,

we might take the size of the input to be the number of elements in the

list to be sorted. Unfortunately, for any given input size, the program
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might require quite different amounts of time. What should we take

to be the time required for problems of a given size. There are several

options: We might consider the time required on average for instance.

But we will use the time required in the worst case. When comparing

algorithms, we might well want to plan for the worst case behavior of

a program, just to play it safe. We will refer to the function from input

sizes to worst-case time needed as the W O R S T- C A S E C O M P L E X I T Y of

the algorithm.

We’ve made some progress. Rather than thinking of resource usage

as a single number (too coarse) or a function from problem inputs

to numbers (too fine), we use the programs worst-case complexity, a

function from sizes of inputs to worst-case resource usage on inputs

with those sizes. But even this is not really well defined, because of the

“How computed?” question. One and the same program, running on

different computers, say, may have wildly different running times.

To make further progress, let’s take a concrete example. We’ll exam-

ine two particular sorting algorithms.

14.2 Two sorting functions

A module signature for sorting can be given by

# module type SORT =

# sig

# (* sort lt xs -- Returns the list xs sorted in increasing

# order by the "less than" function lt. *)

# val sort : ('a -> 'a -> bool) -> 'a list -> 'a list

# end ;;

module type SORT =

sig val sort : ('a -> 'a -> bool) -> 'a list -> 'a list end

The sort function takes as its first argument a comparison function,

which specifies when one element should be sorted before another in

the desired ordering. Figure 14.2: An example of the recursive
insertion sort algorithm, sorting the list
[1, 3, 5, 7, 8, 6, 4, 2]. Each
recursive call is marked with a rounded
box, in which the tail is sorted, and the
head then inserted.

A simple implementation of the signature is the I N S E RT I O N S O RT

algorithm, which operates by inserting the elements of the unsorted

list one by one into an empty list, each in its appropriate place.1

1 Insertion sort could have been imple-
mented more elegantly using a single
fold_left, but we make the recursion
explicit to facilitate the later complexity
analysis.

# module InsertSort : SORT =

# struct

# let rec insert lt xs x =

# match xs with

# | [] -> [x]

# | hd :: tl -> if lt x hd then x :: xs

# else hd :: (insert lt tl x)

#

# let rec sort (lt : 'a -> 'a -> bool)

# (xs : 'a list)

# : 'a list =
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# match xs with

# | [] -> []

# | hd :: tl -> insert lt (sort lt tl) hd

# end ;;

module InsertSort : SORT

We can use insertion sort to sort some integers in increasing order:

# InsertSort.sort (<) [1; 3; 5; 7; 8; 6; 4; 2] ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8]

or some floats in decreasing order:

# InsertSort.sort (>) [2.71828; 1.41421; 3.14159; 1.61803] ;;

- : float list = [3.14159; 2.71828; 1.61803; 1.41421]

An especially elegant implementation of sorting is the M E RG E S O RT

algorithm, first described by John von Neumann in 1945 (according

to Knuth (1970)). It works by dividing the list to be sorted into two

lists of (roughly) equal size. Each of the halves is then sorted, and the

resulting sorted halves are merged together to form the sorted full

list. This recursive process of dividing the list in half can’t continue

indefinitely; at some point the recursion must “bottom out”, or the

process will never terminate. In the implementation below, we bottom

out when the list to be sorted contains at most a single element. The

sort function can be defined then as

let rec sort lt xs =

match xs with

| []

| [_] -> xs

| _ -> let first, second = split xs in

merge lt (sort lt first) (sort lt second) ;;

Figure 14.3: An example of the recursive
mergesort algorithm, sorting the list
[1, 3, 5, 7, 8, 6, 4, 2]. Each
recursive call is marked with a rounded
box, in which the list is split, sorted, and
merged.

The mergesort definition above makes use of functions

split : ’a list -> ’a list * ’a list

and

merge : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a

list .

A call to split lst returns a pair of lists, each containing half of

the elements of lst. (In case, lst has an odd number of elements,

the extra element can go in either list in the returned pair.) A call to

merge lt xs ys returns a list containing all of the elements of xs and

ys sorted according to lt; it assumes that xs and ys are themselves

already sorted.

Exercise 145

Provide implementations of the functions split and merge, and package them together
with the sort function just provided in a module MergeSort satisfying the SORT module
type. You should then have a module that allows for the following interactions:
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# MergeSort.sort (<) [1; 3; 5; 7; 8; 6; 4; 2] ;;
- : int list = [1; 2; 3; 4; 5; 6; 7; 8]
# MergeSort.sort (>) [2.7183; 1.4142; 3.1416; 1.6180] ;;
- : float list = [3.1416; 2.7183; 1.618; 1.4142]

(Another elegant recursive sorting algorithm, quicksort, is explored

further in Section 16.4.)

14.3 Empirical efficiency

How efficient are these algorithms? The time usage of the algorithms

can be compared by timing each of them on the same input. Here,

we make use of a simple timing function call_timed : (’a -> ’b)

-> ’a -> (’b * float). Calling call_timed f x evaluates the

application of the function f to x, returning the result paired with the

number of milliseconds required to perform the computation.

Now we can sort a list using the two sorting algorithms, reporting

the timings as well.2

2 We’re taking advantage of sev-
eral useful functions here. The
map function from the List library
module is familiar from Chapter 8.
The Absbook module, available at
http://url.cs51.io/absbookml provides
some useful functions that we’ll use
throughout the book, for example,
the range function and several timing
functions.

# (* Generate some lists of random integers *)

# let shortlst = List.init 5 (fun _ -> Random.int 1000) ;;

val shortlst : int list = [344; 685; 182; 641; 439]

# let longlst = List.init 500 (fun _ -> Random.int 1000) ;;

val longlst : int list =

[500; 104; 20; 921; 370; 217; 885; 949; 678; 615; ...]

# (* test_repeated count f x -- Apply `f` to `x` `count`
# times, ignoring the results and returning the time

# taken in milliseconds. *)

# let test_repeated sort lst label =

# let _, time = Absbook.call_timed

# (List.init 1000)

# (fun _ -> (sort (<) lst)) in

# Printf.printf "%-20s %10.4f\n" label time ;;

val test_repeated : (('a -> 'a -> bool) -> 'b -> 'c) -> 'b ->

string -> unit =

<fun>

# (* Sort each list two ways *)

# List.iter (fun (sort, lst, label) ->

# test_repeated sort lst label)

# [ InsertSort.sort, shortlst, "insertion short";

# MergeSort.sort, shortlst, "merge short";

# InsertSort.sort, longlst, "insertion long";

# MergeSort.sort, longlst, "merge long" ] ;;

insertion short 0.6180

merge short 1.2631

insertion long 3023.9391

merge long 459.2381

- : unit = ()

Not surprisingly, it appears that sometimes the insertion sort algo-

rithm is faster (as on shortlst) and sometimes mergesort is faster (as

http://url.cs51.io/absbookml
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on longlst). It doesn’t seem possible to give a definitive answer as to

which is faster in general.

Figure 14.4: Run time in seconds for
sorting random lists of lengths varying
from 1,000 to 10,000 elements, gener-
ated by averaging run time over 100
trials. The two lines show performance
for insertion sort and merge sort, with
insertion sort times using the right scale
to allow for comparison.

If we examine the performance of the algorithm for a broader range

of cases, however, a pattern emerges. For short lists, insertion sort is

somewhat faster, but as the lists grow in length, the time needed to

sort them grows faster for insertion sort than for mergesort, so that

eventually mergesort shows a consistent performance advantage.

The pattern is quite clear from the graph in Figure 14.4. The key to

comparing the algorithms, then, is not their comparative efficiency on

any particular list, but rather the character of their efficiency as their

inputs grow in size. As we argued in Section 14.1, thinking about the

time required as a function of the size of the inputs looks like a good

idea.

However, as also noted above, a problem with analyzing algorithms,

as we have just done, by running them with particular implementa-

tions on particular computers on particular lists, is that the results may

apply only for those particulars. Instead, we’d like a way of character-

izing the algorithms’ relative performance whatever the particulars.

Measuring running times empirically is subject to idiosyncrasies of the

measurement exercise: the relative time required for different prim-

itive operations on the particular computer being used and with the

particular software tools, what other operations were happening on

the computer at the same time, imprecision in the computer’s clock,

whether the operating system is slowing down or speeding up the CPU



E F F I C I E N C Y, C O M P L E X I T Y, A N D R E C U R R E N C E S 229

for energy-saving purposes, and on and on. The particularities also

may not be predictive of the future as computers change over time,

with processing and memory retrieval and disk accesses becoming

faster – and faster at varying rates. The empirical approach doesn’t get

at the intrinsic properties of the algorithms.

The approach we will take, then, is to analyze the algorithms in

terms of the intrinsic growth rate of their performance as the size of

their inputs grow, their worst-case complexity. Detailed measure-

ment and analysis can be saved for later, once the more fundamental

complexity issues are considered. We thus take an abstract view of

performance, rather than a concrete one. This emphasis on abstrac-

tion, as usual, comes from thinking like a computer scientist, and not a

computer programmer.

The time complexity of the two sorting algorithms can be thought

of as functions (!) from the size of the input to the amount of time

needed to sort inputs of that size. As it turns out – and as we will show

in Sections 14.5.5 and 14.5.9 – for insertion sort on a list of size n, the

time required to sort the list grows as the function

Ti s (n) = a ·n2 +b

whereas for mergesort, the time required to sort the list grows as the

function

Tms (n) = c ·n logn +d

where a, b, c, and d are some constants. For a given n, which is larger?

That depends on these constants of course. But regardless of the con-

stants, as n increases Ti s grows “faster” than Tms in a way that we will

make precise shortly.

In order to make good on this idea of comparing algorithms by

comparing their growth functions, then, we must pay on two promis-

sory notes:

1. How to figure out the growth function for a given algorithm, and

2. How to determine which growth functions are growing faster.

In the remainder of this chapter, we will address the first of these with

a technique of recurrence equations, and the second with the idea of

asymptotic complexity and “big-O” notation.

14.4 Big-O notation

Which is better, an algorithm (like insertion sort) with a complexity

that grows as a ·n2 +b or an algorithm (like mergesort) with a complex-

ity that grows as c ·n logn +d? The answer “it depends on the values
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of the constants” seems unsatisfactory, since intuitively, a function

that grows quadratically (as the square of the size) like the former will

eventually outstrip a function that grows like the latter. Figure 14.5

shows this graphically. The gray lines all grow as c ·n logn for increas-

ing values of c. But regardless of c, the red line, displaying quadratic

growth, eventually outpaces all of the gray lines. In a sense, then, we’d

eventually like to use the n logn algorithm regardless of the constants.

It is this A S Y M P TOT I C (that is, long term or eventual) sense that we’d

like to be able to characterize.

Figure 14.5: A graph of functions with
different growth rates. The highlighted
line grows as n2. The three gray lines
grow as c ·n logn, where c is, from
bottom to top, 1, 2, and 4.

To address the question of how fast a function grows asymptotically,

independent of the annoying constants, we introduce a generic way of

expressing the growth rate of a function – B I G -O N OTAT I O N.

We’ll assume that problem sizes are non-negative integers and that

times are non-negative as well. Given a function f from non-negative

integers to non-negative numbers, O( f ) is the set of functions that

grow no faster than f , in the following precise sense:3 We define O( f )

3 Since it takes a function as its argu-
ment and returns sets of functions as
its output, O is itself a higher-order
function!

to be the set of all functions g such that for all “large enough” n (that is,

n larger than some value n0), g (n) ≤ c · f (n).

The roles of the two constants n0 and c are exactly to move beyond

the details of constants like the a, b, c, and d in the sorting algorithm

growth functions. In deciding whether a function grows no faster than

f , we don’t want to be misled by a few input values here and there

where g (n) may happen to be larger than f (n), so we allow exempting

values smaller than some fixed value n0. The point is that as the inputs

grow in size, eventually we’ll get past the few input sizes n where g (n)

is larger than f (n). Similarly, if the value of g (n) is always, say, twice

the value of f (n), the two aren’t growing at qualitatively different rates.

Perhaps that factor of 2 is based on just the kinds of idiosyncrasies that

can change as computers change. We want to ignore such constant

multiplicative factors. For that reason, we don’t require that g (n) be

less than f (n); instead we require that g (n) be less than some constant

multiple c of f (n).

As an example of big-O notation, consider two simple polynomial

functions. It will be convenient to use Church’s elegant lambda nota-

tion (see Section B.1.4) to specify these functions directly: λn.10n2 +3

and λn.n2.

Is the function λn.10n2 + 3 an element of the set O(λn.n2)? To

demonstrate that it is, we need to find constants c and n0 such that for

all n > n0, 10n2 +3 ≤ c ·n2. It turns out that the values n0 = 0 and c = 13

do the trick, that is, for all n > 0, 10n2 + 3 ≤ 13n2. We can prove this

as follows: Since n ≥ 1, it follows that n2 ≥ 1 and thus 3 ≤ 3n2. Thus

10n2 +3 ≤ 10n2 +3n2 = 13n2. We conclude, then, that

λn.10n2 +3 ∈O(λn.n2) .
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Of course, the converse is also true:

λn.n2 ∈O(λn.10n2 +3) .

We can just take n0 again to be 0 and c to be 1, since n2 < 10n2 +3 for

all n.

14.4.1 Informal function notation

It is conventional, when using big-O notation, to stealthily move be-

tween talk of functions (like λn.n2) to the corresponding body ex-

pression (like n2), leaving silent the particular variable (in this case

n) that represents the input of the function. Typically, the variable is

clear from context (and indeed is frequently the variable n itself). For

instance, we might say

10n2 +3 ∈O(n2) ,

rather than the more complex formulation above.

Continuing this abuse of notation, we sometimes write variables

for functions, like f or g , not only to stand for a function, but also the

corresponding body expression. This allows us to write things like k · f

(where k is a constant) to mean the function whose body expression

is the product of k and the body expression of f . (This turns out to be

equivalent to the rather more cumbersome λn.k · f (n).) Suppose f is

the function λn.n2. Then we write k · f to mean, not k ·λn.n2 (which is

an incoherent formula), but rather k ·n2, which, again by convention,

glosses λn.k ·n2.

This convention of sliding between functions and their body expres-

sions may seem complicated, but it soon becomes quite natural. And

it allows us to formulate important properties of big-O notation very

simply, as we do in the next section.

Of course, there are problems with playing fast and loose with no-

tation in this way. First, writing O(n2) makes it look like O is a function

that takes integers as input, since n2 looks like it specifies an integer.

But O is a function from functions, not from integers. Second, what

are we to make of something like O(m ·n2)? Does this specify the set

of functions that grow no faster than the function from m to m ·n2,

that is, O(λm.m ·n2)? Or does it specify the set of functions that grow

no faster than the function from n to m ·n2, that is, O(λn.m ·n2)? The

notation doesn’t make clear which variable is the one representing the

input to the function – which variable the growth is relative to. In cases

such as this, computer scientists rely on context to make clear what the

notation is supposed to mean.

We’ll stick to this informal notation since it is universally used.
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But you’ll want to always remember that O maps functions to sets of

functions.

14.4.2 Useful properties of O

In general, it’s tedious to prove particular cases of big-O membership

like the example in Section 14.4. Instead, you’ll want to acquire a

general understanding of these big-O sets of functions, and reason

on the basis of that understanding.

The big-O notation brings together whole classes of functions

whose growth rates are similar. These classes of functions have cer-

tain properties that make them especially useful.4 First of all, every 4 The mathematically inclined might
want to take a stab at proving these
properties of big-O.

function grows no faster than itself:

f ∈O( f )

Adding a constant to a function doesn’t change its big-O classification:

If g ∈O( f ), then5 5 Here’s our first instance of the informal
function notation in the wild.

g +k ∈O( f ) .

We can reason immediately, then, that 2n2 + 3 ∈ O(2n2) (or, more

pedantically, λn.2n2 +3 ∈O(λn.2n2)), without going through a specific

proof.

Similarly, multiplying by a constant (k) doesn’t affect the class ei-

ther. If g ∈O( f ), then

k · g ∈O( f ) .

Thus, 2n2 ∈ O(n2). Together with the results above, we can conclude

that 2n2 +3 ∈O(n2).

In fact, adding in any lower degree terms doesn’t matter. If f ∈O(nk )

and g ∈O(nc ), where k > c:

f + g ∈O(nk )

The upshot of all this is that in determining the big-O growth rate

of a polynomial function, we can always just drop lower degree terms

and multiplicative constants. In thinking about the growth rate of a

complicated function like 4n3 +142n +3, we can simply ignore all but

the largest degree term (4n3) and even the multiplicative constant 4,

and conclude that

4n3 +142n +3 ∈O(n3)

Exercise 146

Which of these claims about the growth rates of various functions hold?
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1. 3n +5 ∈O(n)

2. n ∈O(3n +5)

3. n +n2 ∈O(n)

4. n3 +n2 ∈O(n3 +2n)

5. n2 ∈O(n3)

6. n3 ∈O(n2)

7. 32n3 ∈O(n2 +n +k)

Finally, the sum or product of functions grows no faster than the

sum or product, respectively, of their respective growth rates. If f ′ ∈
O( f ) and g ′ ∈O(g ), then

f ′+ g ′ ∈O( f + g )

f ′ · g ′ ∈O( f · g )

We can thus conclude that

(5n3 +n2) · (3logn +7) ∈O(n3 · logn)

14.4.3 Big-O as the metric of relative growth

We are interested in the big-O classification of functions in particular

because we can use it to compare functions as to which asymptotically

grows faster. In particular, if f ∈ O(g ) but g ̸∈ O( f ), then g grows faster

than f , which we notate g ≫ f .

For example,

n2 ∈O(n3) ,

but the converse doesn’t hold:

n3 ̸∈O(n2) .

We can conclude, then that

n3 ≫ n2 ,

that is, n3 grows faster than n2.

More generally,

• Functions with bigger exponents grow faster:

nk ≫ nc when k > c

• Linear functions grow faster than logarithmic functions:

n ≫ logn
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• Exponentials grow faster than polynomials:

2n ≫ nk

• The exponential base matters; exponentials with larger base grow

faster:

3n ≫ 2n

We can think of big-O as defining classes of functions that grow

at similar rates, up to multiplicative constants. Thus, O(n) is the set

of functions whose growth rate is (at most) linear, O(n2) the set of

functions whose growth rate is (at most) quadratic, O(n3) the set of

cubic functions, O(2n) the set of base-two exponential functions. We

can then place these classes in an ordering (≫) as to which classes

grow faster inherently (and not just because of the values of some

contingent constants).

From the properties above, we can conclude that n2 ≫ n logn, and

therefore, since Ti s ∈ O(n2) and Tms ∈ O(n logn), that Ti s ≫ Tms .6 6 Strictly speaking, we’d have to further
show that Ti s ̸∈ O(n logn), but we’ll
ignore this nicety in general here and in
the following discussion.

Mergesort has lower complexity – is asymptotically more efficient –

than insertion sort. This conclusion is independent of which comput-

ers we time the algorithms on, or other particularities that affect the

constants.

Of course, this reasoning relies on knowing the functions for how

each algorithm’s performance scales. (In the discussion above, we

merely asserted the growth rate functions for the two sorting algo-

rithms.) Only then can we use big-O to determine which algorithm

scales better, which is more efficient in a deeper sense than just test-

ing a particular instance or two. We still need a way to determine for a

particular algorithm the particular resource-usage function. This is the

second promissory note, and the one that we now address.
Problem 147

Two friends who work at EuclidCo tell you that they’re looking for a fast algorithm
to solve a problem they’re working on. So far, they’ve each developed an algorithm:
algorithm A has time complexity O(n3) and algorithm B is O(2n ). They prefer algorithm
A, and use three different arguments to convince you of their preference. For each
argument, evaluate the truth of the bolded statement, and justify your answer.

1. “We’re all about speed at EuclidCo, and A will always be faster than B.”

2. “In a high stakes industry like ours, we can’t afford to have more than a finite number
of inputs that run slower than polynomial time, and we can avoid this if we go with
A.”

3. “We work with big data at EuclidCo. For suitably large inputs, A will be faster on
average than B.”

14.5 Recurrence equations

Given an algorithm, how are we to determine how much time it needs

as a function of the size of its input? In this section, we introduce one
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method, based on the solving of recurrence equations, to address this

question.

We start with a simple example, the append function to append two

lists, defined as

# let rec append xs ys =

# match xs with

# | [] -> ys

# | hd :: tl -> hd :: (append tl ys) ;;

val append : 'a list -> 'a list -> 'a list = <fun>

An appropriate measure for the size of the input to the function is the

sizes of the two lists it is to append. Let’s use Tappend(n,m) for the time

required to run the append function on lists with n and m elements

respectively. What do we know about this Tappend?

When the first argument, xs, is the empty list (so n = 0), the function

performs just a few simple actions, pattern-matching the input against

the empty list pattern, and then returning ys. If we say that the time for

the pattern match is some constant cmatch and the time for the return

is some constant creturnys, then we have that

Tappend(0,m) = cmatch + creturnys .

Since the sum of the two constants is itself a constant, we can simplify

by treating the whole as a new constant c:

Tappend(0,m) = c

When the first argument is nonempty, the computation performed

again has a few parts: the match against the first pattern (which fails),

the match against the second pattern (which succeeds), the recursive

call to append, the cons of h and the result of the recursive call. Each

of these (except for the recursive call) takes some constant time, so we

can characterize the amount of time as

Tappend(n +1,m) = cmatchcons +Tappend(n,m) .

Here, we use n +1 as the length of the first list, as we know it is at least

one element long. The recursive call is appending the tail of xs, a list of

length n, to ys, a list of length m, and thus (by hypothesis) takes time

Tappend(n,m).

Merging and renaming constants, we thus have the following two

R E C U R R E N C E E QUAT I O N S that characterize the running time of the

append function in terms of the size of its arguments:

Tappend(0,m) = c

Tappend(n +1,m) = k +Tappend(n,m)
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14.5.1 Solving recurrences by unfolding

Because the recurrence equations defining Tappend use Tappend itself,

recursively, in the definition (hence the term “recurrence”), they don’t

provide a C L O S E D - F O R M (nonrecursive) solution to the question of

characterizing the running time of the function. To get a solution in

closed form, we will use a method called U N F O L D I N G to solve the

recurrence equations.

Consider the general case of Tappend(n,m) and assume that n > 0. By

the second recurrence equation,

Tappend(n,m) = k +Tappend(n −1,m) .

Now Tappend(n −1,m) itself can be unfolded as per the second recur-

rence equation, so

Tappend(n,m) = k +k +Tappend(n −2,m) .

Continuing in this vein, we can continue to unfold until the first argu-

ment to Tappend becomes 0:

Tappend(n,m) = k +Tappend(n −1,m)

= k +k +Tappend(n −2,m)

= k +k +k +Tappend(n −3,m)

= ·· ·
= k +k +k +·· ·+k +Tappend(0,m)

How many unfoldings are required until the first argument reaches 0?

We’ll have had to unfold n times. There will therefore be n instances of

k being summed in the unfolded equation. Completing the derivation,

then, using the first recurrence equation,

Tappend(n,m) = k ·n +Tappend(0,m)

= k ·n + c

We now have the closed-form solution

Tappend(n,m) = k ·n + c

Notice that the time required is independent of m, the size of the

second argument. That makes sense because the code for append

never looks inside the structure of the second argument; the computa-

tion therefore doesn’t depend on its size.

Now, the function k ·n + c ∈ O(n). Thus the time complexity of

append is O(n) or linear in the length of its first argument. This is

typical of algorithms that operate by recursively marching down a list

one element at a time.
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In order to apply the same kinds of techniques to determine the

time complexity of the two sorting algorithms, we’ll work through a

series of examples.

14.5.2 Complexity of reversing a list

There are multiple ways of implementing list reversal. We show that

they can have quite different time complexities. We start with a naive

implementation, which works by reversing the tail of the list and ap-

pending the head on the end:

# let rec rev xs =

# match xs with

# | [] -> []

# | hd :: tl -> append (rev tl) [hd] ;;

val rev : 'a list -> 'a list = <fun>

We define recurrence equations for the time Tr ev (n) to reverse a

list of length n using this implementation. If the list is empty, we have

(similarly to the case of append, and introducing constants as needed):

Trev(0) = cmatch + creturn = q

For nonempty lists, we must perform the appropriate match, reverse

the tail, cons the head onto the empty list, and perform the append:

Trev(n +1) = cmatch + ccons +Trev(n)+Tappend(n,1)

= r +Trev(n)+Tappend(n,1)

= r +Trev(n)+k ·n + c

= k ·n + s +Trev(n)

The closed form solution for append from the previous section be-

comes useful here. And again, notice our free introduction of new

constants to simplify things. We take the sum of cmatch and ccons to be

r , then for r + c we introduce s. Summarizing, the reverse implemen-

tation above yields the recurrence equations

Trev(0) = q

Trev(n +1) = k ·n + s +Trev(n)

which we must now solve to find a closed form.
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We again unfold Trev(n):

Trev(n) = k · (n −1)+ s +Trev(n −1)

= k · (n −1)+ s +k · (n −2)+ s +Trev(n −2)

= k · (n −1)+ s +k · (n −2)+ s

+k · (n −3)+ s +Trev(n −3)

= ·· ·

= k ·
n−1∑
i=1

(n − i )+ s ·n +Tr ev (0)

= k ·
n−1∑
i=1

(n − i )+ s ·n +q

= k ·
n−1∑
i=1

i + s ·n +q

= k ·
n∑

i=1
i −k ·n + s ·n +q

= k ·
n∑

i=1
i + (s −k) ·n +q

To make further progres on achieving a simple closed form for the

recurrence, it would be ideal to simplify the summation
∑n

i=1 i of the

integers from 1 to n. Famously (if apocryphally), the seven-year-old

mathematical prodigy Carl Friedrich Gauss (1777–1855) solved this

problem in his head. Gauss was asked by his teacher, so the story goes,

to sum all of the integers from 1 to 100. That’ll keep him quiet for a bit,

the teacher presumably thought. But Gauss came up with the answer –

5050 – immediately, by taking advantage of the simple identity

n∑
i=1

i = n · (n +1)

2

For a graphical “proof” that the identity holds, see Figure 14.6. A more

traditional proof is provided in Section B.2. Figure 14.6: A graphical proof that

n∑
i=1

i = n · (n +1)

2
.

Two triangles, each formed by piling up
squares with rows from 1 to n can be
combined to form a rectangle of area
n · (n +1). Each triangle is half that area,
that is, n·(n+1)

2 . A more algebraic proof
is given in Section B.2.

Making use of this identity,

Tr ev (n) = k ·
n∑

i=1
i + (s −k) ·n +q

= k · n · (n +1)

2
+ (s −k) ·n +q

= k

2
n2 + k

2
n + (s −k) ·n +q

= k

2
n2 + (s − k

2
) ·n +q

∈O(n2)

concluding that the function has quadratic (O(n2)) complexity. The

last step really shows the power of big-O notation, allowing to strip
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away all of the constants and lower order terms to get at the essence of

the growth rate.

Problem 148

Recall that the Stdlib.compare function compares two values, returning an int based
on their relative magnitude: compare x y returns 0 if x is equal to y, -1 if x is less than y,
and +1 if x is greater than y.

A function compare_lengths : ’a list -> ’b list -> int that compares
the lengths of two lists can be implemented using compare by taking advantage of the
length function7 from the List module:

7 For reference, this built-in length

function is, unsurprisingly, linear in the
length of its argument.

let compare_lengths xs ys =
compare (List.length xs) (List.length ys) ;;

For instance,

# compare_lengths [1] [2; 3; 4] ;;
- : int = -1
# compare_lengths [1; 2; 3] [4] ;;
- : int = 1
# compare_lengths [1; 2] [3; 4] ;;
- : int = 0

However, this implementation of compare_lengths does a little extra work than it needs
to. Its complexity is O(n) where n is the length of the longer of the two lists.

Why does compare_lengths have this big-O complexity? In particular, why does
the length of the shorter list not play a part in the complexity? We’re looking for a brief
informal argument here, not a full derivation of its complexity.

Provide an alternative implementation of compare_lengths whose complexity is
O(n) where n is the length of the shorter of the two lists, not the longer.

14.5.3 Complexity of reversing a list with accumulator

An alternative method of reversing a list uses an accumulator. As

each element in the list is processed, it is consed on the front of the

accumulating list. The process begins with the empty accumulator.

# let rec revappend xs accum =

# match xs with

# | [] -> accum

# | hd :: tl -> revappend tl (hd :: accum) ;;

val revappend : 'a list -> 'a list -> 'a list = <fun>

# let rev xs = revappend xs [] ;;

val rev : 'a list -> 'a list = <fun>

As before, we can set up recurrence equations for this version of rev

and its auxiliary function revappend.

Trev(n) = q +Trevapp(n,0)

Trevapp(0,m) = c

Trevapp(n +1,m) = k +Trevapp(n,m +1)
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By an unfolding argument similar to that for append, we can solve

these recurrence equations to closed form:

Trevapp(n,m) = k ·n + c

∈O(n)

so that

Trev(n) = q +Trevapp(n,0)

= q +k ·n + c

∈O(n)

Unlike the quadratic simple reverse, the revappend approach

is linear. The difference is born out empirically as well, as shown in

Figure 14.7.

Figure 14.7: Time in microseconds
to reverse lists of lengths 100 to 1000
using the naive (square) and revappend
(circle, highlighted) implementations.
The left graph places both lines on
the same (left) vertical scale. The right
graph places the revappend line on
the right vertical scale (equivalent to
multiplying all of the revappend times
by 50) to emphasize the difference in
growth rate of the functions. Despite the
change in constants, the naive reverse
still eventually overtakes the revappend.

14.5.4 Complexity of inserting in a sorted list

The insertion sort algorithm uses a function insert to insert an ele-

ment in its place in a sorted list:

# let rec insert xs x =

# match xs with

# | [] -> [x]

# | hd :: tl -> if x > hd then hd :: (insert tl x)

# else x :: xs ;;

val insert : 'a list -> 'a -> 'a list = <fun>
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As usual, we construct appropriate recurrence equations for Tinsert(n)

where n is the length of the list being inserted into. (We ignore the ele-

ment argument, as its size is irrelevant to the time required.) Inserting

into the empty list takes constant time.

Tinsert(0) = c

Inserting into a nonempty list (of size n +1) is more subtle. The time

required depends on whether the element should come at the start of

the list (the else clause of the conditional) or not (the then clause). In

the former case, the cons operation takes constant time, say k2; in the

latter case, it involves a recursive call to insert (Tinsert(n)) plus some

further constant overhead (k1). Since we don’t know which way the

computation will branch, we have to make the worst-case assump-

tion: whichever is bigger. Which of the two is bigger depends on the

constants, but we can be sure, in any case, that the time required is

certainly less than the sum of the two.

Tinsert(n +1) = max(k1 +Tinsert(n),k2)

≤ k1 +Tinsert(n)+k2

= k +Tinsert(n)

Unfolding these proceeds as usual:

Tinsert(n) = k +Tinsert(n −1)

= k +k +Tinsert(n −2)

= ·· ·
= k ·n +Tinsert(0)

= k ·n + c

∈O(n)

Insertion is thus linear in the size of the list to be inserted into.

14.5.5 Complexity of insertion sort

Recall the implementation of insertion sort:

let rec sort (lt : 'a -> 'a -> bool)

(xs : 'a list)

: 'a list =

match xs with

| [] -> []

| hd :: tl -> insert lt (sort lt tl) hd ;;

Using similar arguments as above, the recurrence equations can be

determined to be

Tisort(0) = c

Tisort(n +1) = k +Tisort(n)+Tinsert(n)
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Solving the recurrence equations:

Tisort(n) = k +Tisort(n −1)+O(n −1)

= k +k +Tisort(n −2)+O(n −1)+O(n −2)

= k ·n +Tisort(0)+O(n −1)+O(n −2)+·· ·+O(0)

= k ·n + c +
n∑

i=1
O(i )

∈O(n2)

We conclude that insertion sort is quadratic in its run time.

14.5.6 Complexity of merging lists

Continuing our exploration of the time complexity of sorting algo-

rithms, we turn to the components of mergesort. The merge function,

defined by

let rec merge lt xs ys =

match xs, ys with

| [], _ -> ys

| _, [] -> xs

| x :: xst, y :: yst ->

if lt x y

then x :: (merge lt xst ys)

else y :: (merge lt xs yst) ;;

takes two list arguments; their sizes will be two of the arguments of the

complexity function Tmerge. Each recursive call of merge reduces the

total number of items in the two lists. We will for that reason use the

sum of the sizes of the two lists as the argument to Tmerge.

If the total number of elements in the two lists is 1, then one of the

two lists must be empty, and we have

Tmerge(1) = c

In the worst case, neither element will become empty until the to-

tal number of elements in the lists is 2. Thus, for n ≥ 2, we have the

“normal” case, when the lists are nonempty, which involves (in ad-

dition to some constant overhead) a recursive call to merge with one

fewer element in the lists. In the worst case, both elements will still be

nonempty.

Tmerge(n +1) = k +Tmerge(n)
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Solving these recurrence equations:

Tmerge(n) = k +Tmerge(n −1)

= k +k +Tmerge(n −2)

= ·· ·
= k ·n +Tmerge(1)

= k ·n + c

∈O(n)

14.5.7 Complexity of splitting lists

We leave as an exercise to show that the split function defined by

let rec split lst =

match lst with

| []

| [_] -> lst, []

| first :: second :: rest ->

let first', second' = split rest in

first :: first', second :: second' ;;

has linear time complexity.

Exercise 149

Show that split has time complexity linear in the size of its first list argument.

14.5.8 Complexity of divide and conquer algorithms

Before continuing to the analysis of mergesort, we look more generally

at algorithms that (like mergesort) attack problems by dividing them

into equal parts, recursively solving them, and putting the subsolutions

back together to solve the full problem – D I V I D E - A N D - C O N QU E R

algorithms.

The recurrences of such algorithms are typically structured with a

base case requiring constant time

T (1) = c

and a recursive case that involves two recursive calls on some prob-

lems each of half the size. At first, we’ll assume that the time to break

apart and put together the two parts takes constant time k.

T (n) = k +2 ·T (n/2)

For simplicity in solving these recurrence equations, we assume that
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n is a power of 2. Then unfolding a few times:

T (n) = k +2 ·T (n/2)

= k +k +4 ·T (n/4)

= k +k +k +8 ·T (n/8)

= ·· ·

How many times can we unfold? The denominator keeps doubling. We

can keep doubling, then, m times until 2m = n, that is, m = logn:

T (n) = k +2 ·T (n/2)

= k +k +4 ·T (n/4)

= k +k +k +8 ·T (n/8)

= ·· ·
= k · logn +n ·T (n/n)


logn times

= k · logn + c ·n

∈O(n)

More realistically, however, the time required to divide the problem

up and to merge the subsolutions together may take time linear in the

size of the problem. In that case, the recurrence would be something

like

T (n) = k ·n +2 ·T (n/2)

and the closed form is derived as

T (n) = k ·n +2 ·T (n/2)

= k ·n +k ·n +4 ·T (n/4)

= k ·n +k ·n +k ·n +8 ·T (n/8)

= ·· ·
= k ·n · logn +n ·T (n/n)


logn times

= k ·n · logn + c ·n

∈O(n logn)

The O(n logn) complexity is the hallmark of divide-and-conquer

algorithms. Since logn grows extremely slowly, such algorithms are

almost linear in their complexity, thus very efficient.

14.5.9 Complexity of mergesort

Having determined the time complexity for the components of merge-

sort, we put them together to determine the complexity of the merge-

sort function itself:
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let rec msort xs =

match xs with

| [] -> xs

| [_] -> xs

| _ -> let fst, snd = split xs in

merge (msort fst) (msort snd) ;;

Tmsort(0) = Tmsort(1) = c1

Tmsort(n) = c2 +Tsplit(n)+2 ·Tmsort(n/2)+Tmerge(n)

Since both Tsplit and Tmerge are linear, we can write

Tmsort(n) = k ·n + c +2 ·Tmsort(n/2)

These recurrence equations are just of the divide-and-conquer sort, so

we know immediately that the complexity of mergesort is O(n logn).

And since

n2 ≫ n logn

mergesort is shown to be asymptotically more efficient than insertion

sort.

Consistent with this analysis of the sorting algorithms is their

empirical performance, as shown in Figure 14.4. The figure depicts

well the almost linear behavior of mergesort and the much steeper

quadratic growth of insertion sort.

14.5.10 Basic Recurrence patterns

Table 14.1 summarizes some of the basic types of recurrence equations

and their closed-form solution in terms of big-O.

T (n) = c +T (n −1) T (n) ∈O(n)

T (n) = c +k ·n +T (n −1) T (n) ∈O(n2)

T (n) = c +k ·nd +T (n −1) T (n) ∈O(nd+1)

T (n) = c +2 ·T (n/2) T (n) ∈O(n)

T (n) = c +T (n/2) T (n) ∈O(logn)

T (n) = c +k ·n +2 ·T (n/2) T (n) ∈O(n · logn)

Table 14.1: Some common recurrence
patterns and their closed-form solution
in terms of big-O.
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14.6 Problem section: Complexity of the Luhn check

Recall the Luhn check algorithm from Section 8.5, and its various

component functions: evens, odds, doublemod9, sum.
Problem 150

What is an appropriate recurrence equation for defining the time complexity of the odds
function from Problem 60 in terms of the length of its list argument?

Problem 151

What is the time complexity of the odds function from Problem 60 (in big-O notation)?

Problem 152

If the function f (n) is the time complexity of odds on a list of n elements, which of the
following is true?

• f ∈O(1)

• f ∈O(logn)

• f ∈O(logn/c) for all c > 0

• f ∈O(c · logn) for all c > 0

• f ∈O(n)

• f ∈O(n/c) for all c > 0

• f ∈O(c ·n) for all c > 0

• f ∈O(n2)

• f ∈O(n2/c) for all c > 0

• f ∈O(c ·n2) for all c > 0

• f ∈O(2n )

• f ∈O(2n /c) for all c > 0

• f ∈O(c ·2n ) for all c > 0

Problem 153

What is the time complexity of the luhn function implemented in Problem 63 in terms of
the length n of its list argument? Use big-O notation. Explain why your implementation
has that complexity.

14.7 Supplementary material

• Lab 10: Time complexity, big-O, and recurrence equations

• Problem set A.6: The search for intelligent solutions

http://url.cs51.io/lab10


15

Mutable state and imperative programming

The range of programming abstractions presented so far – first-order

and higher-order functions; strong, static typing; polymorphism;

algebraic data types; modules and functors – all fall squarely within a

view of functional programming that we might term P U R E, in which

computation is identified solely with the evaluation of expressions.

Pure programming has to do with what expressions are, not what they

do. Pure programs have values rather than effects. Indeed, the slightly

pejorative term S I D E E F F E C T is used in the functional programming

literature for effects that impure programs manifest while they are

being evaluated beyond their values themselves.

In a pure functional programming language, there are no side ef-

fects. Computation can be thought of as simplifying expressions to

their values by repeated substitution of equals for equals. Because this

notion of program meaning is so straightforward, functional programs

are easier to reason about. Hopefully, the preceding chapters have

shown that the functional paradigm is also more powerful than you

might have thought.

Strictly speaking, however, pure functional programming is point-

less. We write code to have an effect on the world. It might be pretty

to think that “side effects” aren’t the main point. But they’re the main

point.

Take this simple computation of the twentieth Fibonacci number:

# let rec fib n =

# if n <= 1 then 1

# else fib (n - 1) + fib (n - 2) ;;

val fib : int -> int = <fun>

# fib 20 ;;

- : int = 10946

The computation of fib 20 proceeds purely functionally – at least

until that very last step where the OCaml R E P L prints out the com-

puted value. Printing is the quintessential side effect. It’s a thing that
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a program does, not a value that a program has. Without that one side

effect, the fib computation would be useless. We’d gain no informa-

tion from it.

So we need at least a little impurity in any programming system. But

there are some algorithms that actually require impurity, in the form of

side effects that change state. For instance, we’ve seen implementation

of a dictionary data type in Chapter 12. That implementation allowed

for linear time insertion and linear time lookup. More efficient imple-

mentations allow for constant time insertion and linear lookup (or vice

versa) or for logarithmic insertion and lookup. But by taking advantage

of side effects that change state, we can implement mutable dictionar-

ies that achieve constant time insertion and constant time lookup, for

instance, with hash tables. (In fact, we do so in Section 15.6.)

In this chapter and the next, we introduce I M P E R AT I V E P RO G R A M -

M I N G, a programming paradigm based on side effects and state

change. We start with mutable data structures, moving on to imper-

ative control structures in the next chapter.

In the pure part of OCaml, we don’t change the state of the compu-

tation, as encoded in the computer’s memory. In languages that have

mutable state, variables name blocks of memory whose contents can

change. Assigning a new value to such a variable mutates the memory,

changing its state by replacing the original value with the new one.

OCaml variables, by contrast, aren’t mutable. They name values, and

once having named a value, the value named doesn’t change.

You might think that OCaml does allow changing the value of a

variable. What about, for instance, a global renaming of a variable?

# let x = 42 ;;

val x : int = 42

# x ;; (* x is 42 *)

- : int = 42

# let x = 21 ;;

val x : int = 21

# x ;; (* ...but now it's 21 *)

- : int = 21

Hasn’t the value of x changed from 42 to 21?

No, it hasn’t. Rather, there are two separate variables that happen to

both have the same name, x. In the second expression, we are referring

to the first x variable. In the fourth expression, we are referring to the

second x variable, which shadows the first one. But the first x is still

there. We can tell by the following experiment:

# let x = 42 ;; (* establishing first x... *)

val x : int = 42

# x ;; (* ...whose value is 42 *)

- : int = 42
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# let f () = x ;; (* f returns value in first x *)

val f : unit -> int = <fun>

# let x = 21 ;; (* establishing second x... *)

val x : int = 21

# x ;; (* ...with a different value *)

- : int = 21

# f () ;; (* but f still references first x *)

- : int = 42

The definition of the function f makes use of the first variable x, simply

by returning its value when called. Even if we add a new x naming a

different value, the application f () still returns 42, the value that the

first variable x names, thereby showing that the first x is still available.

The let naming constructs of OCaml thus don’t provide for mutable

state. If we want to make use of mutable state, for instance for the pur-

pose of building mutable data structures, we’ll need new constructs.

OCaml provides references for this purpose.

15.1 References

The OCaml language provides an abstract notion of R E F E R E N C E to a

block of mutable memory with its R E F E R E N C E T Y P E S. To maintain

the type discipline of the language, we want to keep track of the type

of thing stored in the block; although the particular value stored there

may change, we don’t want its type to vary. Thus, we have separate

types for references to integers, references to strings, references to

functions from booleans to integers, and so forth. The postfix type

constructor ref is used to construct reference types: int ref, string

ref, (bool -> int) ref, and the like.

To create a value of some reference type, OCaml provides the prefix

value constructor ref.1 The supplied expression must be of the type 1 Yes, the same symbol, ref, is used at
the type level for the type constructor
and at the value level for the value
constructor. And to make matters
more confusing, the type constructor
is postfix while the value constructor is
prefix. Learning the concrete syntax of a
new programming language sure can be
frustrating.

appropriate for the reference type, and the value of that expression is

stored as the initial value in the block of memory that the reference ref-

erences. Here, for instance, we create a reference to a block of memory

storing the integer value 42:

# let r : int ref = ref 42 ;;

val r : int ref = {contents = 42}

As with all variables, r is an immutable name, but it is a name for

a block of memory that is itself mutable. (The value is printed as

{contents = 42} for reasons that we allude to in Section 15.2.1.)

The natural operations to perform on a reference value are two:

first, D E R E F E R E N C E, that is, retrieve the value stored in the referenced

block; and second, U P D AT E, modify the value stored in the referenced

block (with a value of the same type, of course). Dereferencing is done

with the prefix ! operator, and updating with the infix := operator.
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# !r ;;

- : int = 42

# r := 21 ;;

- : unit = ()

# !r ;;

- : int = 21

Here, we’ve dereferenced the same variable r twice (in the two high-

lighted expressions), getting two different values – first 42, then 21.

This is quite different from the example with two x variables. Here,

there is only one variable r, and yet a single expression !r involving r

whose value has changed!2 2 But like all variables, r has not itself
changed its value. It still points to the
same block of memory.

This example puts in sharp relief the difference between the pure

language and the impure. In the pure language, an expression in a

given lexical context (that is, the set of variable names that are avail-

able) always evaluates to the same value. But in this example, two

instances of the expression !r evaluate to two different values, even

though the same r is used in both instances of the expression. The

assignment has the side effect of changing what value is stored in the

block that r references, so that reevaluating !r to retrieve the stored

value finds a different integer.

The expression causing the side effect here was easy to spot. But

in general, these side effects could happen as the result of a series of

function calls quite obscure from the code that manifests the side

effect. This property of side effects can make it difficult to reason about

what value an expression has.

In particular, the substitution semantics of Chapter 13 has Leibniz’s

law as a consequence. Substitution of equals for equals doesn’t change

the value of an expression. But here, we have a clear counterexample.

The first evaluation implies that !r and 42 are equal. Yet if we substi-

tute 42 for !r in the third expression, we get 42 instead of 21. Once we

add mutable state to the language, we need to extend the semantics

from one based purely on substitution. We do so in Chapter 19, where

we introduce environment semantics.

15.1.1 Reference operator types

The reference system is specifically designed so as to retain OCaml’s

strong typing regimen. Each of the operators, for instance, can be seen

as a well-typed function. The dereference operator !, for instance,

takes an argument of type ’a ref and returns the ’a referenced. It is

thus typed as (!) : ’a ref -> ’a. The reference value constructor

ref works in the opposite direction, taking an ’a and returning an ’a

ref, so it types as (ref) : ’a -> ’a ref.

Finally, the assignment operator := takes two arguments, a refer-



M U TA B L E S TAT E A N D I M P E R AT I V E P RO G R A M M I N G 251

ence to update, of type ’a ref, and the new ’a value to store there.

But what should the assignment operator return? Assignment is per-

formed entirely for its side effect – the update in the state of memory

– rather than for its return value. Given that there is no information

in the return value, it makes sense to use a type that conveys no in-

formation. This is a natural use for the unit type (Section 4.3). Since

unit has only one value (namely, the value ()), that value conveys no

information. The hallmark of a function that is used only for its side

effects (which we might call a P RO C E D U R E) is the unit return type.

The typing for assignment is appropriately then (:=) : ’a ref ->

’a -> unit.

These typings can be verified in OCaml itself:

# (!) ;;

- : 'a ref -> 'a = <fun>

# (ref) ;;

- : 'a -> 'a ref = <fun>

# (:=) ;;

- : 'a ref -> 'a -> unit = <fun>

15.1.2 Boxes and arrows

It can be helpful to visualize references using B OX A N D A R ROW D I A -

G R A M S. When establishing a reference,

# let r = ref 42 ;;

val r : int ref = {contents = 42}

Figure 15.1: Box and arrow diagrams
for the state of memory as various
references are created and updated.

we draw a box (standing for a block of memory) named r with an arrow

pointing to another box (block of memory) containing the integer 42

(Figure 15.1(a)). Adding another reference with

# let s = ref 42 ;;

val s : int ref = {contents = 42}

generates a new named box and its referent (Figure 15.1(b)), which

happens to store the same value. But we can tell that the referents are

distinct, since assigning to r changes !r but not !s (Figure 15.1(c)).

# r := 21 ;;

- : unit = ()

# !r, !s ;;

- : int * int = (21, 42)

To have s refer to the value that r does, we need to assign to it as well

(Figure 15.1(d)).

# s := !r ;;

- : unit = ()

We can have a reference s that points to the same block of memory

as r does (Figure 15.1(e)).
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# let s = r ;;

val s : int ref = {contents = 21}

Now s and r have the same value (that is, refer to the same block of

memory). We say that s is an A L I A S of r. (The old s is shadowed by the

new one, as depicted by showing it in gray. Since we no longer have

access to it and whatever it references, the gray blocks of memory are

garbage. See the discussion in Section 15.1.3.)

Changing the value stored in a block of memory changes the value

of all its aliases as well. Here, updating the block referred to by r (Fig-

ure 15.1(f)) changes the value for s:

# r := 7 ;;

- : unit = ()

# !r, !s ;;

- : int * int = (7, 7)

In a language with references and aliases, we are confronted with

two different notions of equality. S T RU C T U R A L E QUA L I T Y holds when

two values have the same structure, regardless of where they are stored

in memory, such as r and s in Figure 15.1(d). PH Y S I C A L E QUA L I T Y

holds when two values are the identical “physical” block of memory, as

r and s in Figure 15.1(e). Values that are physically equal are of course

structurally equal as well but the converse needn’t hold.

In OCaml, structural equality and inequality are tested with (=) :

’a -> ’a -> bool and (<>) : ’a -> ’a -> bool, respectively,

whereas physical equality and inequality of mutable types are tested

with (==) : ’a -> ’a -> bool and (!=) : ’a -> ’a -> bool.3 3 The behavior of == and != tests on
immutable (pure) types is allowed to
be implementation-dependent and
shouldn’t be relied on. These operators
should only be used with values of
mutable types.

Exercise 154

Construct an example defining values r and s that are structurally but not physically
equal. Construct an example defining values r and s that are both structurally and
physically equal. Verify these conditions using the equality functions.

15.1.3 References and pointers

You may have seen this kind of thing before. In programming lan-

guages like c, references to blocks of memory are manipulated through

P O I N T E R S to memory, which are explicitly created (with malloc) and

freed (with free), dereferenced (with *), and updated (with =). Some

correspondences between OCaml and c syntax for these operations are

given in Table 15.1.

Notable differences between the OCaml and c approaches are:

• In OCaml, unlike in c, references can’t be created without initializing

them. Referencing uninitialized blocks of memory is a recipe for

difficult to diagnose bugs. OCaml’s type regime eliminates this

entire class of bugs, since a reference type like int ref specifies
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Operation OCaml c

Create, initialize ref 42

Create, name int *r = malloc(sizeof int);

Create, initialize, name let r = ref 42 int *r = malloc(sizeof int);

*r = 42;

Dereference !r *r

Update r := 21 *r = 21

Free free(r)

Table 15.1: Approximate equivalencies
between OCaml references and c
pointers.

that the block must at all times store an int and the operators

maintain this invariant.

• In c, nothing conspires to make sure that the size of the block al-

located is appropriate for the value being stored, leading to the

possibility of BU F F E R OV E R F L OW S – assignments that overflow one

block of memory to overwrite others. Buffer overflows allow for

widely exploited security holes in code. In OCaml, the strong typing

again eliminates this class of bug. Similarly, BU F F E R OV E R- R E A D S

occur when a program reading from a block of memory continues

to read past the end of the block into adjacent memory, potentially

compromising the security of information in the adjacent block. An

infamous example is the H E A RT B L E E D bug in OpenSSL, so notori-

ous that it even acquired its own logo (Figure 15.2).

Figure 15.2: The logo for H E A RT B L E E D,
a buffer over-read bug in the widely
used OpenSSL library (written in c) for
securing web interactions. The bug
was revealed in 2014 after two years
undiscovered in the field.

• In c, programs must free memory explicitly in order to reclaim the

previously allocated memory for future use. When blocks are freed

while still being used, the memory can be overwritten, leading to

M E M O RY C O R RU P T I O N and once again to insidious bugs. Con-

versely, not freeing blocks even when they are no longer needed,

called a M E M O RY L E A K, leads to programs running out of memory

needlessly.

OCaml has no function for explicitly freeing memory. Instead,

blocks of memory that are no longer needed, as determined by the

OCaml run-time system itself, are referred to as G A R B AG E. The

run-time system reclaims garbage automatically, in a process called

G A R B AG E C O L L E C T I O N. Since computers can typically analyze

the status of memory blocks better than people, the use of garbage

collection eliminates memory corruption and memory leaks.

However, the garbage collection approach takes the timing of mem-

ory reclamation out of the hands of the programmer. The run-time

system may decide to perform computation-intensive garbage col-

lection at inopportune times. For applications where careful control

of such timing issues is necessary, the garbage collection approach
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may be undesirable; use of a language, like c, that allows explicit

allocation and deallocation of memory may be necessary.4 4 A new class of functional programming
languages is exploring the design space
of languages with high-level abstraction
mechanisms as in OCaml, including
strongly typed safe references, while
providing finer control of memory
deallocation, in order to obtain the best
of both the explicit approach and the
garbage collection approach. The prime
example is Mozilla’s Rust language.

Problem 155

For each of the following expressions, give its type and value, if any.

1. let a = ref 3 in
let b = ref 5 in
let a = ref b in
!(!a) ;;

2. let rec a, b = ref b, ref a in
!a ;;

3. let a = ref 1 in
let b = ref a in
let a = ref 2 in
!(!b) ;;

4. let a = 2 in
let f = (fun b -> a * b) in
let a = 3 in
f (f a) ;;

15.2 Other primitive mutable data types

In addition to references, OCaml provides two other primitive data

types that allow for mutability: mutable record fields and arrays. We

mention them briefly for completeness; full details are available in the

OCaml documentation.

15.2.1 Mutable record fields

Records (Section 7.4) are compound data structures with named fields,

each of which stores a value of a particular type. As introduced, each

field of a record, and hence records themselves, are immutable. How-

ever, when a record type is defined with the type construct, and the

individual fields are specified and typed, its individual fields can also

be marked as allowing mutability by adding the keyword mutable.

For instance, we can define a person record type with immutable

name fields but a mutable address field.

# type person = {lastname : string;

# firstname : string;

# mutable address : string} ;;

type person = {

lastname : string;

firstname : string;

mutable address : string;

}

Once constructed, the address of a person can be updated.

# let sms = {lastname = "Shieber";

# firstname = "Stuart";

# address = "123 Main"} ;;

val sms : person =

https://www.rust-lang.org/en-US/
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{lastname = "Shieber"; firstname = "Stuart"; address = "123

Main"}

# sms.address <- "124 Main" ;; (* I moved next door *)

- : unit = ()

To update a mutable record, the operator <- is used, rather than := as

for references.

In fact, reference types and their operators can be thought of as

being implemented using mutable records by the following type and

operator definitions:

type 'a ref_ = {mutable contents : 'a} ;;

let ref_ (v : 'a) : 'a ref_ = {contents = v} ;;

let (:=) (r : 'a ref_) (v : 'a) : unit = r.contents <- v ;;

let (!) (r : 'a ref_) : 'a = r.contents ;;

This should explain the otherwise cryptic references to contents when

the R E P L prints values of reference type.

15.2.2 Arrays

Arrays are a kind of cross between lists and tuples with added muta-

bility. Like lists, they can have an arbitrary number of elements all of

the same type. Unlike lists (but like tuples), they cannot be extended

in size; there is no cons equivalent for arrays. Finally, each element of

an array can be individually indexed and updated. An example may

indicate the use of arrays:

# let a = Array.init 5 (fun n -> n * n) ;;

val a : int array = [|0; 1; 4; 9; 16|]

# a ;;

- : int array = [|0; 1; 4; 9; 16|]

# a.(3) <- 0 ;;

- : unit = ()

# a ;;

- : int array = [|0; 1; 4; 0; 16|]

Here, we’ve created an array of five elements, each the square of its

index. We update the third element to be 0, and examine the result,

which now has a 0 in the appropriate location.

15.3 References and mutation

To provide an example of the use of mutating references, we consider

the task of counting the occurrences of an event. We start by establish-

ing a location to store the current count as an int ref named gctr

(for “global counter”).

# let gctr = ref 0 ;;

val gctr : int ref = {contents = 0}
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Now we define a function that “bumps” the counter (adding 1) and

then returns the current value of the counter.

# let bump () =

# gctr := !gctr + 1;

# !gctr ;;

val bump : unit -> int = <fun>

We’ve used a new operator here, the binary sequencing operator (;),

which is a bit like the pair operator (,) in that it evaluates its left and

right arguments, except that the sequencing operator returns the

value only of the second.5 But then what could possibly be the point 5 You can think of P ; Q as being
syntactic sugar for let () = P in Q.of evaluating the first argument? Since the argument isn’t used for

its value, it must be of interest for its side effects. That is the case in

this example; the expression gctr := !gctr + 1 has the side effect

of updating the counter to a new value, its old value (retrieved with

!gctr) plus one.6 Since the sequencing operator ignores the value 6 This part of the bump function that
does the actual incrementing of an
int ref is a common enough activity
that OCaml provides a function incr

: int ref -> unit in the Stdlib
library for just this purpose. It works as
if implemented by

let incr (r : int ref) : unit =

r := !r + 1 ;;

We could therefore have substituted
incr gctr as the second line of the
bump function.

returned by its first argument, it requires that argument to be of type

unit, the type for expressions with no useful value.7

7 Sometimes, you may want to sequence
an expression that returns a value other
than (). The ignore function of type ’a
-> unit in Stdlib comes in handy in
such cases.

We can test it out.

# bump () ;;

- : int = 1

# bump () ;;

- : int = 2

# bump () ;;

- : int = 3

Again, you see the hallmark of impure code – the same expression in

the same context evaluates to different values. The change between

invocations happens because of the side effects of the earlier calls to

bump. We can see evidence of the side effects also in the value of the

counter, which is globally visible.

# !gctr ;;

- : int = 3

In the case of the bump function, it is the intention to provide these

side effects. They are what generates the counting functionality. How-

ever, it is not necessarily the intention to make the current counter

visible to users of the bump function. Doing so enables unintended side

effects, like manipulating the value stored in the counter outside of the

manipulation by the bump function itself, enabling misuses such as the

following:

# gctr := -17 ;;

- : unit = ()

# bump () ;;

- : int = -16

https://url.cs51.io/xe2
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To eliminate this abuse we’d like to avoid a global variable for the

counter. We’ve seen this kind of information hiding before – in the use

of local variables within functions, and in the use of signatures to hide

auxiliary values and functions from users of modules, all instances of

the edict of compartmentalization. But in the context of assignment,

making gctr a local variable (we’ll call it ctr) requires some thought. A

naive approach doesn’t work:

# let bump () =

# let ctr = ref 0 in

# ctr := !ctr + 1;

# !ctr ;;

val bump : unit -> int = <fun>

Exercise 156

What goes wrong with this definition? Try using it a few times and see what happens.

The problem: This code establishes the counter variable ctr upon

application of bump, and establishes a new such variable at each such

application. Instead, we want to define ctr just once, upon the defini-

tion of bump, and not its applications.

In this case, the compact notation for function definition, which

conflates the defining of the function and its naming, is doing us a

disservice. Fortunately, we aren’t obligated to use that syntactic sugar.

We can use the desugared version:

let bump =

fun () ->

ctr := !ctr + 1;

!ctr ;;

Now the naming (first line) and the function definition (second line

and following) are separate. We want the definition of ctr to outscope

the function definition but fall within the local scope of its naming:

# let bump =

# let ctr = ref 0 in

# fun () ->

# ctr := !ctr + 1;

# !ctr ;;

val bump : unit -> int = <fun>

The function is defined within the scope of – and therefore can access

and modify – a local variable ctr whose scope is only that function.

This definition operates as before to deliver incremented integers:

# bump () ;;

- : int = 1

# bump () ;;

- : int = 2

# bump () ;;

- : int = 3
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but access to the counter variable is available only within the function,

as it should be, and not outside of it:

# !ctr ;;

Line 1, characters 1-4:

1 | !ctr ;;

^^^

Error: Unbound value ctr

Hint: Did you mean gctr?

This example – the counter with local, otherwise inaccessible, per-

sistent, mutable state – is one of the most central to understand. We’ll

see a dramatic application of this simple pattern in Chapter 18, where

it underlies the idea of instance variables in object-oriented program-

ming.
Problem 157

Suppose you typed the following OCaml expressions into the OCaml R E P L sequentially.

1 let p = ref 11 ;;
2 let r = ref p ;;
3 let s = ref !r ;;
4 let t =
5 !s := 14;
6 !p + !(!r) + !(!s) ;;
7 let t =
8 s := ref 17;
9 !p + !(!r) + !(!s) ;;

Try to answer the questions below about the status of the various variables being defined
before typing them into the R E P L yourself.

1. After line 1, what is the type of p?

2. After line 2, what is the type of r?

3. After line 3, which of the following statements are true?

(a) p and s have the same type

(b) r and s have the same type

(c) p and s have the same value (in the sense that p = s would be true)

(d) r and s have the same value (in the sense that r = s would be true)

4. After line 6, what is the value of t?

5. After line 9, what is the value of t?

15.4 Mutable lists

To demonstrate the power of imperative programming, we use

OCaml’s imperative aspects to provide implementations of two mu-

table data structures: mutable lists and mutable queues.

As noted in Section 11.1, the OCaml list type operates as if defined

by

type 'a list =

| Nil

| Cons of 'a * 'a list ;;

A mutable list allows values constructed in this way to be updated;

we thus take values of type ’a mlist to be references to such com-

pound structures.
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# type 'a mlist = 'a mlist_internal ref

# and 'a mlist_internal =

# | Nil

# | Cons of 'a * 'a mlist ;;

type 'a mlist = 'a mlist_internal ref

and 'a mlist_internal = Nil | Cons of 'a * 'a mlist

(In this mutually recursive pair of type definitions, the intention is to

make use of values of type ’a mlist. The auxiliary type ’a mlist_-

internal is just an expedient, required because OCaml needs a name

for the type of values that references refer to.)

The shortest such mutable list is simply a reference to the Nil value

(in this case, coerced to an integer mutable list).

# let r : int mlist = ref Nil ;;

val r : int mlist = {contents = Nil}

We can build longer mutable lists by consing on a couple of integers.

We’ll do that bit by bit to allow naming of the intermediate lists.

# let s : int mlist = ref (Cons (1, r)) ;;

val s : int mlist = {contents = Cons (1, {contents = Nil})}

# let t : int mlist = ref (Cons (2, s));;

val t : int mlist =

{contents = Cons (2, {contents = Cons (1, {contents = Nil})})}

We can compute the length of such a list using the usual recursive

definition.

# let rec mlength (lst : 'a mlist) : int =

# match !lst with

# | Nil -> 0

# | Cons (_hd, tl) -> 1 + mlength tl ;;

val mlength : 'a mlist -> int = <fun>

Comparing this with the definition of length : ’a list -> int

from Section 7.3.1, the only difference here is the dereferencing of the

mutable list before it can be matched. Sure enough, this definition

works on the example mutable lists above.

# mlength r ;;

- : int = 0

# mlength s ;;

- : int = 1

# mlength t ;;

- : int = 2

Box and arrow diagrams (Figure 15.3) help in figuring out what’s

going on here.

Figure 15.3: Pictorial representation
of (top) the state of memory after
building some mutable list structures,
and (bottom) updating with r := !t.
The nil has become garbage and the
mutable lists r, s, and t now have cycles
in them.

Exercise 158

Write functions mhead and mtail that extract the head and the (dereferenced) tail from a
mutable list. For example,



260 P RO G R A M M I N G W E L L

# mhead t ;;
- : int = 2
# mtail t ;;
- : int mlist = {contents = Cons (1, {contents = Nil})}

Because the lists are mutable, we can modify the tail of s (that is, r)

to point to t.

# r := !t ;;

- : unit = ()

Since the tail of s points to t and the tail of t to s, we’ve constructed

a C YC L I C data structure. Doing so uncovers a bug in the mlength

function,

# mlength t ;;

Stack overflow during evaluation (looping recursion?).

demonstrating once again how adding impure features to a language

introduces new and quite subtle complexities.
Problem 159

For each of the following expressions, give its type and value, if any.

1. let a = ref (Cons (2, ref (Cons (3, ref Nil)))) ;;

2. let Cons (_hd, tl) = !a in
let b = ref (Cons (1, a)) in
tl := !b ;
mhead (mtail (mtail b)) ;;

Problem 160

Provide an implementation of the mlength function that handles cyclic lists, so that

# mlength t ;;
- : int = 3

You’ll notice that the requirement to handle cyclic lists dramatically increases the
complexity of implementing length. (Hint: Keep a list of sublists you’ve already visited
and check to see if you’ve already visited each sublist. What is a reasonable value to
return in that case?)

Problem 161

Define a function mfirst : int -> ’a mlist -> ’a list that returns a list (im-
mutable) of the first n elements of a mutable list:

Problem 162

Write code to define a mutable integer list alternating such that for all integers n, the
expression mfirst n alternating returns a list of alternating 1s and 2s, for example,

# mfirst 5 alternating ;;
- : int list = [1; 2; 1; 2; 1]
# mfirst 8 alternating ;;
- : int list = [1; 2; 1; 2; 1; 2; 1; 2]

15.5 Imperative queues

By way of review, the pure functional queue data structure in Sec-

tion 12.4 implemented the following signature:

# module type QUEUE = sig

# type 'a queue

# val empty_queue : 'a queue

# val enqueue : 'a -> 'a queue -> 'a queue
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# val dequeue : 'a queue -> 'a * 'a queue

# end ;;

module type QUEUE =

sig

type 'a queue

val empty_queue : 'a queue

val enqueue : 'a -> 'a queue -> 'a queue

val dequeue : 'a queue -> 'a * 'a queue

end

Each call to enqueue and dequeue returns a new queue, differing from

its argument queue in having an element added or removed.

In an imperative implementation of queues, the enqueuing and

dequeuing operations can and do mutate the data structure, so that

the operations don’t need to return an updated queue. The types for

the operations thus change accordingly. We’ll use the following IMP_-

QUEUE signature for imperative queues:

# module type IMP_QUEUE = sig

# type 'a queue

# val empty_queue : unit -> 'a queue

# val enqueue : 'a -> 'a queue -> unit

# val dequeue : 'a queue -> 'a option

# end ;;

module type IMP_QUEUE =

sig

type 'a queue

val empty_queue : unit -> 'a queue

val enqueue : 'a -> 'a queue -> unit

val dequeue : 'a queue -> 'a option

end

Here again, you see the sign of a side-effecting operation: the enqueue

operation returns a unit. Dually, to convert a procedure that modifies

its argument and returns a unit into a pure function, the standard

technique is to have the function return instead a modified copy of its

argument, leaving the original untouched. Indeed, when we generalize

the substitution semantics of Chapter 13 to handle state and state

change in Chapter 19, we will use just this technique of passing a

representation of the computation state as an argument and returning

a representation of the updated state as the return value.

Another subtlety introduced by the addition of mutability is the

type of the empty_queue value. In the functional signature, we had

empty_queue : ’a queue; the empty_queue value was an empty

queue. In the mutable signature, we have empty_queue : unit ->

’a queue; the empty_queue value is a function that returns a (new,

physically distinct) empty queue. Without this change, the empty_-

queue value would be “poisoned” as soon as something was inserted

in it, so that further references to empty_queue would see the modified
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(non-empty) value. Instead, the empty_queue function can generate a

new empty queue each time it is called.

15.5.1 Method 1: List references

Perhaps the simplest method to implement an imperative queue is as a

(mutable) reference to an (immutable) list of the queue’s elements.

# module SimpleImpQueue : IMP_QUEUE =

# struct

# type 'a queue = 'a list ref

# let empty_queue () = ref []

# let enqueue elt q =

# q := (!q @ [elt])

# let dequeue q =

# match !q with

# | first :: rest -> (q := rest; Some first)

# | [] -> None

# end ;;

module SimpleImpQueue : IMP_QUEUE

This is basically the same as the list implementation from Section 12.4,

but with the imperative signature. Nonetheless, internally the opera-

tions are still functional, and enqueuing an element requires time lin-

ear in the number of elements in the queue. (Recall from Section 14.5

that the functional append function (here invoked as Stdlib.(@)) is

linear.)

We’ll examine two methods for generating constant time implemen-

tations of an imperative queue.

15.5.2 Method 2: Two stacks

An old trick is to use two stacks to implement a queue. The two stacks

hold the front of the queue (the first elements in, and hence the first

out) and the reversal of the rear of the queue. For example, a queue

containing the elements 1 through 4 in order might be represented by

the two stacks (implemented as int lists) [1; 2] and [4; 3], or

pictorially as in Figure 15.4 (upper left).

Figure 15.4: Pictorial representation of
implementing a queue with two stacks.

Enqueuing works by adding an element (5 in upper right) to the rev

rear stack. Dequeuing works by popping the top element in the front

stack, if there is one (middle right and left and lower right). If there are

no elements to dequeue in the front stack (middle left), the rev rear

stack is reversed onto the front stack first (lower left).

The stacks can be implemented with type ’a list ref and the two

stacks packaged together in a record.

module TwoStackImpQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a list ref;
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revrear : 'a list ref}

...

The empty queue has two empty lists.

module TwoStackImpQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a list ref;

revrear : 'a list ref}

let empty_queue () =

{front = ref []; revrear = ref []}

...

Enqueuing simply places the element on the top of the rear stack.

module TwoStackImpQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a list ref;

revrear : 'a list ref}

let empty_queue () =

{front = ref []; revrear = ref []}

let enqueue elt q =

q.revrear := elt :: !(q.revrear)

...

Dequeuing is the more complicated operation.

# module TwoStackImpQueue : IMP_QUEUE =

# struct

# type 'a queue = {front : 'a list ref;

# revrear : 'a list ref}

# let empty_queue () =

# {front = ref []; revrear = ref []}

# let enqueue elt q =

# q.revrear := elt :: !(q.revrear)

# let rec dequeue q =

# match !(q.front) with

# | h :: t -> (q.front := t; Some h)

# | [] -> if !(q.revrear) = [] then None

# else ((* reverse revrear onto front *)

# q.front := List.rev (!(q.revrear));

# (* clear revrear *)

# q.revrear := [];

# (* try the dequeue again *)

# dequeue q)

# end ;;

module TwoStackImpQueue : IMP_QUEUE

As in method 1, the enqueue operation takes constant time. But de-

queuing usually takes constant time too, unless we have to perform the

reversal of the rear stack. Since the stack reversal takes time linear in

the number of enqueues, the time to enqueue and dequeue elements

is, on average, constant time per element.
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Exercise 163

An alternative is to use mutable record fields, so that the queue type would be

type 'a queue = {mutable front : 'a list;
mutable revrear : 'a list}

Reimplement the TwoStackImpQueue module using this type for the queue implementa-
tion.

15.5.3 Method 3: Mutable lists

To allow for manipulation of both the head of the queue (where en-

queuing happens) and the tail (where dequeuing happens), a final

implementation uses mutable lists. The queue type

module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

...

provides a reference to the front of the queue as well as a reference to

the last cons in the queue if there is one. When the queue is empty,

both of these lists will be ref Nil.

module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

let empty_queue () = {front = ref Nil;

rear = ref Nil}

...

Enqueuing a new element differs depending on whether the queue

is empty. If it already contains at least one element, the rear will have

a head and a ref Nil tail (because the rear always points to the last

cons.

module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

let empty_queue () = {front = ref Nil;

rear = ref Nil}

let enqueue elt q =

match !(q.rear) with

| Cons (hd, tl) -> (assert (!tl = Nil);

tl := Cons (elt, ref Nil);

q.rear := !tl)

| Nil -> ...

If the queue is empty, we establish a single element mutable list with

front and rear pointers to its single element.
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module MutableListQueue : IMP_QUEUE =

struct

type 'a queue = {front : 'a mlist;

rear : 'a mlist}

let empty_queue () = {front = ref Nil;

rear = ref Nil}

let enqueue elt q =

match !(q.rear) with

| Cons (hd, tl) -> (assert (!tl = Nil);

tl := Cons (elt, ref Nil);

q.rear := !tl)

| Nil -> (assert (!(q.front) = Nil);

q.front := Cons (elt, ref Nil);

q.rear := !(q.front))

...

Finally, dequeuing involves moving the front pointer to the next ele-

ment in the list, and updating the rear to Nil if the last element was

dequeued and the queue is now empty.

# module MutableListQueue : IMP_QUEUE =

# struct

# type 'a queue = {front : 'a mlist;

# rear : 'a mlist}

#

# let empty_queue () = {front = ref Nil;

# rear = ref Nil}

# let enqueue elt q =

# match !(q.rear) with

# | Cons (_hd, tl) -> (assert (!tl = Nil);

# tl := Cons (elt, ref Nil);

# q.rear := !tl)

# | Nil -> (assert (!(q.front) = Nil);

# q.front := Cons (elt, ref Nil);

# q.rear := !(q.front))

# let dequeue q =

# match !(q.front) with

# | Cons (hd, tl) ->

# (q.front := !tl;

# (match !tl with

# | Nil -> q.rear := Nil

# | Cons (_, _) -> ());

# Some hd)

# | Nil -> None

# end ;;

module MutableListQueue : IMP_QUEUE

Figure 15.5: Pictorial representation of
implementing a queue with a mutable
list.

Figure 15.5 depicts the queue data structure as it performs the follow-

ing operations:

# let open MutableListQueue in

# let q = empty_queue () in

# enqueue 1 q;

# enqueue 2 q;
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# dequeue q ;;

- : int option = Some 1

15.6 Hash tables

A hash table is a data structure implementing a mutable dictionary.

We’ve seen functional key-value dictionaries already in Section 12.6,

which implement a signature like the following:

module type DICT =

sig

type key

type value

type dict

(* An empty dictionary *)

val empty : dict

(* Returns as an option the value associated with the

provided key. If the key is not in the dictionary,

returns None. *)

val lookup : dict -> key -> value option

(* Returns true if and only if the key is in the

dictionary. *)

val member : dict -> key -> bool

(* Inserts a key-value pair into the dictionary. If the

key is already present, updates the key to have the

new value. *)

val insert : dict -> key -> value -> dict

(* Removes the key from the dictionary. If the key is

not present, returns the original dictionary. *)

val remove : dict -> key -> dict

end ;;

In a mutable dictionary, the data structure state is actually modified

by side effect when inserting or removing key-value pairs. Conse-

quently, those functions need not (and should not) return an updated

dictionary. (As with mutable lists, because dictionaries can be mod-

ified by side effect, care must also be taken with specifying an empty

dictionary. Instead of a single empty dictionary value, we provide a

function from unit that returns a new empty dictionary.) An appropri-

ate signature for a mutable dictionary, then, is

# module type MDICT =

# sig

# type key

# type value

# type dict

#

# (* Returns an empty dictionary. *)

# val empty : unit -> dict

# (* Returns as an option the value associated with the

# provided key. If the key is not in the dictionary,
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# returns None. *)

# val lookup : dict -> key -> value option

# (* Returns true if and only if the key is in the

# dictionary. *)

# val member : dict -> key -> bool

# (* Inserts a key-value pair into the dictionary. If the

# key is already present, updates the key to have the

# new value. *)

# val insert : dict -> key -> value -> unit

# (* Removes the key from the dictionary. If the key is

# not present, leaves the original dictionary unchanged. *)

# val remove : dict -> key -> unit

# end ;;

module type MDICT =

sig

type key

type value

type dict

val empty : unit -> dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> unit

val remove : dict -> key -> unit

end

In a H A S H TA B L E implementation of this signature, the key-value

pairs are stored in a mutable array of a given size at an index speci-

fied by a H A S H F U N C T I O N, a function from keys to integers within

the range provided. The idea is that the hash function should assign

well distributed locations to keys, so that inserting or looking up a

particular key-value pair involves just computing the hash function

to generate the location where it can be found. Thus, insertion and

lookup are constant-time operations.

An important problem to resolve is what to do in case of a H A S H

C O L L I S I O N, when two different keys hash to the same value. We as-

sume that only a single key-value pair can be stored at a given location

in the hash table – called C L O S E D H A S H I N G – so in case of a collision

when inserting a key-value pair, we keep searching in the table at the

sequentially following array indices until an empty slot in the table is

found. Similarly, when looking up a key, if the key-value pair stored

at the hash location does not match the key being looked up, we se-

quentially search for a pair that does match. This process of trying

sequential locations is known as L I N E A R P RO B I N G. Frankly, linear

probing is not a particularly good method for handling hash collisions

(see Exercises 165 and 166), but it will do for our purposes here.

To define a new kind of hash table, we need to provide types for the

keys and values, a size for the array, and an appropriate hash function.

We package all of this up in a module that can serve as the argument to
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a functor.

# module type MDICT_ARG =

# sig

# (* Types to be used for the dictionary keys and values *)

# type key

# type value

# (* size -- Number of elements that can be stored in the

# dictionary *)

# val size : int

# (* hash_fn key -- Returns the hash value for a key. *)

# val hash_fn : key -> int

# end ;;

module type MDICT_ARG =

sig type key type value val size : int val hash_fn : key -> int

end

Here is the beginning of an implementation of such a functor:

module MakeHashtableDict (D : MDICT_ARG)

: (MDICT with type key = D.key

and type value = D.value) =

struct

type key = D.key

type value = D.value

(* A hash record is a key value pair *)

type hashrecord = { key : key;

value : value }

(* An element of the hash table array is a hash record

(or empty) *)

type hashelement =

| Empty

| Element of hashrecord

(* The hash table itself is a (mutable) array of hash

elements *)

type dict = hashelement array

let empty () = Array.make D.size Empty

...

end ;;

With a full implementation of the MakeHashtableDict functor

(Exercise 164), we can build an IntStringHashtbl hash table module

for hash tables that map integers to strings as follows:8 8 The hash function we use here is an
especially poor choice; we use it to
make it easy to experiment with hash
collisions.

# module IntStringHashtbl : (MDICT with type key = int

# and type value = string) =

# MakeHashtableDict (struct

# type key = int

# type value = string

# let size = 100

# let hash_fn k = (k / 3) mod size

# end) ;;

module IntStringHashtbl :
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sig

type key = int

type value = string

type dict

val empty : unit -> dict

val lookup : dict -> key -> value option

val member : dict -> key -> bool

val insert : dict -> key -> value -> unit

val remove : dict -> key -> unit

end

Let’s experiment:

# open IntStringHashtbl ;;

# let d = empty () ;;

val d : IntStringHashtbl.dict = <abstr>

# insert d 10 "ten" ;;

- : unit = ()

# insert d 9 "nine" ;;

- : unit = ()

# insert d 34 "34" ;;

- : unit = ()

# insert d 1000 "a thousand" ;;

- : unit = ()

# lookup d 10 ;;

- : IntStringHashtbl.value option = Some "ten"

# lookup d 9 ;;

- : IntStringHashtbl.value option = Some "nine"

# lookup d 34 ;;

- : IntStringHashtbl.value option = Some "34"

# lookup d 8 ;;

- : IntStringHashtbl.value option = None

# remove d 9 ;;

- : unit = ()

# lookup d 10 ;;

- : IntStringHashtbl.value option = Some "ten"

# lookup d 9 ;;

- : IntStringHashtbl.value option = None

# lookup d 34 ;;

- : IntStringHashtbl.value option = Some "34"

# lookup d 8 ;;

- : IntStringHashtbl.value option = None

Exercise 164

Complete the implementation by providing implementations of the remaining func-
tions lookup, member, insert, and remove.

Exercise 165

Improve the collision handling in the implementation by allowing the linear probing to
“wrap around” so that if it reaches the end of the array it keeps looking at the beginning
of the array.

Exercise 166

A problem with linear probing is that as collisions happen, contiguous blocks of the
array get filled up, so that further collisions tend to yield long searches to get past
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these blocks for an empty location. Better is to use a method of rehashing that leaves
some gaps. A simple method to do so is QUA D R AT I C P RO B I N G: each probe increases
quadratically, adding 1, then 2, then 4, then 8, and so forth. Modify the implementation
so that it uses quadratic probing instead of linear probing.

15.7 Conclusion

With the introduction of references, we move from thinking about

what expressions mean to what they do. The ability to mutate state

means that data structures can now undergo change. By modifying

existing data structures, we may be able to avoid building new copies,

thereby saving some space. More importantly, performing small up-

dates may be much faster than constructing large copies, leading to

improvements in both space and time complexity.

But making good on these benefits requires much more subtle

reasoning about what programs are up to. The elegant substitution

model – which says that expressions are invariant under substitution

of one subexpression by another with the same value – doesn’t hold

when side effects can change those values out from under us. Aliasing

means that changes in one part of the code can have ramifications far

afield. Modifying data structures means that the hierarchical structures

can be modified to form cycles, with the potential to fall into infinite

loops. (We explore the changes needed to the substitution semantics

of Chapter 13 to allow for mutable state in Chapter 19.)

Nonetheless, the underlying structure of modern computer hard-

ware is based on stateful memory to store program and data, so that

at some point imperative programming is a necessity. Imperative pro-

gramming can be a powerful way of thinking about implementing

functionality.

❧

We’ve now introduced essentially all of the basic language con-

structs that we need. In the following chapters, we deploy them in new

combinations that interact to provide additional useful programming

abstractions – providing looping constructs to enable the repetition of

side effects (Chapter 16); the ability to perform a computation “lazily”,

delaying it until its result is needed (Chapter 17); and the encapsula-

tion of computations within data objects that they act on (Chapter 18).

15.8 Supplementary material

• Lab 12: Imperative programming and references

http://url.cs51.io/lab12
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Loops and procedural programming

Back in Section 7.3.1, we implemented a function to compute the

length of a list, by capturing how the length is defined: the length of

the empty list is 0; the length of a non-empty list is one more than the

length of its tail. This definition can be immediately cashed out as

# let rec length (lst : 'a list) : int =

# match lst with

# | [] -> 0

# | _hd :: tl -> 1 + length tl ;;

val length : 'a list -> int = <fun>

An alternative approach, in the spirit of imperative programming,

is to think not about what the length is but about what one does

when calculating the length: For each element of the list, add one to

a counter until the end of the list is reached.

This approach – which we might term P RO C E D U R A L P RO G R A M -

M I N G because it emphasizes the steps in the procedure to be carried

out – is typical of how introductory programming is taught, with an

emphasis on commands with side effects that are executed repeatedly

through loops.

In this chapter, we’ll provide examples of procedural programming,

emphasizing one of the main benefits of the paradigm, S PAC E E F F I -

C I E N C Y. Procedural programming can be more space efficient in a

couple of ways. First, it can reduce the need for storing suspended

computations in so-called “stack frames”, though as we’ll see, the func-

tional language technique of tail-recursion optimization can provide

this benefit as well. Second, it can reduce the need for copying data

structures as they are manipulated.

Although OCaml is at its core a functional programming language,

it supports procedural programming as well. There are, for instance,
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while loops:

〈expr〉 ::= while 〈exprcondition〉 do
〈exprbody〉

done

which specify that the body expression be executed repeatedly so long

as the condition expression is true.

In addition, the for loop, familiar from other procedural languages,

is expressed as follows to count up from a start value to an end value:

〈expr〉 ::= for 〈var〉 = 〈exprstart〉 to 〈exprend〉 do
〈exprbody〉

done

or, counting down,

〈expr〉 ::= for 〈var〉 = 〈exprstart〉 downto 〈exprend〉 do
〈exprbody〉

done

16.1 Loops require impurity

In a pure language, an expression in a given context always has the

same value. Thus, in a while loop of the form

while 〈exprcondition〉 do
〈exprbody〉

done

if the condition expression 〈exprcondition〉 is true the first time it’s eval-

uated, it will remain so perpetually and the loop will never terminate.

Conversely, if the condition expression is false the first time it’s eval-

uated, it will remain so perpetually and the loop body will never be

evaluated. Similarly, the body expression 〈exprbody〉 will always evalu-

ate to the same value, so what could possibly be the point of evaluating

it more than once?

In summary, procedural programming only makes sense in a lan-

guage with side effects, the kind of impure constructs (like variable

assignment) that we introduced in the previous chapter. You can see

this need in attempting to implement the length function in this pro-

cedural paradigm. Here is a sketch of a procedure for calculating the

length of a list:
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let length (lst : 'a list) : int =

(* initialize the counter *)

while (* the list is not empty *) do

(* increment the counter *)

(* drop an element from the list *)

done;

(* return the counter *) ;;

We’ll need to establish the counter in such a way that its value can

change. Similarly, we’ll need to update the list each time the loop

body is executed. We’ll thus need both the counter and the list being

manipulated to be references, so that they can change. Putting all this

together, we get the following procedure for computing the length of a

list:

# let length_iter (lst : 'a list) : int =

# let counter = ref 0 in (* initialize the counter *)

# let lst_ref = ref lst in (* initialize the list *)

# while !lst_ref <> [] do (* while list not empty... *)

# incr counter; (* increment the counter *)

# lst_ref := List.tl !lst_ref (* drop element from list *)

# done;

# !counter ;; (* return the counter value *)

val length_iter : 'a list -> int = <fun>

# length_iter [1; 2; 3; 4; 5] ;;

- : int = 5

16.2 Recursion versus iteration

Is this impure, iterative, procedural method better than the pure,

recursive, functional approach? It certainly seems more complex,

and gaining an understanding that it provides the correct values as

specified in the definition of list length is certainly more difficult.

16.2.1 Saving stack space

There is one way, however, in which this approach might be supe-

rior. Think of the calculation of the length of a list, say [1; 2; 3],

using the functional definition. Since the list is non-empty, we need

to add one to the result of evaluating length [2; 3], and we’ll need

to suspend the addition until that evaluation completes. Likewise, to

evaluate length [2; 3] we’ll need to add one to the result of evaluat-

ing length [3], again suspending the addition until that evaluation

completes. Continuing on in this way, at run time we’ll eventually have

a nested stack of suspended calls. Each element of this stack, carry-

ing information about the suspended computation, is referred to as a

S TAC K F R A M E. Only once we reach length [] can we start unwind-

ing this stack, performing all of the suspended additions specified in
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the stack frames, to calculate the final answer. Figure 16.1 depicts this

linearly growing stack of suspended calls. length [1; 2; 3]

⇒ 1 + length [2; 3]

⇒ 1 + ( 1 + length [3] )

⇒ 1 + ( 1 + ( 1 + length [] ))

⇒ 1 + ( 1 + ( 1 + 0))

⇒ 1 + ( 1 + 1)

⇒ 1 + 2

⇒ 3

Figure 16.1: The nested stack of sus-
pended calls in evaluating a non-tail-
recursive length function. We indicate
each stack frame with a highlighted
box. Notice that the number of stack
frames increases as each recursive call is
generated.

The iterative approach, on the other hand, needs no stack of sus-

pended computations. The single call to length_iter invokes the

while loop to iteratively increment the counter and drop elements

from the list. The computation is “flat”.

The difference can be seen forcefully when computing the length of

a very long list. Here, we’ve defined very_long_list to be a list with

one million elements.

# let very_long_list = List.init 1_000_000 Fun.id ;;

val very_long_list : int list = [0; 1; 2; 3; 4; 5; 6; 7; ...]

The iterative procedure for computing its length works well.

# length_iter very_long_list ;;

- : int = 1000000

But the functional recursive version overflows the stack dedicated to

storing the suspended computations. Apparently, one million stack

frames is more than the computer has space for.

# length very_long_list ;;

Stack overflow during evaluation (looping recursion?).

16.2.2 Tail recursion

The profligate use of space for stack frames is not inherent in all purely

functional recursive computations however. Consider the following

purely functional method length_tr for implementing the length

calculation.

# let length_tr lst =

# let rec length_plus lst acc =

# match lst with

# | [] -> acc

# | _hd :: tl -> length_plus tl (1 + acc) in

# length_plus lst 0 ;;

val length_tr : 'a list -> int = <fun>

Here, a local auxiliary function length_plus takes two arguments,

the list and an integer accumulator of the count of elements counted

so far. It returns the length of its list argument plus the value of its

accumulator. Thus, the call to length_plus lst 0 calculates the the

length of lst plus 0, which is just the length desired.

This length_tr version of calculating list length still operates re-

cursively; length_plus is the locus of the recursion as indicated by

the rec keyword. The nesting of recursive calls proceeds as shown in

Figure 16.2.

length_tr [1; 2; 3]

⇒ length_plus [1; 2; 3] 0

⇒ length_plus [2; 3] 1

⇒ length_plus [3] 2

⇒ length_plus [] 3

⇒ 3

Figure 16.2: The call structure in
evaluating a tail-recursive length
function. Note the lack of nesting of
suspended calls.
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As with the previous recursive version, the number of such recursive

computations is linear in the length of the list. One might think, then,

that the same problem of stack overflow will haunt the length_tr

implementation as well. Let’s try it.

# length_tr very_long_list ;;

- : int = 1000000

This version doesn’t have the same problem. It’s easy to see why. For

the recursive length, the result of each call is a computation using the

result of the embedded call to length; that computation must there-

fore be suspended, and a stack frame must be allocated to store infor-

mation about that pending computation. But the result of each call to

the recursive length_plus is not just a computation using the result of

the embedded call to length_plus; it is the result of that nested call.

We don’t need to store any information about a suspended computa-

tion – no need to allocate a stack frame – because the embedded call

result is all that is needed.

Recursive programs written in this way, in which every recursive in-

vocation is the result of the invoking call, are deemed TA I L R E C U R S I V E

(hence the _tr in the function’s name). Tail-recursive functions need

not use a stack to keep track of suspended computations. Program-

ming language implementations that take advantage of this possibility

by not allocating a stack frame to tail-recursive applications are said to

perform TA I L - R E C U R S I O N O P T I M I Z AT I O N, effectively turning the re-

cursion into a corresponding iteration, and yielding the benefits of the

procedural iterative solution. The OCaml interpreter is such a language

implementation.

Thus, this putative advantage of loop-based procedures over recur-

sive functions – the ability to perform computations space-efficiently –

can often be replicated in functional style through careful tail-recursive

implementation where needed.

You’ll see discussion of this issue, for instance, in the description

of functions in the List library, which calls out those functions that

are not tail-recursive.1 For instance, the library function fold_left is 1 From the List library documentation:
“Some functions are flagged as not
tail-recursive. A tail-recursive function
uses constant stack space, while a
non-tail-recursive function uses stack
space proportional to the length of its
list argument, which can be a problem
with very long lists. . . . The above
considerations can usually be ignored
if your lists are not longer than about
10000 elements.”

implemented in a tail-recursive manner, so it can fold over very long

lists without running out of stack space. By contrast, the fold_right

implementation is not tail-recursive, so may not be appropriate when

processing extremely long lists.

16.3 Saving data structure space

Another advantage of procedural programming is the ability to avoid

building of new data structures. Think of the map function over lists,

which can be implemented as follows:

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
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# let rec map (fn : 'a -> 'b) (lst : 'a list) : 'b list =

# match lst with

# | [] -> []

# | hd :: tl -> fn hd :: map fn tl ;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

We can use map to increment the values in a list:

# let original = [1; 2; 3] ;;

val original : int list = [1; 2; 3]

# map succ original ;;

- : int list = [2; 3; 4]

The result is a list with different values. Most notably, the result is a new

list. The original is unchanged.

# original ;;

- : int list = [1; 2; 3]

The new list is created by virtue of the repeated construction of

conses with the :: operator highlighted in the map definition above.

Every time map is called to operate over a list, more conses will be

needed. There’s no free lunch here. Under the hood, every cons takes

up space; storage must be allocated for each one. If we start with a list

of length n, we’ll end up allocating n more conses to compute the map.

16.3.1 Problem section: Metering allocations

We can determine how many allocations are going on by metering

them. Imagine there were a module Metered satisfying the following

signature:

# module type METERED =

# sig

# (* reset () -- Resets the count of allocations *)

# val reset : unit -> unit

# (* count () -- Returns the number of allocations

# since the last reset *)

# val count : unit -> int

# (* cons hd tl -- Returns the list cons of `hd` and

# `tl`, increasing the allocation count accordingly *)

# val cons : 'a -> 'a list -> 'a list

# (* pair first second -- Returns the pair of `first`
# and `second`, increasing the allocation count

# accordingly *)

# val pair : 'a -> 'b -> 'a * 'b

# end ;;

module type METERED =

sig

val reset : unit -> unit

val count : unit -> int

val cons : 'a -> 'a list -> 'a list

val pair : 'a -> 'b -> 'a * 'b

end
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The functions cons and pair could be used to replace their built-in

counterparts for consing (::) and pairing (,) to track the number of

allocations required.
Problem 167

Implement the module Metered.

Problem 168

Reimplement the zip function of Section 10.3.2 using metered conses and pairs.

Having metered the zip function, we can observe the count of

allocations.

# Metered.reset () ;;

- : unit = ()

# zip [1; 2; 3; 4; 5] [5; 4; 3; 2; 1] ;;

- : (int * int) list = [(1, 5); (2, 4); (3, ...); ...]

# Metered.count () ;;

- : int = 10

16.3.2 Reusing space through mutable data structures

Now consider, by contrast to the functional map over lists above, a

function (call it map_array) to map a function over a mutable data

structure, an array. Instead of returning a new data structure, we’ll

mutate the values in the original data structure. For that reason, map_-

array doesn’t itself need to return an array. 2 2 The function being applied must be
of type ’a -> ’a since the output of
the function is being stored in the same
location as the input, and must thus
be of the same type. For that reason,
map_array can’t be as polymorphic as
map.

# let map_array (fn : 'a -> 'a) (arr : 'a array) : unit =

# for i = 0 to Array.length arr - 1 do

# arr.(i) <- fn arr.(i)

# done ;;

val map_array : ('a -> 'a) -> 'a array -> unit = <fun>

We can perform a similar computation, mapping the successor func-

tion over the elements of an array.

# let original = [|1; 2; 3|] ;;

val original : int array = [|1; 2; 3|]

# map_array succ original ;;

- : unit = ()

We see the effect of the map this time not in the return value but in the

modified original array.

# original ;;

- : int array = [|2; 3; 4|]

By using imperative techniques, we gain access to the incremented

values, and without incurring the cost of allocating further storage.

There is a cost, however. We no longer have access to the original

unincremented values. They’ve been destroyed, replaced by the new

values. There’s a tradeoff – reduced storage versus loss of access to

prior results. Under what conditions the tradeoff is beneficial is a

judgement call. But as an issue of efficiency, we’d want to heed Knuth’s

warning against premature optimization.
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16.4 In-place sorting

As another example of the use of procedural programming to reduce

storage requirements, we consider one of the most elegant sorting

algorithms, QU I C K S O RT. Quicksort works by selecting a pivot value

– the first element of the list, say – and partitioning the list into those

elements less than the pivot and those that are greater. The two sub-

lists are recursively sorted, and then concatenated to form the final

sorted list. A recursive implementation of quicksort, following the SORT

signature of Section 14.2, is as follows:

# module QuickSort : SORT =

# struct

# (* partition lt pivot xs -- Returns two lists

# constituting all elements in `xs` less than (according

# to `lt`) than the `pivot` value and greater than the

# pivot `value`, respectively *)

# let rec partition lt pivot xs =

# match xs with

# | [] -> [], []

# | hd :: tl ->

# let first, second = partition lt pivot tl in

# if lt hd pivot then hd :: first, second

# else first, hd :: second

#

# (* sort lt xs -- Returns the sorted `xs` according to the

# comparison function `lt` using the Quicksort algorithm *)

# let rec sort (lt : 'a -> 'a -> bool)

# (xs : 'a list)

# : 'a list =

# match xs with

# | [] -> []

# | pivot :: rest ->

# let first, second = partition lt pivot rest in

# (sort lt first) @ [pivot] @ (sort lt second)

# end ;;

module QuickSort : SORT

Problem 169

Implement a metered version of quicksort, and experiment with how many allocations
are needed to sort lists of different lengths.

Just as we built a version of map that mutated an array to map over

its elements, we can build a version of quicksort that mutates an array

to sort its elements. This approach, I N - P L AC E sorting, is much more

space-efficient. As we’ll see, though, there is a cost in transparency of

the implementation.

The type for an in-place sort differs from its pure alternative, which

allocates extra space. A signature for an in-place sorting module makes

clear the differences.

# module type SORT_IN_PLACE =

# sig
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# (* sort lt xs -- Sorts the array `xs` in place in increasing

# order by the "less than" function `lt`. *)

# val sort : ('a -> 'a -> bool) -> 'a array -> unit

# end ;;

module type SORT_IN_PLACE =

sig val sort : ('a -> 'a -> bool) -> 'a array -> unit end

First, we’re sorting a mutable data structure, an array, rather than a

list. Second, the sort function returns a unit as it works by side effect

rather than by returning a sorted version of the unchanged argument

list. The sorting function, then, begins with a header line

let sort (lt : 'a -> 'a -> bool) (arr : 'a array) : unit =

The primitive operation of in-place sorting is the swapping of two

elements in the array, specified by their indices. We’ll make use of a

function swap to perform this operation.

let swap (i : int) (j : int) : unit =

let temp = arr.(i) in

arr.(i) <- arr.(j);

arr.(j) <- temp

We’ll need to partition a region of the array, by which we mean a

contiguous subportion of the array between two indices. For that pur-

pose, we’ll have a function partition that takes two indices (left and

right) demarcating the region to partition (the elements between the

indices inclusive). The partition function returns the index of the

split point in the region, the position that marks the border between

the left partition and the right partition where the pivot element re-

sides. We note that for our purposes, there should and will always be

at least two elements in the region; otherwise, no recursive sorting is

necessary, hence no need to partition.

To partition the region, we select the leftmost element as the pivot.

We keep a “current” index that moves from left to right as we process

each element in the region. At the same time, we maintain a moving

“border” index, again moving from left to right. At any point, all of the

elements to the left of the border will be guaranteed to be less than

the pivot value. Those between the border and the current index are

greater than or equal to the pivot. Those to the right of the current

index are yet to be processed. Eventually, when we’ve processed all

elements, we swap the pivot element itself into the correct position at

the border. Here’s the implementation of this quite subtle process:

let partition (left : int) (right : int) : int =

(* region has at least two elements *)

assert (left < right);
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(* select the pivot element to be the first element in

the region *)

let pivot_val = arr.(left) in

(* all elements to the left of `border` are guaranteed

to be strictly less than pivot value *)

let border = ref (left + 1) in

(* current element being partitioned, starting just

after pivot *)

let current = ref (left + 1) in

(* process each element, moving those less than the

pivot to before the border *)

while !current <= right do

if lt arr.(!current) pivot_val then

begin

(* current should be left of pivot *)

swap !current !border; (* swap into place at border *)

incr border (* move border to the right to make room *)

end;

incr current

done

(* the split point is just to left of the border *)

let split = !border - 1 in

(* move pivot into place at the split point *)

swap left split;

(* return the split index *)

split

With the availability of the partition function, we can implement

a function sort_region to sort a region, again picked out by two

indices.

let rec sort_region (left : int) (right : int) : unit =

if left >= right then ()

else

let split = partition left right in

(* recursively sort left and right regions *)

sort_region left (split - 1);

sort_region (split + 1) right

Finally, to sort the entire array, we can sort the region between the

leftmost and rightmost indices

sort_region 0 ((Array.length arr) - 1)

Putting this all together leads to the implementation shown in Fig-

ure 16.3. (We’ve placed the swap and partition functions within

the sort function so that they are within the scope of (and can thus

access) the lt and arr arguments of sort.)

You’ll note that the in-place quicksort is considerably longer than

the pure version. In part that is because of the much more detailed

work that must be done in partitioning a region, maintaining complex
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module QuickSort : SORT_IN_PLACE =

struct

let sort (lt : 'a -> 'a -> bool) (arr : 'a array) : unit =

(* swap i j -- Update the `arr` array by swapping the

elements at indices `i` and `j` *)

let swap (i : int) (j : int) : unit =

let temp = arr.(i) in

arr.(i) <- arr.(j);

arr.(j) <- temp in

(* partition left right -- Partition the region of the

`arr` array between indices `left` and `right`

*inclusive*, returning the split point, that is, the

index of the pivot element. Assumes the region

contains at least two elements. At the end,

everything to left of the split is less than the

pivot; everything to the right is greater. *)

let partition (left : int) (right : int) : int =

(* region has at least two elements *)

assert (left < right);

(* select the pivot element to be the first element in

the region *)

let pivot_val = arr.(left) in

(* all elements to the left of `border` are guaranteed

to be strictly less than pivot value *)

let border = ref (left + 1) in

(* current element being partitioned, starting just

after pivot *)

let current = ref (left + 1) in

Figure 16.3: Implementation of an
in-place quicksort.
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(* process each element, moving those less than the

pivot to before the border *)

while !current <= right do

if lt arr.(!current) pivot_val then

begin

(* current should be left of pivot *)

swap !current !border; (* swap into place *)

incr border (* move border right to make room *)

end;

incr current

done;

(* the split point is just to left of the border *)

let split = !border - 1 in

(* move pivot into place at the split point *)

swap left split;

(* return the split index *)

split in

(* sort_region left right -- quicksort the subarray of

the `arr` array between indices `left` and `right`

*inclusive* *)

let rec sort_region (left : int) (right : int) : unit =

if left >= right then ()

else

let split = partition left right in

(* recursively sort left and right regions *)

sort_region left (split - 1);

sort_region (split + 1) right

in

(* sort the whole `arr` array *)

sort_region 0 ((Array.length arr) - 1)

end

Figure 16.3: (continued) Implementa-
tion of an in-place quicksort.
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invariants concerning the left, right, current, and border indices and

the elements in the various subregions. In part the length is a result

of considerably more documentation in the implementation, but that

is not a coincidence. The implementation requires this additional

documentation to be remotely as understandable as the pure version.

(Even still, an understanding of the in-place version is arguably more

complex. It’s hard to imagine understanding how the partition func-

tion works without manually “playing computer” on some examples to

verify the procedure.)

The payoff is that the in-place version needs to allocate only a tiny

amount of space beyond the storage in the various stack frames for the

function applications – just the storage for the current and border

elements. Is the cost in code complexity and opaqueness worth it?

That depends on the application. If sorting huge amounts of data is

necessary, the reduction in space may be needed.
Problem 170

A completely in-place version of mergesort that uses only a fixed amount of extra space
turns out to be quite tricky to implement. However, a version that uses only a single
extra array is possible, and still more space-efficient than the pure version described in
Section 14.2. Implement a version of mergesort that uses a single extra array as “scratch
space” for use while merging. To sort a region, we sort the left and right subregions
recursively, then merge the two into the scratch array, and finally copy the merged region
back into the main array.

16.5 Supplementary material

• Lab 12: Procedural programming and loops

http://url.cs51.io/lab12
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Infinite data structures and lazy programming

Combining functions as first-class values, algebraic data types, and

references enables programming with infinite data structures, the

surprising topic of this chapter. We’ll build infinite lists (streams) and

infinite trees. The primary technique we use, lazy evaluation, has many

other applications.

17.1 Delaying computation

OCaml is an E AG E R language. Recall the semantic rule for function

application from Chapter 13:

P Q ⇓∣∣∣∣∣∣∣
P ⇓ fun x -> B

Q ⇓ vQ

B [x 7→ vQ ] ⇓ vB

⇓ vB

(Rapp)

According to this rule, before generating the result of the application

(by substituting into the body expression B), we first evaluate the

argument Q. Similarly, in a local let expression,

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD ] ⇓ vB

⇓ vB

(Rlet )

before substituting the definition D into the body expression B , we first

evaluate D to a value.

There are disadvantages of this eager evaluation approach. For

instance, if the argument value is not used in the body of the function,

the computation to generate the value will still be carried out, an

entirely wasted effort. An extreme case occurs when the computation

of the argument value doesn’t even terminate:
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# let rec forever n = 1 + forever n ;;

val forever : 'a -> int = <fun>

# (fun x -> "this value ignores x") (forever 42) ;;

Line 1, characters 5-6:

1 | (fun x -> "this value ignores x") (forever 42) ;;

^

Warning 27 [unused-var-strict]: unused variable x.

Stack overflow during evaluation (looping recursion?).

If we had delayed the computation of forever 42 until after it had

been substituted in as the argument of the function, we would never

have had to evaluate it at all, and the evaluation of the full expression

would have terminated with "this value ignores x".

Examples like this indicate the potential utility of L A Z Y E VA LU -

AT I O N – being able to D E L AY computation until such time as it is

needed, at which time the computation can be F O RC E D to occur.

There are, in fact, constructs of OCaml that work lazily. The condi-

tional expression if 〈exprtest〉 then 〈exprtrue〉 else 〈exprfalse〉 delays

evaluation of 〈exprtrue〉 and 〈exprfalse〉 until after evaluating 〈exprtest〉,
and in fact will refrain from evaluating the unchosen branch of the

conditional entirely. Thus the following computation terminates, even

though the else branch, if it were evaluated, would not.

# if true then 3 else forever 42 ;;

- : int = 3

Another construct that delays computation is the function itself.

The body of a function is not evaluated until the function is applied.

If application is postponed indefinitely, the body is never evaluated.

Thus the following “computation” terminates.

# fun () -> forever 42 ;;

- : unit -> int = <fun>

This latter approach provides a universal method for delaying and

forcing computations: wrapping the computation in a function (delay),

and applying the function (forcing) if and when we need the value.

What should the argument to the function be? Its only role is to post-

pone evaluation, so there needn’t be a real datum as argument – just

a unit. As noted above, we refer to this wrapping a computation in a

function from unit as delay of the computation. Conversely, we force

the computation when the delayed expression is applied to unit so as

to carry out the computation and get the value.

Though OCaml is eager in its evaluation strategy (with the few ex-

ceptions noted), some languages have embraced lazy evaluation as

the default, starting with Rod Burstall’s Hope language and finding

its widest use in the Haskell language named after Haskell Curry (Fig-

ure 6.2).
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We’ll make use of lazy evaluation in perhaps the most counter-

intuitive application, the creation and manipulation of infinite data

structures. We start with the stream, a kind of infinite list.

17.2 Streams

Here’s a new algebraic data type definition defining the S T R E A M.

# type 'a stream = Cons of 'a * 'a stream ;;

type 'a stream = Cons of 'a * 'a stream

It may look familiar; it shares much in common with the algebraic

type definition of the polymorphic list, from Section 11.1, except that it

dispenses with the Nil marking the end of the list.

We can define some operations on streams, like taking the head or

tail of a stream.

# let head (Cons (hd, _tl) : 'a stream) : 'a = hd ;;

val head : 'a stream -> 'a = <fun>

# let tail (Cons (_hd, tl) : 'a stream) : 'a stream = tl ;;

val tail : 'a stream -> 'a stream = <fun>

It’s all well and good to have streams and functions over them,

but how are we to build one? It looks like we have a chicken and egg

problem, requiring a stream in order to create one. Nonetheless, we

press on, building a stream whose head is the integer 1. We start with

let ones = Cons (1, ...) ;;

We need to fill in the ... with an int stream, but where are we to find

one? How about the int stream named ones itself?

# let ones = Cons (1, ones) ;;

Line 1, characters 20-24:

1 | let ones = Cons (1, ones) ;;

^^^^

Error: Unbound value ones

Of course, that doesn’t work, because the name ones isn’t itself avail-

able in the definition. That requires a let rec.

# let rec ones = Cons (1, ones) ;;

val ones : int stream = Cons (1, <cycle>)

It works! And the operations on this stream work as well:

# head ones ;;

- : int = 1

# head (tail ones) ;;

- : int = 1

# head (tail (tail ones)) ;;

- : int = 1
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Its head is one, as is the head of its tail, and the head of the tail of the

tail. It seems to be an infinite sequence of ones!

What is going on here? How does the implementation make this

possible? Under the hood, the components of an algebraic data type

have implicit pointers to their values. When we define ones as above,

OCaml allocates space for the cons without initializing it (yet) and

connects the name ones to it. It then initializes the contents of the

cons, the head and tail, a pair of hidden pointers. The head pointer

points to the value 1, and the tail points to the cons itself. This explains

where the notation <cycle> comes from in the R E P L printing out the

value. In any case, the details of how this behavior is implemented isn’t

necessary to make good use of it.

Not all such cyclic definitions are well defined however. Consider

this definition of an integer x:

# let rec x = 1 + x ;;

Line 1, characters 12-17:

1 | let rec x = 1 + x ;;

^^^^^

Error: This kind of expression is not allowed as right-hand side of

`let rec'

We can allocate space for the integer and name it x, but when it comes

to initializing it, we need more than just a pointer to x; we need its

value. But that isn’t yet defined, so the whole process fails and we get

an error message.

17.2.1 Operations on streams

We can look to lists for inspiration for operations on streams – opera-

tions like map, fold, and filter. Here is a definition for map on streams,

which we call smap:

# let rec smap (f : 'a -> 'b) (s : 'a stream) : ('b stream) =

# match s with

# | Cons (hd, tl) -> Cons (f hd, smap f tl) ;;

val smap : ('a -> 'b) -> 'a stream -> 'b stream = <fun>

or, alternatively, using our recent definitions of head and tail,

# let rec smap (f : 'a -> 'b) (s : 'a stream) : ('b stream) =

# Cons (f (head s), smap f (tail s)) ;;

val smap : ('a -> 'b) -> 'a stream -> 'b stream = <fun>

Now, we map the successor function over the stream of ones to form a

stream of twos.

# let twos = smap succ ones ;;

Stack overflow during evaluation (looping recursion?).
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Of course, that doesn’t work at all. We’re asking OCaml to add one to

each element in an infinite sequence of ones. Luckily, smap isn’t tail

recursive, so we blow the stack, instead of just hanging in an infinite

loop. This behavior makes streams as currently implemented less

than useful since there’s little we can do to them without getting into

trouble. If only the system were less eager about doing all those infinite

number of operations, doing them only if it “needed to”.

The problem is that when calculating the result of the map, we need

to generate (and cons together) both the head of the list (f (head s))

and the tail of the list (smap f (tail s)). But the tail already involves

calling smap.

Why isn’t this a problem in calling regular recursive functions, like

List.map? In that case, there’s a base case that is eventually called.

Why isn’t this a problem in defining regular recursive functions?

Why is there no problem in defining, say,

let rec fact n =

if n = 0 then 1

else n * fact (pred n) ;;

Recall that this definition is syntactic sugar for

let rec fact =

fun n ->

if n = 0 then 1

else n * fact (pred n) ;;

The name fact can be associated with a function that uses it because

functions are values. The parts inside are not further evaluated, at least

not until the function is called. In essence, a function delays the latent

computation in its body until it is applied to its argument.

We can take advantage of that in our definition of streams by using

functions to perform computations lazily. We achieve laziness by

wrapping the computation in a function delaying the computation

until such time as we need the value. We can then force the value by

applying the function.

To achieve the delay of computation, we’ll take a stream not to

be a cons as before, but a delayed cons, a function from unit to the

cons. Other functions that need access to the components of the de-

layed cons can force it as needed. We need a new type definition for

streams, which will make use of a simultaneously defined auxiliary

type stream_internal:1 1 The and connective allows mutually re-
cursive type definitions. Unfortunately,
OCaml doesn’t allow direct definition of
nested types, like

type 'a stream = unit -> (Cons of 'a * 'a stream)

# type 'a stream_internal = Cons of 'a * 'a stream

# and 'a stream = unit -> 'a stream_internal ;;

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = unit -> 'a stream_internal

An infinite stream of ones is now defined as so:
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# let rec ones : int stream =

# fun () -> Cons (1, ones) ;;

val ones : int stream = <fun>

Notice that it returns a delayed cons, that is, a function which, when

applied to a unit, returns the cons.

We need to redefine the functions accordingly to take and return

these new lazy streams. In particular, head and tail now force their

argument by applying it to unit.

# let head (s : 'a stream) : 'a =

# match s () with

# | Cons (hd, _tl) -> hd ;;

val head : 'a stream -> 'a = <fun>

# let tail (s : 'a stream) : 'a stream =

# match s () with

# | Cons (_hd, tl) -> tl ;;

val tail : 'a stream -> 'a stream = <fun>

# let rec smap (f : 'a -> 'b) (s : 'a stream) : ('b stream) =

# fun () -> Cons (f (head s), smap f (tail s)) ;;

val smap : ('a -> 'b) -> 'a stream -> 'b stream = <fun>

The smap function now returns a lazy stream, a function, so that the

recursive call to smap isn’t immediately evaluated (as it was in the

old definition). Only when the cons is needed (as in the head or tail

functions) is the function applied and the cons constructed. That cons

itself has a stream as its tail, but that stream is also delayed.

Now, finally, we can map the successor function over the infinite

stream of ones to form an infinite stream of twos.

# let twos = smap succ ones ;;

val twos : int stream = <fun>

# head twos ;;

- : int = 2

# head (tail twos) ;;

- : int = 2

# head (tail (tail twos)) ;;

- : int = 2

We can convert a stream – or at least the first n of its infinity of

elements – into a corresponding list,

# let rec first (n : int) (s : 'a stream) : 'a list =

# if n = 0 then []

# else head s :: first (n - 1) (tail s) ;;

val first : int -> 'a stream -> 'a list = <fun>

allowing us to examine the first few elements of the streams we have

constructed:

# first 10 ones ;;

- : int list = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1]
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# first 10 twos ;;

- : int list = [2; 2; 2; 2; 2; 2; 2; 2; 2; 2]

So far, we’ve constructed a few infinite streams, but none of much

interest. But the tools are in hand to do much more. Think of the natu-

ral numbers: 0,1,2,3,4,5, . . .. What is this sequence? We can think of it

as the sequence formed by taking the natural numbers, incrementing

them all to form the sequence 1,2,3,4,5,6, . . ., and then prepending a

zero to the front, as depicted in Figure 17.1.

Start with the natural numbers
0 1 2 3 4 5 6 7 ...

Increment them
1 2 3 4 5 6 7 8 ...

Prepend a zero
0 1 2 3 4 5 6 7 8 ...

Figure 17.1: Creating an infinite stream
of natural numbers by taking the natural
numbers, incrementing them, and
prepending a zero.

We’ll define a stream called nats in just this way.

# let rec nats =

# fun () -> Cons (0, smap succ nats) ;;

val nats : int stream = <fun>

# first 10 nats ;;

- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

Let’s just pause for a moment to let that sink in.

A function to map over two streams simultaneously, like the

List.map2 function, allows even more powerful ways of building

streams.

# let rec smap2 f s1 s2 =

# fun () -> Cons (f (head s1) (head s2),

# smap2 f (tail s1) (tail s2)) ;;

val smap2 : ('a -> 'b -> 'c) -> 'a stream -> 'b stream -> 'c stream

= <fun>

We can, for instance, generate the Fibonacci sequence (see Exercise 33)

in this way. Figure 17.2 gives the recipe.

Start with the Fibonacci sequence
0 1 1 2 3 5 8 ...

Take its tail
1 1 2 3 5 8 13 ...

Sum them
1 2 3 5 8 13 21 ...

Prepend a zero and one
0 1 1 2 3 5 8 13 21 ...

Figure 17.2: Creating an infinite stream
of the Fibonacci numbers.

# let rec fibs =

# fun () -> Cons (0,

# fun () -> Cons (1,

# (smap2 (+) fibs (tail fibs)))) ;;

val fibs : int stream = <fun>

Here, we’ve timed generating the first 10 elements of the sequence.

It’s slow, but it works.

# Absbook.call_reporting_time (first 10) fibs ;;

time (msecs): 1.309872

- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34]

17.3 Lazy recomputation and thunks

Recall the definition of streams:

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = unit -> 'a stream_internal ;;
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Every time we want access to the head or tail of the stream, we need

to rerun the function. In a computation like the Fibonacci defini-

tion above, that means that every time we ask for the n-th Fibonacci

number, we recalculate all the previous ones – more than once. But

if the value being forced is pure, without side effects, there’s no rea-

son to recompute it. We should be able to avoid the recomputation

by remembering its value the first time it’s computed, and using the

remembered value from then on. The term of art for this technique is

M E M O I Z AT I O N.2 2 Not “memorization”. For unknown
reasons, computer scientists have
settled on this bastardized form of the
word.

We’ll encapsulate this idea in a new abstraction called a T H U N K,

essentially a delayed computation that stores its value upon being

forced. We implement a thunk as a mutable value (a reference) that

can be in one of two states: not yet evaluated or previously evaluated.

The type definition is thus structured with two alternatives.

# type 'a thunk = 'a thunk_internal ref

# and 'a thunk_internal =

# | Unevaluated of (unit -> 'a)

# | Evaluated of 'a ;;

type 'a thunk = 'a thunk_internal ref

and 'a thunk_internal = Unevaluated of (unit -> 'a) | Evaluated of

'a

Notice that in the unevaluated state, the thunk stores a delayed value

of type ’a. Once evaluated, it stores an immediate value of type ’a.

When we need to access the actual value encapsulated in a thunk,

we’ll use the force function. If the thunk has been forced before and

thus evaluated, we simply retrieve the value. Otherwise, we compute

the value, remember it by changing the state of the thunk to be evalu-

ated, and return the value.

# let rec force (t : 'a thunk) : 'a =

# match !t with

# | Evaluated v -> v

# | Unevaluated f ->

# t := Evaluated (f ());

# force t ;;

val force : 'a thunk -> 'a = <fun>

Here’s a thunk for a computation of, say, factorial of 15. To make the

timing clearer, we’ll give it a side effect of printing a short message.

# let fact15 =

# ref (Unevaluated (fun () ->

# print_endline "evaluating 15!";

# fact 15)) ;;

val fact15 : int thunk_internal ref = {contents = Unevaluated

<fun>}

which can be forced to carry out the calculation:
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# Absbook.call_reporting_time force fact15 ;;

evaluating 15!

time (msecs): 0.013828

- : int = 1307674368000

Now that the value has been forced, it is remembered in the thunk

and can be returned without recomputation. You can tell that no

recomputation occurs because the printing side effect doesn’t happen,

and the computation takes orders of magnitude less time.

# fact15 ;;

- : int thunk_internal ref = {contents = Evaluated 1307674368000}

# Absbook.call_reporting_time force fact15 ;;

time (msecs): 0.001192

- : int = 1307674368000

17.3.1 The Lazy Module

Thunks give us the ability to delay computation, force a delayed com-

putation, and memoize the result. But the notation is horribly cum-

bersome. Fortunately, OCaml provides a module and some appropri-

ate syntactic sugar for working with lazy computation implemented

through thunks – the Lazy module.

In the built-in Lazy module, the type of a delayed computation

of an ’a value is given not by ’a thunk but by ’a Lazy.t. A de-

layed computation is specified not by wrapping the expression in

ref (Unevaluated (fun () -> ...)) but by preceding it with the

new keyword lazy. Finally, forcing a delayed value uses the function

Lazy.force.

Availing ourselves of the Lazy module, we can perform the same

experiment more simply:

# let fact15 =

# lazy (print_endline "evaluating 15!";

# fact 15) ;;

val fact15 : int lazy_t = <lazy>

# Absbook.call_reporting_time Lazy.force fact15 ;;

evaluating 15!

time (msecs): 0.010967

- : int = 1307674368000

# Absbook.call_reporting_time Lazy.force fact15 ;;

time (msecs): 0.000954

- : int = 1307674368000

Now we can reconstruct infinite streams using the Lazy module.

First, the stream type:

# type 'a stream_internal = Cons of 'a * 'a stream

# and 'a stream = 'a stream_internal Lazy.t ;;

type 'a stream_internal = Cons of 'a * 'a stream

and 'a stream = 'a stream_internal Lazy.t
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Functions on streams will need to force the stream values. Here, for

instance, is the head function:

let head (s : 'a stream) : 'a =

match Lazy.force s with

| Cons (hd, _tl) -> hd ;;

Exercise 171

Rewrite tail, smap, smap2, and first to use the Lazy module.

The Fibonacci sequence can now be reconstructed. It runs hun-

dreds of times faster than the non-memoized version in Section 17.2.1:

# let rec fibs =

# lazy (Cons (0,

# lazy (Cons (1,

# smap2 (+) fibs (tail fibs))))) ;;

val fibs : int stream = <lazy>

# Absbook.call_reporting_time (first 10) fibs ;;

time (msecs): 0.005960

- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34]

17.4 Application: Approximating π

Figure 17.3: English mathematician
Brook Taylor (1685–1731), inventor
of the Taylor series approximation of
functions.

A nice application of infinite streams is in the numerical approxima-

tion of the value of π. In 1715, the English mathematician Brook Taylor

showed how to approximate functions as an infinite sum of terms, a

technique we now call TAY L O R S E R I E S. For instance, the trigonomet-

ric arctangent function can be approximated by the following infinite

sum:

arctan x = x − x3

3
+ x5

5
− x7

7
+·· ·

Figure 17.4: The arctangent of 1, that
is, the angle whose ratio of opposite to
adjacent side is 1, is a 45 degree angle,
or π

4 in radians.

As a special case, the arctangent of 1 is π
4 (Figure 17.4). So

π

4
= 1− 1

3
+ 1

5
− 1

7
+·· ·

and

π= 4− 4

3
+ 4

5
− 4

7
+·· · .

We can thus approximate π by adding up the terms in this infinite

stream of numbers.

We start with a function to convert a stream of integers to a stream

of floats.

# let to_float = smap float_of_int ;;

val to_float : int stream -> float stream = <fun>

Next, we build a stream of odd integers to serve as the denominators in

all the terms in the Taylor series:
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# let odds = smap (fun x -> x * 2 + 1) nats ;;

val odds : int stream = <lazy>

and a stream of alternating positive and negative ones to represent the

alternate adding and subtracting:

# let alt_signs =

# smap (fun x -> if x mod 2 = 0 then 1 else -1) nats ;;

val alt_signs : int stream = <lazy>

Finally, the stream of terms in the π sequence is

# let pi_stream = smap2 ( /. )

# (to_float (smap (( * ) 4) alt_signs))

# (to_float odds) ;;

val pi_stream : float stream = <lazy>

A check of the first few elements in these streams verifies them:

# first 5 odds ;;

- : int list = [1; 3; 5; 7; 9]

# first 5 alt_signs ;;

- : int list = [1; -1; 1; -1; 1]

# first 5 pi_stream ;;

- : float list =

[4.; -1.33333333333333326; 0.8; -0.571428571428571397;

0.44444444444444442]

Now that we have an infinite stream of terms, we can approximate

π by taking the sum of the first few elements of the stream, a PA RT I A L

S U M. The function pi_approx extracts the first n elements of the

stream and sums them up using a fold.

# let pi_approx n =

# List.fold_left ( +. ) 0.0 (first n pi_stream) ;;

val pi_approx : int -> float = <fun>

# pi_approx 10 ;;

- : float = 3.04183961892940324

# pi_approx 100 ;;

- : float = 3.13159290355855369

# pi_approx 1000 ;;

- : float = 3.14059265383979413

# pi_approx 10000 ;;

- : float = 3.14149265359003449

# pi_approx 100000 ;;

- : float = 3.14158265358971978

After 100,000 terms, we have a pretty good approximation of π, good to

about four decimal places.

The given sequence
1 2 3 4 5 6 7

...

. . . and its partial sums
1 3 6 10 15 21 28

...
Prepend a zero to the partial sums

0 1 3 6 10 15 21 28
...
. . . plus the original sequence

1 2 3 4 5 6 7 8
...
. . . yields the partial sums

1 3 6 10 15 21 28 36
...

Figure 17.5: Creating an infinite stream
of partial sums of a given stream, in this
case, the stream of positive integers.
We prepend a zero to the sequence’s
partial sums and add in the original
sequence to generate the sequence
of partial sums. Only by virtue of lazy
computation can this possibly work.

Of course, this technique of partial sums isn’t in the spirit of infinite

streams. Better would be to generate an infinite stream of all of the

partial sums. Figure 17.5 gives a recipe for generating a stream of

partial sums from a given stream. Starting with the stream, we take its
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partial sums (!) and prepend a zero. Adding the original stream and the

prepended partial sums stream yields. . . the partial sums stream. This

technique, implemented as a function over streams, is:

# let rec sums s =

# smap2 ( +. ) s (lazy (Cons (0.0, sums s))) ;;

val sums : float stream -> float stream = <fun>

Now the first few approximations of π are easily accessed:

# let pi_approximations = sums pi_stream ;;

val pi_approximations : float stream = <lazy>

# first 5 pi_approximations ;;

- : float list =

[4.; 2.66666666666666696; 3.46666666666666679; 2.89523809523809561;

3.33968253968254025]

If we want to find an approximation within a certain tolerance, say

ϵ, we can search for two terms in the stream of approximations whose

difference is less than ϵ.

# let rec within epsilon s =

# let hd, tl = head s, tail s in

# if abs_float (hd -. (head tl)) < epsilon then hd

# else within epsilon tl ;;

val within : float -> float stream -> float = <fun>

We can now search for a value accurate to within any number of digits

we desire:

# within 0.01 pi_approximations ;;

- : float = 3.13659268483881615

# within 0.001 pi_approximations ;;

- : float = 3.14109265362104129

Continuing on in this vein, we might explore methods for S E R I E S

AC C E L E R AT I O N – techniques to cause series to converge more quickly

– or apply infinite streams to other applications. But for now, this

should be sufficient to give a sense of the power of computing with

infinite streams.

Exercise 172

As mentioned in Exercise 33, the ratios of successive numbers in the Fibonacci sequence
approach the golden ratio (1.61803. . .). Show this by generating a stream of ratios of
successive Fibonacci numbers and use it to calculate the golden ratio within 0.000001.

17.5 Problem section: Circuits and boolean streams

A boolean circuit is a device with one or more inputs and a single

output that receives over time a sequence of boolean values on its

inputs and converts them to a corresponding sequence of boolean

values on its output. The building blocks of circuits are called gates.
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For instance, the and gate is a boolean device with two inputs; its

output is true when its two inputs are both true, and false if either

output is false. The not gate is a boolean device with a single input; its

output is true when its input is false and vice versa.

In this problem, you’ll generate code for modeling boolean circuits.

The inputs and outputs will be modeled as lazy boolean streams.

Let’s start with an infinite stream of false values.

Exercise 173

Define a value falses to be an infinite stream of the boolean value false.

Exercise 174

What is the type of falses?

Exercise 175

A useful function is the trueat function. The expression trueat n generates a stream of
values that are all false except for a single true at index n:

# first 5 (trueat 1) ;;
- : bool list = [false; true; false; false; false]

Define the function trueat.

Exercise 176

Define a function circnot : bool stream -> bool stream to represent the not gate.
It should have the following behavior:

# first 5 (circnot (trueat 1)) ;;
- : bool list = [true; false; true; true; true]

Exercise 177

Define a function circand to represent the and gate. It should have the following
behavior:

# first 5 (circand (circnot (trueat 1)) (circnot (trueat 3))) ;;
- : bool list = [true; false; true; false; true]

A nand gate is a gate that computes the negation of an and gate.

That is, it negates the and of its two inputs, so that its output is false

only if both of its inputs are true.

Exercise 178

Succinctly define a function circnand using the functions above to represent the nand
gate. It should have the following behavior:

# first 5 (circnand falses (trueat 3)) ;;
- : bool list = [true; true; true; true; true]
# first 5 (circnand (trueat 3) (trueat 3)) ;;
- : bool list = [true; true; true; false; true]

17.6 A unit testing framework

With the additional tools of algebraic data types and lazy evaluation,

we can put together a more elegant framework for unit testing. Lazy

evaluation in particular is useful here, since a unit test is nothing other

than an expression to be evaluated for its truth at some later time

when the tests are run. Algebraic data types are useful in a couple of
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ways, first to package together the components of a test and second to

express the alternative ways that a test can come out.

Of course, tests can pass or fail, which we represent by an expres-

sion that returns either true or false respectively. But tests can have

other outcomes as well; there are other forms of failing than returning

false. In particular, a test might raise an exception, or it might not

terminate at all. In order to deal with tests that might not terminate,

we’ll need a way of safely running these tests in a context in which we

cut off computation after a specified amount of time. The computation

will be said to have T I M E D O U T. To record the outcome of a test, we’ll

define a variant type:

# type status =

# | Passed

# | Failed

# | Raised_exn of string (* string describing exn *)

# | Timed_out of int (* timeout in seconds *) ;;

type status = Passed | Failed | Raised_exn of string | Timed_out of

int

A unit test type will package together a mnemonic label for the test,

the test condition itself (as a delayed expression), and a timeout period

in seconds.

# type test =

# { label : string;

# condition : bool Lazy.t;

# time : int } ;;

type test = { label : string; condition : bool Lazy.t; time : int;

}

Notice that the condition of the test is a lazy boolean, so that the con-

dition will not be evaluated until the test is run.

To construct a test, we provide a function that packages together the

components.3 3 We make use of an optional argument
for the timeout time, which defaults
to five seconds if not provided. For
the interested, details of optional
arguments are discussed here.

# (* test ?time label condition -- Returns a test with the

# given label and condition, with optional timeout time

# in seconds (defaulting to 5 seconds). *)

# let test ?(time=5) label condition =

# {label; condition; time} ;;

val test : ?time:int -> string -> bool Lazy.t -> test = <fun>

The crux of the matter is the running of a test. Doing so generates

a value of type status. The run_test function will be provided a

function continue to be applied to the label of the test and its status.

For instance, an appropriate such function might print out a line in a

report describing the outcome, like this:

# (* present labels status -- Prints a line describing the

# outcome of a test. Appropriate for use as the continue

https://url.cs51.io/hwp
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# function in run_test. *)

# let present (label : string) (status : status) : unit =

# let open Printf in

# match status with

# | Passed ->

# printf "%s: passed\n" label

# | Failed ->

# printf "%s: failed\n" label

# | Timed_out secs ->

# printf "%s: timed out after %d seconds\n" label secs

# | Raised_exn msg ->

# printf "%s: raised %s\n" label msg ;;

val present : string -> status -> unit = <fun>

The run_test function needs to evaluate the test by forcing evaluation

of the delayed condition. As a first cut, we’ll look only to the normal

case, where a test returns true or false.

# (* run_test test continue -- Runs the test, applying the

# continue function to the test label and status. *)

# let run_test ({label; condition; _} : test)

# (continue : string -> status -> unit)

# : unit =

# let result = Lazy.force condition in

# if result then continue label Passed

# else continue label Failed ;;

val run_test : test -> (string -> status -> unit) -> unit = <fun>

But what if the test raises an exception? We’ll evaluate the test condi-

tion in a try 〈〉 with 〈〉 to deal with this case.

# (* run_test test continue -- Runs the test, applying the

# continue function to the test label and status. *)

# let run_test ({label; condition; _} : test)

# (continue : string -> status -> unit)

# : unit =

# try

# let result = Lazy.force condition in

# if result then continue label Passed

# else continue label Failed

# with

# | exn -> continue label

# (Raised_exn (Printexc.to_string exn)) ;;

val run_test : test -> (string -> status -> unit) -> unit = <fun>

Finally, we need to deal with timeouts. We appeal to a function

timeout that forces a lazy computation, but raises a special Timeout

exception if the computation goes on too long. The workings of this

function are well beyond the scope of this text, but we provide the code

in Figure 17.6.

Using the timeout function to force the condition and checking for

the Timeout exception handles the final possible status of a unit test.
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# (* timeout time f -- Forces delayed computation f, returning

# what f returns, except that after time seconds it raises

# a Timeout exception. *)

#

# exception Timeout ;;

exception Timeout

# let sigalrm_handler =

# Sys.Signal_handle (fun _ -> raise Timeout) ;;

val sigalrm_handler : Sys.signal_behavior = Sys.Signal_handle <fun>

# let timeout (time : int) (f : 'a Lazy.t) : 'a =

# let old_behavior =

# Sys.signal Sys.sigalrm sigalrm_handler in

# let reset_sigalrm () =

# ignore (Unix.alarm 0);

# Sys.set_signal Sys.sigalrm old_behavior in

# ignore (Unix.alarm time) ;

# let res = Lazy.force f in

# reset_sigalrm () ; res ;;

val timeout : int -> 'a Lazy.t -> 'a = <fun>

Figure 17.6: The function timeout used
in the evaluation of unit tests, based on
the timeout function of Chailloux et al.
(2000)
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# (* run_test test continue -- Runs the test, applying the

# continue function to the test label and status. *)

# let run_test ({label; time; condition} : test)

# (continue : string -> status -> unit)

# : unit =

# try

# if timeout time condition

# then continue label Passed

# else continue label Failed

# with

# | Timeout -> continue label (Timed_out time)

# | exn -> continue label

# (Raised_exn (Printexc.to_string exn)) ;;

val run_test : test -> (string -> status -> unit) -> unit = <fun>

By iterating over a list of unit tests, we can generate a nice report of

all the tests.

# (* report tests -- Generates a report based on the

# provided tests. *)

# let report (tests : test list) : unit =

# List.iter (fun test -> run_test test present) tests ;;

val report : test list -> unit = <fun>

With this infrastructure in place, we can define a test suite that

demonstrates all of the functionality of the unit testing framework.

# let tests =

# [ test "should fail" (lazy (3 > 4));

# test "should pass" (lazy (4 > 3));

# test "should time out" (lazy (let rec f x = f x in f 1));

# test "should raise exception" (lazy ((List.nth [0; 1] 3) = 3))

# ] ;;

val tests : test list =

[{label = "should fail"; condition = <lazy>; time = 5};

{label = "should pass"; condition = <lazy>; time = 5};

{label = "should time out"; condition = <lazy>; time = 5};

{label = "should raise exception"; condition = <lazy>; time =

5}]

# report tests ;;

should fail: failed

should pass: passed

should time out: timed out after 5 seconds

should raise exception: raised Failure("nth")

- : unit = ()

17.7 A brief history of laziness

Figure 17.7: Peter Landin (1930–2009),
developer of many innovative ideas
in programming languages, including
the roots of lazy programming. His
influence transcended his role as a
computer scientist, especially in his
active support of gay rights.

The idea of lazy computation probably starts with Peter Landin (Fig-

ure 17.7). He observed “a relationship between lists and functions”:

In this relationship a nonnull list L is mirrored by a none-adic function S

that produces a 2-list consisting of (1) the head of L, and (2) the function
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mirroring the tail of L. . . . This correspondence serves two related pur-

poses. It enables us to perform operations on lists (such as generating

them, mapping them, concatenating them) without using an “exten-

sive,” item-by-item representation of the intermediately resulting lists;

and it enables us to postpone the evaluation of the expressions specify-

ing the items of a list until they are actually needed. The second of these

is what interests us here. (Landin, 1965)

The idea of a “function mirroring the tail of” a list is exactly the delay-

ing of the tail computation that we’ve seen in the stream data type.

Landin is notable for many other ideas of great currency. For in-

stance, he invented the term “syntactic sugar” for the addition of

extra concrete syntax to abbreviate some useful but otherwise com-

plicated abstract syntax. His 1966 paper “The next 700 programming

languages” (Landin, 1966) introduced several innovative ideas in-

cluding the “offside rule” of concrete syntax, allowing the indentation

pattern of a program to indicate its structure. Python is typically noted

for making use of this Landin innovation. Indeed, the ISWIM language

that Landin described in this paper is arguably the most influential

programming language that no one ever programmed in.

Following Landin’s observation, Wadsworth proposed the lazy

lambda calculus in 1971, and Friedman and Wise published an article

proposing that “Cons should not evaluate its arguments” in 1976. The

first programming language to specify lazy evaluation as the evaluation

regime was Burstall’s Hope language (which also introduced the idea,

found in nascent form in ISWIM, of algebraic data types). A series of

lazy languages followed, most notably Miranda, but the lazy program-

ming community came together to converge on the now canonical lazy

language Haskell, named after Haskell Curry.

17.8 Supplementary material

• Lab 14: Lazy programming and infinite data structures: Implement-

ing laziness as user code

• Lab 15: Lazy programming and infinite data structures: Using

OCaml’s native lazy module

• Problem set A.7: Refs, streams, and music

http://url.cs51.io/lab14
http://url.cs51.io/lab14
http://url.cs51.io/lab15
http://url.cs51.io/lab15
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Extension and object-oriented programming

Think of your favorite graphical user interface (GUI). It probably has

various W I D G E T S – buttons, checkboxes, textboxes, radio buttons,

menus, icons, and so forth. These widgets might undergo various op-

erations – we might want to draw them in a window, click on them,

change their location, remove them, highlight them, select from them.

Each of these operations seems like a function. We’d organize func-

tions like this:

how to draw:
   a button
   a checkbox
   a textbox
   ...

how to click on:
   a button
   a checkbox
   a textbox
   …

how to highlight:
   a button
   a checkbox
   a textbox
   ...

Figure 18.1: Function-oriented organi-
zation of widget software

But new widgets are being invented all the time. Every time a new

widget type is added, we’d have to change every one of these functions.

Instead, we might want to organize the code a different way:

buttons:
   how to draw
   how to click
   how to highlight
   ...

checkboxes:
   how to draw
   how to click
   how to highlight
   ...

textboxes:
   how to draw
   how to click
   how to highlight
   ...

Figure 18.2: Object-oriented organiza-
tion of widget software

This way, adding a new widget doesn’t affect any of the existing

ones. The changes are localized, and therefore likely to be much more

reliably added. We are carving the software at its joints, following the

edict of decomposition.

This latter approach to code organization, organizing by “object”
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rather than by function, is referred to as O B J E C T- O R I E N T E D. It’s prob-

ably no surprise that the rise in popularity of object-oriented pro-

gramming tracks the development of graphical user interfaces; as seen

above, it’s a natural fit. In particular, the idea of object-oriented pro-

gramming was popularized by the Smalltalk programming language

and system, which pioneered many of the fundamental ideas of graph-

ical user interfaces that we are now accustomed to – windows, icons,

menus, buttons. Smalltalk with its graphical user interface was devel-

oped in the early 1970’s at Xerox PARC by Alan Kay, Adele Goldberg,

Dan Ingalls, and others (Figure 18.3). Steve Jobs, seeing the Smalltalk

environment in a 1979 visit to Xerox PARC, immediately imported the

ideas into Apple’s Lisa and Macintosh computers, thereby disseminat-

ing and indeed universalizing the ideas.

In this chapter, we introduce object-oriented programming, a pro-

gramming paradigm based on organizing functionalities (in the form

of methods) together with the data that they operate on, as opposed to

the functional paradigm, which organizes functionalities (in the form

of functions) separate from the corresponding data.

18.1 Drawing graphical elements

To motivate such a reorganization, consider a program to draw graph-

ical elements on a window. We’ll start by organizing the code in a

function-oriented, not object-oriented, style.

Positions in the window can be captured with a point data type:

# type point = {x : int; y : int} ;;

type point = { x : int; y : int; }

Figure 18.3: Alan Kay, Adele Goldberg,
and Dan Ingalls, developers of the influ-
ential Smalltalk language, a pioneering
object-oriented language, with an inno-
vative user interface based on graphical
widgets and direct manipulation.

We might want data types for the individual kinds of graphical ele-

ments – rectangles, circles, squares – each with its own parameters

specifying pertinent positions, sizes, and the like:

# type rect = {rect_pos : point;

# rect_width : int;

# rect_height : int} ;;

type rect = { rect_pos : point; rect_width : int; rect_height :

int; }

# type circle = {circle_pos : point; circle_radius : int} ;;

type circle = { circle_pos : point; circle_radius : int; }

# type square = {square_pos : point; square_width : int} ;;

type square = { square_pos : point; square_width : int; }

We can think of a scene as being composed of a set of these display

elements:
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# type display_elt =

# | Rect of rect

# | Circle of circle

# | Square of square ;;

type display_elt = Rect of rect | Circle of circle | Square of

square

# type scene = display_elt list ;;

type scene = display_elt list

In order to make use of these elements to actually draw on a screen,

we’ll make use of the OCaml Graphics module, which you may want

to familiarize yourself with before proceeding. (We rename the module

G for brevity.)

# module G = Graphics ;;

module G = Graphics

We can write a function to draw a display element of whatever vari-

ety by dispatching (matching) based on the variant of the display_elt

type:1

1 All of the subtractions of half the
widths and heights is because the
Graphics module often draws graphics
based on the lower left hand corner
position, instead of the center of the
graphic that we’re using.

# let draw (d : display_elt) : unit =

# match d with

# | Rect r ->

# G.set_color G.black;

# G.fill_rect (r.rect_pos.x - r.rect_width / 2)

# (r.rect_pos.y - r.rect_height / 2)

# r.rect_width r.rect_height

# | Circle c ->

# G.set_color G.black;

# G.fill_circle c.circle_pos.x c.circle_pos.y

# c.circle_radius

# | Square s ->

# G.set_color G.black;

# G.fill_rect (s.square_pos.x - s.square_width / 2)

# (s.square_pos.y - s.square_width / 2)

# s.square_width s.square_width ;;

val draw : display_elt -> unit = <fun>

and use it to draw an entire scene on a fresh canvas:

# let draw_scene (s : scene) : unit =

# try

# G.open_graph ""; (* open the canvas *)

# G.resize_window 200 300; (* erase and resize *)

# List.iter draw s; (* draw the elements *)

# ignore (G.read_key ()) (* wait for a keystroke *)

# with

# exn -> (G.close_graph () ; raise exn) ;;

val draw_scene : scene -> unit = <fun>

Let’s test it on a simple scene of a few rectangles and circles:

https://ocaml.github.io/graphics/graphics/Graphics/index.html
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# let test_scene =

# [ Rect {rect_pos = {x = 0; y = 20};

# rect_width = 15; rect_height = 80};

# Circle {circle_pos = {x = 40; y = 100};

# circle_radius = 40};

# Circle {circle_pos = {x = 40; y = 140};

# circle_radius = 20};

# Square {square_pos = {x = 65; y = 160};

# square_width = 50} ] ;;

val test_scene : display_elt list =

[Rect {rect_pos = {x = 0; y = 20}; rect_width = 15; rect_height =

80};

Circle {circle_pos = {x = 40; y = 100}; circle_radius = 40};

Circle {circle_pos = {x = 40; y = 140}; circle_radius = 20};

Square {square_pos = {x = 65; y = 160}; square_width = 50}]

# draw_scene test_scene ;;

- : unit = ()

A window pops up with the scene (Figure 18.4(a)).

(a)

(b)

Figure 18.4: (a) A test scene. (b) The test
scene translated.

Sadly, the scene is not centered very well in the canvas. Fortunately,

it’s easy to add functionality in the functional programming paradigm:

just add functions. We can easily add functions to translate a display

element or a scene by a given amount in the x and y directions.

# let translate (p : point) (d : display_elt) : display_elt =

# let vec_sum {x = x1; y = y1} {x = x2; y = y2} =

# {x = x1 + x2; y = y1 + y2} in

# match d with

# | Rect r ->

# Rect {r with rect_pos = vec_sum p r.rect_pos}

# | Circle c ->

# Circle {c with circle_pos = vec_sum p c.circle_pos}

# | Square s ->

# Square {s with square_pos = vec_sum p s.square_pos} ;;

val translate : point -> display_elt -> display_elt = <fun>

# let translate_scene (p : point) : scene -> scene =

# List.map (translate p) ;;

val translate_scene : point -> scene -> scene = <fun>

Using these, we can translate the scene to center it before drawing:

# draw_scene (translate_scene {x = 42; y = 50} test_scene) ;;

- : unit = ()

to get the depiction in Figure 18.4(b).

So adding functionality is easy. What about adding new types of

data, new display elements? Suppose we want to add a textual display

element to place some text in the scene.

# type text = {text_pos : point;

# text_title : string} ;;

type text = { text_pos : point; text_title : string; }
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We’ll have to modify the display_elt data type to incorporate text

elements:

# type display_elt =

# | Rect of rect

# | Circle of circle

# | Square of square

# | Text of text ;;

type display_elt =

Rect of rect

| Circle of circle

| Square of square

| Text of text

Now the draw function complains (unsurprisingly) of an inexhaustive

match:

# let draw (d : display_elt) : unit =

# match d with

# | Rect r ->

# G.set_color G.black;

# G.fill_rect (r.rect_pos.x - r.rect_width / 2)

# (r.rect_pos.y - r.rect_height / 2)

# r.rect_width r.rect_height

# | Circle c ->

# G.set_color G.black;

# G.fill_circle c.circle_pos.x c.circle_pos.y

# c.circle_radius

# | Square s ->

# G.set_color G.black;

# G.fill_rect (s.square_pos.x - s.square_width / 2)

# (s.square_pos.y - s.square_width / 2)

# s.square_width s.square_width ;;

Lines 2-16, characters 0-29:

2 | match d with

3 | | Rect r ->

4 | G.set_color G.black;

5 | G.fill_rect (r.rect_pos.x - r.rect_width / 2)

6 | (r.rect_pos.y - r.rect_height / 2)

...

13 | G.set_color G.black;

14 | G.fill_rect (s.square_pos.x - s.square_width / 2)

15 | (s.square_pos.y - s.square_width / 2)

16 | s.square_width s.square_width...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Text _

val draw : display_elt -> unit = <fun>

We’ll have to augment it to handle drawing text. Ditto for the

translate function. In fact, every function that manipulates display

elements will have to be changed. If we’re going to be adding new types

of elements to display, translate, and the like, this will get unwieldy

quickly. But there’s a better way – objects.
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18.2 Objects introduced

What do we care about about display elements? That they can be

drawn. That’s it. We want to abstract away from all else.

We’ll define a data type, an abstraction, display_elt, that is a

record with a single field called draw that stores a drawing function.

# type display_elt = {draw : unit -> unit} ;;

type display_elt = { draw : unit -> unit; }

Then rectangles, circles, squares, and texts are just ways of building

display elements with that drawing functionality.

Take rectangles for example. A rectangle is a display_elt whose

draw function displays a rectangle. We can establish a rect function

that builds such a display element given its initial parameters – posi-

tion, width, and height:

# let rect (p : point) (w : int) (h : int) : display_elt =

# { draw = fun () ->

# G.set_color G.black ;

# G.fill_rect (p.x - w/2) (p.y - h/2) w h } ;;

val rect : point -> int -> int -> display_elt = <fun>

Similarly with circles and squares:

# let circle (p : point) (r : int) : display_elt =

# { draw = fun () ->

# G.set_color G.black;

# G.fill_circle p.x p.y r } ;;

val circle : point -> int -> display_elt = <fun>

# let square (p : point) (w : int) : display_elt =

# { draw = fun () ->

# G.set_color G.black ;

# G.fill_rect (p.x - w/2) (p.y - w/2) w w } ;;

val square : point -> int -> display_elt = <fun>

Now to draw a display element, we just extract the draw function and

call it. The display element data object knows how to draw itself.

# let draw (d : display_elt) = d.draw () ;;

val draw : display_elt -> unit = <fun>

If we want to add a new display element, a text, say, we just have to

provide a way to draw such a thing. No other code (draw, draw_scene)

needs to change.

# let text (p : point) (s : string) : display_elt =

# { draw = (fun () ->

# let (w, h) = G.text_size s in

# G.set_color G.black;

# G.moveto (p.x - w/2) (p.y - h/2);

# G.draw_string s) } ;;

val text : point -> string -> display_elt = <fun>
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Of course, we’d probably want display elements to have more func-

tionality than just drawing themselves – for instance, moving them to a

new position, querying and changing their color, and much more. Let’s

start with these.

# type display_elt =

# { draw : unit -> unit;

# set_pos : point -> unit;

# get_pos : unit -> point;

# set_color : G.color -> unit;

# get_color : unit -> G.color } ;;

type display_elt = {

draw : unit -> unit;

set_pos : point -> unit;

get_pos : unit -> point;

set_color : G.color -> unit;

get_color : unit -> G.color;

}

Notice that display elements now (apparently) must have mutable

state. Their position and color can be modified over time. We’ll im-

plement this state by creating appropriate references, called pos and

color, respectively, that are generated upon creation of an object and

are specific to it. Here, for instance, is the circle function to create a

circular display element object:

# let circle (p : point) (r : int) : display_elt =

# let pos = ref p in

# let color = ref G.black in

# { draw = (fun () -> G.set_color (!color);

# G.fill_circle (!pos).x (!pos).y r);

# set_pos = (fun p -> pos := p);

# get_pos = (fun () -> !pos);

# set_color = (fun c -> color := c);

# get_color = (fun () -> !color) } ;;

val circle : point -> int -> display_elt = <fun>

The scoping is crucial. The definitions of pos and color are within

the scope of the circle function. Thus, new references are generated

each time circle is invoked and are accessible only to the record

structure (the object) created by that invocation.2 Similarly, we’ll want 2 Recall the similar idea of local, other-
wise inaccessible, persistent, mutable
state first introduced in the bump func-
tion from Section 15.3, and reproduced
here:

# let bump =

# let ctr = ref 0 in

# fun () ->

# ctr := !ctr + 1;

# !ctr ;;

val bump : unit -> int = <fun>

a function to create rectangles and text boxes, each with its own state

and functionality as specified by the display_elt type.

# let rect (p : point) (w : int) (h : int) : display_elt =

# let pos = ref p in

# let color = ref G.black in

# { draw = (fun () ->

# G.set_color (!color);

# G.fill_rect ((!pos).x - w/2) ((!pos).y - h/2)

# w h);

# set_pos = (fun p -> pos := p);



310 P RO G R A M M I N G W E L L

# get_pos = (fun () -> !pos);

# set_color = (fun c -> color := c);

# get_color = (fun () -> !color) };;

val rect : point -> int -> int -> display_elt = <fun>

# let text (p : point) (s : string) : display_elt =

# let pos = ref p in

# let color = ref G.black in

# { draw = (fun () ->

# let (w, h) = G.text_size s in

# G.set_color (!color);

# G.moveto ((!pos).x - w/2) ((!pos).y - h/2);

# G.draw_string s);

# set_pos = (fun p -> pos := p);

# get_pos = (fun () -> !pos);

# set_color = (fun c -> color := c);

# get_color = (fun () -> !color) } ;;

val text : point -> string -> display_elt = <fun>

What we’ve done is to generate a wholesale reorganization of the

display element code, organizing it not by functionality (with a draw

function, a set_pos function, and so forth), but instead by variety of

“object” bearing that functionality. We’ve organized the code in an

O B J E C T- O R I E N T E D manner.

Think of a table (as in Table 18.1) that describes for each function-

ality (draw, move, getting and setting color) and each class of object

(rectangle, circle, text) the code necessary to carry out that function-

ality for that class of object. We can organize the code by functional-

ity, packaging the rows into functions; this is the function-oriented

paradigm. Alternatively, we can organize the code by class of ob-

ject, packaging the columns into objects; this is the object-oriented

paradigm.

rectangle circle text

draw

G.set_color (!color);

G.fill_rect (!pos).x

(!pos).y w h

G.set_color (!color)

G.fill_circle (!pos).x

(!pos).y r

G.set_color (!color);

G.moveto (!pos).x

(!pos).y;

G.draw_string s

move pos := p pos := p pos := p

set color color := c color := c color := c

get color !color !color !color

Table 18.1: The matrix of functionality
(rows) and object classes (columns)
for the display elements example.
The code can be organized by row –
function-oriented – or by column –
object-oriented.

Which is the better approach? The edict of decomposition appeals

to cutting up software at its joints. Which of row or column constitutes

the natural joints will vary from case to case. It is thus a fundamental
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design decision as to whether to use a function- or object-oriented

structuring of code. If you expect a need to add additional columns

with regularity, whereas adding rows will be rare, the object-oriented

approach will fare better. Conversely, if new rows, new functional-

ity, will be needed over a relatively static set of classes of data, the

function-oriented approach is preferable.

18.3 Object-oriented terminology and syntax

The object-oriented programming paradigm that we’ve reconstructed

here comes with its own set of terminology. First, the data structure

that encapsulates the various bits of functionality – here implemented

as a simple record structure – is an O B J E C T. The various components

providing the functionality are its M E T H O D S, and the state variables

(like color and pos) its I N S TA N C E VA R I A B L E S. The specification of

what methods are provided by an object (like display_elt) is its

C L A S S I N T E R F AC E, and the creation of an object is specified by its

C L A S S (like circle or text).

We create an object by I N S TA N T I AT I N G the class, in this example,

the circle class,

# let circle1 = circle {x = 100; y = 100} 50 ;;

val circle1 : display_elt =

{draw = <fun>; set_pos = <fun>; get_pos = <fun>; set_color =

<fun>;

get_color = <fun>}

which satisfies the display_elt class interface.

When we make use of a method, for instance, the set_pos method,

# circle1.set_pos {x = 125; y = 125} ;;

- : unit = ()

we are said to I N V O K E the method

It should be clear that the object-oriented programming paradigm

can be carried out in any programming language with the abstractions

that we’ve relied on here, basically, first-class functions, lexical scoping,

and mutable state. But, as with other programming paradigms we’ve

looked at, providing some syntactic sugar in support of the paradigm

can be quite useful. OCaml does just that. Indeed, the “O” in “OCaml”

indicates that the language was developed as an extension to the Caml

language by adding syntactic support for object-oriented program-

ming.

The object-oriented syntax extensions in OCaml are summarized in

Table 18.2.

The display element example can thus be stated in colloquial

OCaml as follows. We start with the display_elt class interface:
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Concept Syntax

Class interfaces class type 〈interfacename〉 = ...

Class definition class 〈classname〉 〈args〉 = ...

Object definition object ... end

Instance variables val (mutable) 〈varname〉 = ...

Methods method 〈methodname〉 〈args〉 = ...

Instance variable update ... <- ...

Instantiating classes new 〈classname〉 〈args〉
Invoking methods 〈object〉#〈methodname〉 〈args〉

Table 18.2: Syntactic extensions in
OCaml supporting object-oriented
programming.

# class type display_elt =

# object

# method draw : unit

# method set_pos : point -> unit

# method get_pos : point

# method set_color : G.color -> unit

# method get_color : G.color

# end ;;

class type display_elt =

object

method draw : unit

method get_color : G.color

method get_pos : point

method set_color : G.color -> unit

method set_pos : point -> unit

end

and define some classes that satisfy the interface:

# class circle (p : point) (r : int) : display_elt =

# object

# val mutable pos = p

# val mutable color = G.black

# method draw = G.set_color color;

# G.fill_circle pos.x pos.y r

# method set_pos p = pos <- p

# method get_pos = pos

# method set_color c = color <- c

# method get_color = color

# end ;;

class circle : point -> int -> display_elt

# class rect (p : point) (w : int) (h : int) : display_elt =

# object

# val mutable pos = p

# val mutable color = G.black

# method draw = G.set_color color;

# G.fill_rect (pos.x - w/2) (pos.y - h/2)

# w h

# method set_pos p = pos <- p
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# method get_pos = pos

# method set_color c = color <- c

# method get_color = color

# end ;;

class rect : point -> int -> int -> display_elt

Now we can use these to create and draw some display elements. We

create a new circle,

# let _ = G.open_graph "";

# G.clear_graph ;;

- : unit -> unit = <fun>

# let b = new circle {x = 100; y = 100} 40 ;;

val b : circle = <obj>

but nothing appears yet until we draw the element.

# let _ = b#draw ;;

- : unit = ()

(Notice that invoking the method doesn’t require the application to

a unit. In the object-oriented syntax, method invocation with no

arguments can be implicit in this way.) The circle now appears, as in

Figure 18.5(a).

(a)

(b)

(c)

Figure 18.5: A circle appears (a) and
disappears (b). It moves and reappears
with a changed color (c).

We can erase the object by setting its color to white and redrawing it

(Figure 18.5(b)).

# let _ = b#set_color G.white;

# b#draw ;;

- : unit = ()

We move it to a new position and change its color (Figure 18.5(c)).

# let _ = b#set_pos {x = 150; y = 150};

# b#set_color G.red;

# b#draw ;;

- : unit = ()

18.4 Inheritance

The code we’ve developed so far violates the edict of irredundancy.

The implementations of the circle and rect classes, for instance, are

almost identical, differing only in the arguments of the class and the

details of the draw method.

To capture the commonality, the object-oriented paradigm allows

for definition of a class expressing the common aspects, from which

both of the classes can I N H E R I T their behaviors. We refer to the class

(or class type) that is being inherited from as the S U P E RC L A S S and the

inheriting class as the S U B C L A S S.

We’ll define a shape superclass that can handle the position and

color aspects of the more specific classes. Its class type is given by
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# class type shape_elt =

# object

# method set_pos : point -> unit

# method get_pos : point

# method set_color : G.color -> unit

# method get_color : G.color

# end ;;

class type shape_elt =

object

method get_color : G.color

method get_pos : point

method set_color : G.color -> unit

method set_pos : point -> unit

end

and a simple implementation of the class is

# class shape (p : point) : shape_elt =

# object

# val mutable pos = p

# val mutable color = G.black

# method set_pos p = pos <- p

# method get_pos = pos

# method set_color c = color <- c

# method get_color = color

# end ;;

class shape : point -> shape_elt

Notice that the new shape_elt signature provides access to the four

methods, but not directly to the instance variables used to implement

those methods. The only access to those instance variables will be

through the methods, an instance of the edict of compartmentaliza-

tion that seems appropriate.

The display_elt class type can inherit the methods from shape_-

elt, adding just the additional draw method.

# class type display_elt =

# object

# inherit shape_elt

# method draw : unit

# end ;;

class type display_elt =

object

method draw : unit

method get_color : G.color

method get_pos : point

method set_color : G.color -> unit

method set_pos : point -> unit

end

The inherit specification works as if the contents of the inherited su-

perclass type were simply copied into the subclass type at that location

in the code.
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The rect and circle subclasses can inherit much of their behavior

from the shape superclass, just adding their own draw methods. How-

ever, without the ability to refer directly to the instance variables, the

draw method will need to call its own methods for getting and setting

the position and color. We can add a variable to name the object itself,

by adding a parenthesized name after the object keyword. Although

any name can be used, by convention, we use this or self. We can

then invoke the methods from the shape superclass with, for instance,

this#get_color.

# class rect (p : point) (w : int) (h : int) : display_elt =

# object (this)

# inherit shape p

# method draw =

# G.set_color this#get_color ;

# G.fill_rect (this#get_pos.x - w/2)

# (this#get_pos.y - h/2)

# w h

# end ;;

class rect : point -> int -> int -> display_elt

# class circle (p : point) (r : int) : display_elt =

# object (this)

# inherit shape p

# method draw =

# G.set_color this#get_color;

# G.fill_circle this#get_pos.x this#get_pos.y r

# end ;;

class circle : point -> int -> display_elt

Notice how the inherited shape class is provided the position argu-

ment p so its instance variables and methods can be set up properly.

Using inheritance, a square class can be implemented with a single

inheritance from the rect class, merely by specifying that the width

and height of the inherited rectangle are the same:

# class square (p : point) (w : int) : display_elt =

# object

# inherit rect p w w

# end ;;

class square : point -> int -> display_elt

Exercise 179

Define a class text : point -> string -> display_elt for placing a string of text at
a given point position on the canvas. (You’ll need the Graphics.draw_string function
for this.)

18.4.1 Overriding

Inheritance in OCaml allows for subclasses to override the methods

in superclasses. For instance, we can implement a class of bordered
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rectangles (rather than the filled rectangles of the rect class) simply by

overriding the draw method:

# class border_rect (p : point)

# (w : int) (h : int)

# : display_elt =

# object (this)

# inherit rect p w h as super

# method! draw = G.set_color this#get_color;

# G.fill_rect (this#get_pos.x - w/2 - 2)

# (this#get_pos.y - h/2 - 2)

# (w+4) (h+4) ;

# let c = this#get_color in

# this#set_color G.white ;

# super#draw ;

# this#set_color c

# end ;;

class border_rect : point -> int -> int -> display_elt

Here, we’ve introduced the overriding draw method with method!,

where the exclamation mark diacritic explicitly marks the method as

overriding the superclass’s draw method. Without that, OCaml will

provide a helpful warning to the programmer in case the overriding

was unintentional.

When a subclass overrides the method of a superclass, the subclass

may still want access to the superclass’s version of the method. That’s

the case here, where the subclass’s draw method needs to call the su-

perclass’s. In the presence of overriding, then, it becomes important to

have a name for the superclass object so as to be able to call its meth-

ods. The inherited superclass can be given a name for this purpose by

the as construct used above in the inherit specification. The variable

following the as – conventionally super though any variable can be

used – then names the superclass providing access to its version of any

overridden methods.

18.5 Subtyping

Back in Section 18.1, we defined a scene as a set of drawable ele-

ments, so as to be able to iterate over a scene to draw each element.

We can obtain that ability by defining a new function that draws a list

of display_elt objects:

# let draw_list (d : display_elt list) : unit =

# List.iter (fun x -> x#draw) d ;;

val draw_list : display_elt list -> unit = <fun>

We’ve put together a small scene (Figure 18.6), evocatively called

scene, to test the process.3

3 The type of the scene is displayed not,
as one might expect, as display_elt
list but as border_rect list. OCaml
uses class names, not class type names,
to serve the purpose of reporting typing
information for objects. The elements
of scene are instances of various
classes (all consistent with class type
display_elt). OCaml selects the first
element of the list, which happens to be
a border_rect instance, to serve as the
printable name of the type. This quirk
of OCaml reveals that the grafting of
the “O” part of the language isn’t always
seamless.
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let scene =

(* generate some graphical objects *)

let box = new border_rect {x = 100; y = 110} 180 210 in

let l1 = new rect {x = 70; y = 60} 20 80 in

let l2 = new rect {x = 135; y = 100} 20 160 in

let b = new circle {x = 100; y = 100} 40 in

let bu = new circle {x = 100; y = 140} 20 in

let h = new rect {x = 150; y = 170} 50 20 in

let t = new text {x = 100; y = 200} "The CS51 camel" in

(* bundle them together *)

let scene = [box; l1; l2; b; bu; h; t] in

(* change their color and translate them *)

List.iter (fun x -> x#set_color 0x994c00) scene;

List.iter (fun o -> let {x; y} = o#get_pos in

o#set_pos {x = x + 50; y = y + 40})

scene;

(* update the surround color *)

box#set_color G.blue;

scene ;;

Figure 18.6: A test scene.

# scene ;;

- : border_rect list = [<obj>; <obj>; <obj>; <obj>; <obj>; <obj>;

<obj>]

We can draw this scene in a fresh window using draw_list.

# let test scene =

# try

# G.open_graph "";

# G.resize_window 300 300;

# G.clear_graph ();

# draw_list scene;

# ignore (G.read_key ())

# with

# exn -> (G.close_graph (); raise exn) ;;

val test : display_elt list -> unit = <fun>

# test scene ;;

- : unit = ()

We defined draw_list to operate on display_elt lists. But there’s

no reason to be so specific. It ought to be the case that any object with

a draw method should be able to participate in a scene. We can define

a new class type of drawable elements

# class type drawable =

# object

# method draw : unit
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# end ;;

class type drawable = object method draw : unit end

and redefine draw_list accordingly:

# let draw_list (d : drawable list) : unit =

# List.iter (fun x -> x#draw) d ;;

val draw_list : drawable list -> unit = <fun>

We’ve defined drawable as a S U P E RT Y P E of display_elt. It’s a super-

type because anything that can be done with a drawable can be done

with a display_elt, but also potentially with other classes as well

(namely, any that have a draw method). The idea is that an object with

a “wider” interface (a subtype, like display_elt) can be used where

an object with a “narrower” interface (a supertype, like drawable) is

needed.

There is a family resemblance in this idea to polymorphism. Any

function with a more polymorphic type (like ’a -> ’a list, say) can

be used where an object with a less polymorphic type (like int -> int

list) is needed.

Exercise 180

Test out this polymorphism subtyping behavior in OCaml by defining two functions
mono : int -> int list and poly : ’a -> ’a list, along with a function need :

(int -> int list) -> int list. Then apply need to both mono and poly, thereby
showing that need works with an argument of its required type (int -> int list) and
also a subtype thereof (’a -> ’a list).

Anything that’s a display_elt or inherits from display_elt or

satisfies the display_elt interface will have at least the functionality

of a drawable. So they are subtypes of drawable.4

4 There would seem to be a correlation
between subclasses and subtypes. Of
course, not all subtypes are subclasses;
they may not be related by inheritance.
But in a subclass, you have all the
functionality of the superclass, plus you
can add some more. So are subclasses
always subtypes?

No. For instance, in the subclass,
you could redefine a method to have a
more restrictive signature. In that case,
the subclass would not be a subtype;
it would have a narrower interface (at
least for that method), not a wider one.

The advantage of subtyping – allowing functions with a wider in-

terface to be used where one with a narrower interface is called for –

is just the advantage of polymorphism. It allows reuse of functionality,

which redounds to the benefit of the edict of irredundancy. Rather

than reimplement functions for the different interface “widths”, we

reuse them instead. We’ll see that OCaml allows this kind of reuse,

though with a little less automaticity than the reuse from polymor-

phism.

It ought to be the case, for instance, that, as display_elt is a sub-

type of drawable, our revision of draw_scene to apply to drawable

objects ought to allow scenes composed of display_elt objects. Let’s

try it.

# let test scene =

# try

# G.open_graph "";

# G.resize_window 300 300;

# G.clear_graph ();

# draw_list scene;
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# ignore (G.read_key ())

# with

# exn -> (G.close_graph (); raise exn) ;;

val test : drawable list -> unit = <fun>

The type of test shows that it now takes a drawable list argument.

We apply it to our scene.

# test scene ;;

Line 1, characters 5-10:

1 | test scene ;;

^^^^^

Error: This expression has type border_rect list

but an expression was expected of type drawable list

Type border_rect = display_elt is not compatible with type

drawable = < draw : unit >

The second object type has no method get_color

But the draw_list call no longer works. We’ve tripped over a limita-

tion in OCaml’s type inference. A subtype ought to be allowed where

a supertype is needed, as it is in the case of polymorphic subtypes of

less polymorphic supertypes. But in the case of class subtyping, OCaml

is not able to perform the necessary type inference to view the sub-

type as the supertype and use it accordingly. We have to give the type

inference system a hint.

We want the call to draw_list to view scene not as its display_elt

list subtype but rather as the drawable list supertype. We use the

:> operator to specify that view. The expression scene :> drawable

list specifies scene viewed as a drawable list.

# let test scene =

# try

# G.open_graph "";

# G.resize_window 300 300;

# G.clear_graph ();

# draw_list (scene :> drawable list) ;

# ignore (G.read_key ())

# with

# exn -> (G.close_graph (); raise exn) ;;

val test : #drawable list -> unit = <fun>

# test scene ;;

- : unit = ()

Voila! The scene (Figure 18.7) appears. A little advice to the type infer-

ence mechanism has resolved the problem.

Figure 18.7: The rendered test scene.

18.6 Problem section: Object-oriented counters

Here is a class type and class definition for “counter” objects. Each

object maintains an integer state that can be “bumped” by adding
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an integer. The interface guarantees that only the two methods are

revealed.

class type counter_interface =

object

method bump : int -> unit

method get_state : int

end ;;

class counter : counter_interface =

object

val mutable state = 0

method bump n = state <- state + n

method get_state = state

end ;;

Problem 181

Write a class definition for a class loud_counter obeying the same interface that works
identically, except that it also prints the resulting state of the counter each time the
counter is bumped.

Problem 182

Write a class type definition for an interface reset_counter_interface, which is
just like counter_interface except that it has an additional method of no arguments
intended to reset the state back to zero.

Problem 183

Write a class definition for a class loud_reset_counter satisfying the reset_counter_-
interface that implements a counter that both allows for resetting and is “loud”
(printing the state whenever a bump or reset occurs).

18.7 Supplementary material

• Lab 16: Object-oriented programming

• Lab 17: Objects and classes

• Problem set A.8: Force-directed graph drawing

• Problem set A.9: Simulating an infectious process

http://url.cs51.io/lab16
http://url.cs51.io/lab17
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Semantics: The environment model

The addition of mutability – which enables impure programming

paradigms like imperative and procedural programming, with its

potential for efficiencies in both time and space, and enables lazy and

object-oriented programming as well – comes at a cost. Leibniz’s law

no longer applies. One and the same expression in the same context

can evaluate to different values, making reasoning about programs

more difficult.

That complexity ramifies in providing explicit semantics for the

language as well. The simple substitution semantics of Chapter 13 is

no longer sufficient. For that reason, and looking forward to the imple-

mentation of an interpreter for a larger fragment of OCaml (Chapter A),

we revisit the formal substitution semantics from Chapter 13, modify-

ing and augmenting it to provide a rigorous semantics for references

and assignment, showing where the additional complexity arises and

clarifying issues such as scope, side effects, and order of evaluation.

19.1 Review of substitution semantics

Recall from Section 13.6 the abstract syntax of a simple functional

language with arithmetic:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉
| fun 〈var〉 -> 〈exprbody〉
| 〈exprfun〉 〈exprarg〉



322 P RO G R A M M I N G W E L L

The semantics for this language was provided through the apparatus of

evaluation rules, which defined derivations for judgements of the form

P ⇓ v

where P is an expression and v is its value (a simplified expression that

means the same and that cannot be further evaluated).

The substitution semantics is sufficient for this simple language

because it is a pure functional programming language. But binding

constructs like let, let rec, and fun are awkward to implement,

and extending the language to handle references, mutability, and

imperative programming is quite challenging if not impossible. For

that reason, we start by modifying the substitution semantics to make

use of an E N V I RO N M E N T that stores a mapping from variables to

their values. In the next two sections, we develop the environment

semantics for the language of Chapter 13 in two variants: a dynamic

environment semantics and a lexical environment semantics. We then

augment the environment semantics with a model of a mutable store

to allow for reference values and their assignment.

19.2 Environment semantics

In an environment semantics, instead of substituting for variables

the value that they specify, we directly model a mapping between

variables and their values, which we call an E N V I RO N M E N T. We use

the following notation for mappings in the semantics. A mapping from

elements, say, x, y , z, to elements a, b, c, respectively, will be notated

as {x 7→ a; y 7→ b; z 7→ c}. The notation purposefully evokes the OCaml

record notation, since a record also provides a kind of mapping from

a finite set of elements (labels) to associated values. It also evokes,

through the use of the 7→ symbol, the idea of substitution, as these

mappings will replace substitutions in the environment semantics.

Indeed, the environments that give their name to environment

semantics are just such mappings – from variables to their values. We’ll

conventionally use the symbol E and its primed versions (E ′, E ′′, . . . )

as metavariables standing for environments. The empty environment

will be notated {}, and the environment E augmented so as to add the

mapping of the variable x to the value v will be notated E {x 7→ v}. To

look up what value an environment E maps a variable x to, we use

Euler’s function application notation: E(x).

Having introduced the necessary notation, we turn to modifying the

substitution semantics to use environments instead.
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19.2.1 Dynamic environment semantics

Recall that the substitution semantics is given through a series of rules

defining judgements of how expressions evaluate to values. (Reviewing

Figure 13.5 may refresh your memory.)

In an environment semantics, expressions aren’t evaluated in isola-

tion. Rather, they are evaluated in the context of an environment that

specifies which variables have which values. Instead of defining rules

for P evaluating to v (written as the judgement P ⇓ v), we define rules

for P evaluating to v in an environment E (written as the judgement

E ⊢ P ⇓ v). The rule for evaluating numbers, for instance, becomes

E ⊢ n ⇓ n (Rint )

stating that “in environment E a numeral n evaluates to itself (inde-

pendent of the environment)”, and the rule for addition provides the

environment as context for evaluating the subexpressions:

E ⊢ P + Q ⇓∣∣∣∣∣ E ⊢ P ⇓ m

E ⊢Q ⇓ n

⇓ m +n

(R+)

Glossing again, the rule says “to evaluate an expression of the form P

+ Q in an environment E , first evaluate P in the environment E to an

integer value m and Q in the environment E to an integer value n. The

value of the full expression is then the integer literal representing the

sum of m and n.”

To construct a derivation for a whole expression using these rules,

we start in the empty environment {}. For instance, a derivation for the

expression 3 + 5 would be

{} ⊢ 3 + 5 ⇓∣∣∣∣∣ {} ⊢ 3 ⇓ 3
{} ⊢ 5 ⇓ 5

⇓ 8

So far, not much is different from the substitution semantics. The

differences show up in the handling of binding constructs like let.

Recall the Rlet rule for let binding in the substitution semantics.

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD ] ⇓ vB

⇓ vB

(Rlet )
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This rule specifies that an expression of the form let x = D in

B evaluates to the value vB , whenever the definition expression D

evaluates to vD and the body expression B after substituting vB for the

variable x evaluates to vB .

The corresponding environment semantics rule doesn’t substi-

tute into B . It evaluates B directly, but it does so in an environment

augmented with a new binding of x to its value vD :

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet )

According to this rule, “to evaluate an expression of the form let x

= D in B in an environment E , first evaluate D in E resulting in a

value vD and then evaluate the body B in an environment that is like E

except that the variable x is mapped to the value vD . The result of this

latter evaluation, vB , is the value of the let expression as a whole.”

In the substitution semantics, we will have substituted away all of

the bound variables in a closed expression, so no rule is needed for

evaluating variables themselves. But in the environment semantics,

since no substitution occurs, we’ll need to be able to evaluate expres-

sions that are just variables. Presumably, those variables will have

values in the prevailing environment; we’ll just look them up.

E ⊢ x ⇓ E(x) (Rvar)

A gloss for this rule is “evaluating a variable x in an environment E

yields the value of x in E .”

Putting all these rules together, we can derive a value for the expres-

sion let x = 3 in x + x:

{} ⊢ let x = 3 in x + x ⇓∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 3 ⇓ 3
{x 7→ 3} ⊢ x + x ⇓∣∣∣∣∣ {x 7→ 3} ⊢ x ⇓ 3

{x 7→ 3} ⊢ x ⇓ 3
⇓ 6

⇓ 6
The derivation makes clear how the environment semantics differs

from the substitution semantics. Rather than replacing a bound vari-

able with its value, we add the bound variable with its value to the

environment; when an occurrence of the variable is reached, we sim-

ply look up its value in the environment.
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Exercise 184

Construct the derivation for the expression

let x = 3 in
let y = 5 in
x + y ;;

Exercise 185

Construct the derivation for the expression

let x = 3 in
let x = 5 in
x + x ;;

Continuing the translation of the substitution semantics directly

into an environment semantics, we turn to functions and their appli-

cation. Maintaining functions as values is reflected in this simple rule:

E ⊢ fun x -> P ⇓ fun x -> P (Rfun)

and the application of a function to its argument again adds the ar-

gument’s value to the environment used in evaluating the body of the

function:

E ⊢ P Q ⇓∣∣∣∣∣∣∣
E ⊢ P ⇓ fun x -> B

E ⊢Q ⇓ vQ

E {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Exercise 186

Provide glosses for these two rules.

We can try the example from Section 13.6:

(fun x -> x + x) (3 * 4)

whose evaluation to 24 is captured by the following derivation:

{} ⊢ (fun x -> x + x) (3 * 4)

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ (fun x -> x + x) ⇓ (fun x -> x + x)

{} ⊢ 3 * 4 ⇓∣∣∣∣∣ {} ⊢ 3 ⇓ 3
{} ⊢ 4 ⇓ 4

⇓ 12
{x 7→ 12} ⊢ x + x ⇓∣∣∣∣∣ {x 7→ 12} ⊢ x ⇓ 12

{x 7→ 12} ⊢ x ⇓ 12
⇓ 24

⇓ 24
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The full set of dynamic environment semantics rules so far is pre-

sented in Figure 19.1.

E ⊢ n ⇓ n (Rint )

E ⊢ x ⇓ E(x) (Rvar)

E ⊢ fun x -> P ⇓ fun x -> P (Rfun)

E ⊢ P + Q ⇓∣∣∣∣∣ E ⊢ P ⇓ m

E ⊢Q ⇓ n

⇓ m +n

(R+)

(and similarly for other binary operators)

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet )

E ⊢ P Q ⇓∣∣∣∣∣∣∣
E ⊢ P ⇓ fun x -> B

E ⊢Q ⇓ vQ

E {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Figure 19.1: Dynamic environment
semantics rules for evaluating expres-
sions, for a functional language with
naming and arithmetic.

Problems with the dynamic semantics The environment semantics

captured in these rules (Figure 19.1) seems like it should generate the

same evaluations as the substitution semantics (Figure 13.5). After

all, the only difference would seem to be that instead of the binding

constructs (let and fun) substituting a value for the variables they

bind, they place the value in the environment, to be retrieved when the

variables they bind need them. But there are subtle differences, hidden

in the decision as to which variable occurrences see which values.

Recall (Section 5.5) that in OCaml the connection between occur-

rences of variables and the binding constructs they are bound by is
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determined by the lexical structure of the code. For instance, in the

expression

# let x = 1 in

# let f = fun y -> x + y in

# let x = 2 in

# f 3 ;;

Line 3, characters 4-5:

3 | let x = 2 in

^

Warning 26 [unused-var]: unused variable x.

- : int = 4

the highlighted occurrence of the variable x is bound by the outer let

x, not the inner. For that reason, the result of evaluating the expression

is 4, and not 5. The substitution semantics reflects this fact, as seen in

the derivation

let x = 1 in let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ⇓ 1
let f = fun y -> 1 + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun y -> 1 + y ⇓ fun y -> 1 + y

let x = 2 in (fun y -> 1 + y) 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 ⇓ 2
(fun y -> 1 + y) 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun y -> 1 + y ⇓ fun y -> 1 + y

3 ⇓ 3
1 + 3 ⇓∣∣∣∣∣ 1 ⇓ 1

3 ⇓ 3
⇓ 4

⇓ 4
⇓ 4

⇓ 4
⇓ 4

But the environment semantics evaluates this expression to 5.

Exercise 187

Before proceeding, see if you can construct the derivation for this expression according
to the environment semantics rules. Do you see where the difference lies?

According to the environment semantics developed so far, a deriva-
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tion for this expression proceeds as

{} ⊢ let x = 1 in let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 1 ⇓ 1
{x 7→ 1} ⊢ let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1} ⊢ fun y -> x + y ⇓ fun y -> x + y

{x 7→ 1;f 7→ fun y -> x + y} ⊢ let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1;f 7→ fun y -> x + y} ⊢ 2 ⇓ 2
{f 7→ fun y -> x + y;x 7→ 2} ⊢ f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{f 7→ fun y -> x + y;x 7→ 2} ⊢ f ⇓ fun y -> x + y

{f 7→ fun y -> x + y;x 7→ 2} ⊢ 3 ⇓ 3
{f 7→ fun y -> x + y;x 7→ 2;y 7→ 3} ⊢ x + y

⇓∣∣∣∣∣ {f 7→ fun y -> x + y;x 7→ 2;y 7→ 3} ⊢ x ⇓ 2
{f 7→ fun y -> x + y;x 7→ 2;y 7→ 3} ⊢ y ⇓ 3

⇓ 5
⇓ 5

⇓ 5
⇓ 5

⇓ 5
The crucial difference comes when augmenting the environment

during application of the function fun y -> x + y to its argument.

Examine closely the two highlighted environments in the derivation

above. The first is the environment in force when the function is de-

fined, the L E X I C A L E N V I RO N M E N T of the function. The second is the

environment in force when the function is applied, its DY N A M I C E N -

V I RO N M E N T. The environment semantics presented so far augments

the dynamic environment with the new binding induced by the appli-

cation. It manifests a DY N A M I C E N V I RO N M E N T S E M A N T I C S. But for

consistency with the substitution semantics (which substitutes occur-

rences of a bound variable when the binding construct is defined, not

applied), we should use the lexical environment, thereby manifesting a

L E X I C A L E N V I RO N M E N T S E M A N T I C S.

In Section 19.2.2, We’ll develop a lexical environment semantics

that cleaves more faithfully to the lexical scope of the substitution

semantics, but first, we note some other divergences between dynamic

and lexical semantics.

Consider this simple application of a curried function:

(fun x -> fun y -> x + y) 1 2
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The substitution semantics rules specify that this expression evaluates

to 3. But the dynamic semantics misbehaves:

{} ⊢ (fun x -> fun y -> x + y) 1 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ (fun x -> fun y -> x + y) 1

⇓∣∣∣∣∣∣∣
{} ⊢ fun x -> fun y -> x + y ⇓ fun x -> fun y -> x + y

{} ⊢ 1 ⇓ 1
{x 7→ 1} ⊢ fun y -> x + y ⇓ fun y -> x + y

⇓ fun y -> x + y

{} ⊢ 2 ⇓ 2
{y 7→ 2} ⊢ x + y

⇓∣∣∣∣∣ {y 7→ 2} ⊢ x ⇓ ???
· · ·

⇓ ???
⇓ ???

We can start the derivation, but the dynamic environment available

when we come to evaluate the x in the function body contains no

binding for x! (If only we had been evaluating the body in its lexical

environment.) In a dynamic semantics, currying – so central to many

functional idioms – becomes impossible.

On the other hand, under a dynamic semantics, recursion needs no

special treatment. By using the dynamic environment in evaluating the

definiendum of a let, the definition of the bound variable is already

available. We revisit the derivation for factorial from Section 13.7, but
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this time using the dynamic environment semantics:

{} ⊢ let f = fun n -> if n = 0 then 1 else n * f (n - 1) in f 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ fun n -> if n = 0 then 1 else n * f (n - 1)

⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

{f 7→ fun n -> if n = 0 then 1 else n * f (n - 1)} ⊢ f 2

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{f 7→ fun n -> if n = 0 then 1 else n * f (n - 1)} ⊢ f

⇓ fun n -> if n = 0 then 1 else n * f (n - 1)

{f 7→ fun n -> if n = 0 then 1 else n * f (n - 1)} ⊢ 2

⇓ 2
{ f 7→ if n = 0 then 1 else n * f (n - 1);n 7→ 2} ⊢ if n = 0 then 1 else n * f (n - 1)

⇓∣∣∣ · · ·
⇓ 2

⇓ 2
⇓ 2

Notice how the body of the function, with its free occurrence of the

variable f, is evaluated in an environment in which f is bound to the

function itself. By using the dynamic environment semantics rules, we

get recursion “for free”. Consequently, the dynamic semantics rule for

the let rec construction can simply mimic the let construction:

E ⊢ let rec x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rletrec)

To truly reflect the intended semantics of expressions in an envi-

ronment semantics, we need to find a way of using the lexical envi-

ronment for functions instead of the dynamic environment; we need a

lexical environment semantics.

19.2.2 Lexical environment semantics

To modify the rules to provide a lexical rather than dynamic environ-

ment semantics, we must provide some way of capturing the lexical

environment when functions are defined. The technique is to have

functions evaluate not to themselves (awaiting the dynamic environ-

ment for interpretation of the variables within them), but rather to

have them evaluate to a “package” containing the function and its

lexical (defining) environment. This package is called a C L O S U R E.1

1 The term comes from the terminology
of open versus closed expressions.
Open expressions have free variables
in them; closed expressions have none.
By capturing the defining environment,
we essentially use it to close the free
variables in the function. The closure
thus turns what would otherwise
be an open expression into a closed
expression.
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We’ll notate the closure that packages together a function P and its

environment E as [E ⊢ P ]. In evaluating a function, then, we merely

construct such a closure, capturing the function’s defining environ-

ment.

E ⊢ fun x -> P ⇓ [E ⊢ fun x -> P ] (Rfun)

We make use of closures constructed in this way when the function is

applied:

Ed ⊢ P Q ⇓∣∣∣∣∣∣∣
Ed ⊢ P ⇓ [El ⊢ fun x -> B ]

Ed ⊢Q ⇓ vQ

El {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Rather than augmenting the dynamic environment Ed in evaluating

the body, we augment the lexical environment El extracted from the

closure.

The lexical environment semantics properly reflects the intended

semantics for several of the problematic examples in Section 19.2.1,

as demonstrated in the following exercises. However, the handling

of recursion still requires some further work, which we’ll return to in

Section 19.4.

Exercise 188

Carry out the derivation using the lexical environment semantics for the expression

let x = 1 in
let f = fun y -> x + y in
let x = 2 in
f 3 ;;

What value does it evaluate to under the lexical environment semantics?

Exercise 189

Carry out the derivation using the lexical environment semantics for the expression

(fun x -> fun y -> x + y) 1 2 ;;

Problem 190

In problem 155, you evaluated several expressions as OCaml would, with lexical scoping.
Which of those expressions would evaluate to a different value using dynamic scoping?

19.3 Conditionals and booleans

In Section 13.5, exercises asked you to develop abstract syntax and

substitution semantics rules for booleans and conditionals. In this

section, we call for similar rules for environment semantics (applicable

to dynamic or lexical variants).
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Exercise 191

Adjust the substitution semantics rules for booleans from Exercise 135 to construct
environment semantics rules for the constructs.

Exercise 192

Adjust the substitution semantics rules for conditional expressions (if 〈〉 then 〈〉 else 〈〉
) from Exercise 136 to construct environment semantics rules for the construct.

19.4 Recursion

The dynamic environment semantics already allows for recursion – in

fact, too much recursion – because of its dynamic nature. Think about

an ill-formed “almost-recursive” function, like

let f = fun x -> if x = 0 then 1 else f (x - 1) in f 1 ;;

It’s ill-formed because the lack of a rec keyword means that the f in

the definition part ought to be unbound. But it works just fine in the

dynamic environment semantics. When f 1 is evaluated in the dy-

namic environment in which f is bound to fun x -> if x = 0 then

1 else f (x - 1), all of the subexpressions of the definiens, includ-

ing the occurrence of f itself, will be evaluated in an augmentation

of that environment, so the “recursive” occurrence of f will obtain a

value. (It is perhaps for this reason that the earliest implementations of

functional programming languages, the original versions of LISP, used

a dynamic semantics.)

The lexical semantics, of course, does not benefit from this fortu-

itous accident of definition. The lexical environment in force when f

is defined is empty, and thus, when the body of f is evaluated, it is the

empty environment that is augmented with the argument x bound to

1. There is no binding for the recursively invoked f, and the deriva-

tion cannot be completed – consistent, by the way, with how OCaml

behaves:

# let f = fun x -> if x = 0 then 1 else f (x - 1) in f 1 ;;

Line 1, characters 38-39:

1 | let f = fun x -> if x = 0 then 1 else f (x - 1) in f 1 ;;

^

Error: Unbound value f

Hint: If this is a recursive definition,

you should add the 'rec' keyword on line 1

To allow for recursion in the lexical environment semantics, we

should add a special rule for let rec then. A let rec expression is

built from three parts: a variable name (x), a definition expression (D),

and a body (B). To evaluate it, we ought to first evaluate the definition

part D , but using what environment? Any functions inside the defi-

nition part will see this environment as their lexical environment, to
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be captured in a closure. We’ll thus want to make a value for x avail-

able in that environment. But what will we use for the value of x in the

environment? We can’t merely map x to the definition D , with its free

occurence of x; that just postpones the problem.

In one sense, it doesn’t matter what value we use for x in evaluating

the definition D , because in evaluating D , we won’t (or at least better

not) make use of x directly, as for instance in

# let rec x = x + 1 in x ;;

Line 1, characters 12-17:

1 | let rec x = x + 1 in x ;;

^^^^^

Error: This kind of expression is not allowed as right-hand side of

`let rec'

That wouldn’t be a well-founded recursion. Instead, the occurrences

of x in D will have to be in contexts where they are not evaluated.

Canonically, that would be within an unapplied function, like the

factorial example

# let rec f = fun n -> if n = 0 then 1 else n * f (n - 1) in f 2 ;;

- : int = 2

Because of this requirement for well-founding of the recursion, what-

ever value we use for x, we’ll be able to evaluate the definition to some

value, call it vD . That value, however, may involve closures that capture

the binding for x, and we’ll need to look up the value for x later in eval-

uating the body. Thus, the environment used in evaluating the body

best have a binding for x to vD .

These considerations call for the following approach to handling

the semantics of let rec in an environment E . We start by forming an

environment E ′ that extends E with a binding for x, but a binding that

is mutable, so it can be changed later. Initially, x can be bound to some

recognizable and otherwise ungenerable value, say, Unassigned. We

evaluate the definition D in environment E ′ to a value vD , which may

capture E ′ (or extensions of it) in closures. We then change the value

stored for x in E ′ to vD , and evaluate the body B in E ′ (thus modified).

By mutating the value bound to x, any closures that have captured E ′

will see this new value for x as well, so that (recursive) lookups of x in

the body will see the evaluated vD as well.

Because this approach relies on mutation, our notation for environ-

ment semantics isn’t up to the task of formalizing this idea, and doing

so is beyond the scope of this discussion, so we’ll leave it at that for

now. But once mutability is incorporated into the semantics – that was

the whole point in moving to an environment semantics, remember –

we’ll revisit the issue and give appropriate rules for let rec.

Even without formal rules for let rec, you’ll see in Chapter A how
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this approach can be implemented in an interpreter for a language

with a let rec construction.

E ⊢ n ⇓ n (Rint )

E ⊢ x ⇓ E(x) (Rvar)

E ⊢ fun x -> P ⇓ [E ⊢ fun x -> P ] (Rfun)

E ⊢ P + Q ⇓∣∣∣∣∣ E ⊢ P ⇓ m

E ⊢Q ⇓ n

⇓ m +n

(R+)

(and similarly for other binary operators)

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet )

Ed ⊢ P Q ⇓∣∣∣∣∣∣∣
Ed ⊢ P ⇓ [El ⊢ fun x -> B ]

Ed ⊢Q ⇓ vQ

El {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

Figure 19.2: Lexical environment
semantics rules for evaluating expres-
sions, for a functional language with
naming and arithmetic.

19.5 Implementing environment semantics

In Section 13.4.2, we presented an implementation of the substitution

semantics in the form of a function eval : expr -> expr. Modifying

it to follow the environment semantics requires just a few simple

changes. First, evaluation is relative to an environment, so the eval

function should take an additional argument, of type, say env. Second,

under the lexical environment semantics, expressions evaluate to

values that include more than just the pertinent subset of expressions.

In particular, expressions may evaluate to closures, so that an extended
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notion of value, codified in a type value is needed. In summary, the

type of eval should be expr -> env -> value.

The new env type, a simple mapping from variables to the values

they are bound to, can be implemented as an association list

type env = (varid * value ref) list

and the value type can include expression values and closures in a

simple variant type

type value =

| Val of expr

| Closure of (expr * env)

(The env data structure maps variables to mutable value refs to

allow for the mutation required in implementing let rec as described

in Section 19.4.) The carrying out of this exercise is the subject of

Chapter A.

19.6 Semantics of mutable storage

In this section, we further extend the lexical environment semantics to

allow for imperative programming with references and assignment. (As

a byproduct, we’ll have the infrastructure to probide a formal seman-

tics rule for let rec.) To do so, we’ll start by augmenting the syntax of

the language, and then adjust the environment semantic rules so that

the context of evaluation includes not only an environment, but also a

model for the mutable storage that references require.

We’ll start with adding to the syntax a unit value () and operators

(ref, !, and :=) to manipulate reference values:

〈binop〉 ::= + | - | * | /

〈var〉 ::= x | y | z | · · ·
〈expr〉 ::= 〈integer〉

| 〈var〉
| 〈expr1〉 〈binop〉 〈expr2〉
| let 〈var〉 = 〈exprdef〉 in 〈exprbody〉
| fun 〈var〉 -> 〈exprbody〉
| 〈exprfun〉 〈exprarg〉
| ()

| ref 〈expr〉
| ! 〈expr〉
| 〈var〉 := 〈expr〉

The plan for handling references is to add a new kind of value, a

L O C AT I O N, which is an index or pointer into an abstract model of

memory that we will call the S TO R E. A store S will be a finite mapping
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(like the environment) from locations to values. So a reference to a

value v will be a location l such that the store S maps l to v . Evaluation

will need to be relative to a store in addition to an environment, so

evaluation judgements will look like E ,S ⊢ P ⇓ ·· · .
Because the store can change as a side effect of evaluation (that’s

the whole point of mutability), the result of evaluation can’t simply be a

value. We’ll need access to the modified store as well. So the right-hand

side of the evaluation arrow ⇓ will provide both a value and a store. Our

final form for evaluation judgements is thus

E ,S ⊢ P ⇓ vP ,S′ .

(See Figure 19.3 for a breakdown of such a judgement.)

E ,S︸︷︷︸
a

⊢ P︸︷︷︸
b

⇓ vP ,S ′︸ ︷︷ ︸
c︸ ︷︷ ︸

d︸ ︷︷ ︸
e

Figure 19.3: Anatomy of an evaluation
judgement. (a) The context of evalua-
tion, including an environment E and a
store S. (b) The expression to be evalu-
ated. (c) The result of the evaluation, a
value and a store mutated by side effect.
(d) The evaluation of P to its result.
(e) The judgement as a whole. “In the
environment E and store S, expression
P evaluates to value vP with modified
store S′.”

A semantic rule for references reflects these ideas:

E ,S ⊢ ref P ⇓∣∣∣ E ,S ⊢ P ⇓ vP ,S′

⇓ l ,S′{l 7→ vP } (where l is a new location)

(Rref )

According to this rule, “to evaluate an expression of the form ref P in

an environment E and store S, we evaluate P in that environment and

store, yielding a value vP for P and a new store S′ (as there may have

been side effects to S in the evaluation). The value for the reference is

a new location l , and as side effect, a new store that is S′ augmented so

that l maps to the value vP .”

To dereference such a reference, as in an expression of the form

! P , P will need to be evaluated to a location, and the value at that

location retrieved.

Exercise 193

Write a semantic rule for dereferencing references.

Finally, and most centrally to the idea of mutable storage, is assign-

ment to a reference. Evaluating an assignment of the form P := Q

involves evaluating P to a location l and evaluating Q to a value vQ ,

and updating the store so that l maps to vQ . Along the way, the various

subevaluations may themselves have side effects leading to updated

stores, which must be dealt with. For instance, starting with an envi-

ronment E and store S, evaluating P may result in an updated store

S′. That updated store would then be the store with respect to which

Q would be evaluated, leading to a possibly updated store S′′. It is this

final store that would be augmented with the new assignment. A rule
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specifying this semantics is

E ,S ⊢ P := Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ l ,S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ (),S′′{l 7→ vQ }

(Rassign)

The important point of the rule is the update to the store. But like

all evaluation rules, a value must be returned for the expression as a

whole. Here, we’ve simply returned the unit value ().

Exercise 194

In the presence of side effects, sequencing (with ;) becomes important. Write an evalua-
tion rule for sequencing.

To complete the semantics of mutable state, the remaining rules

must be modified to use and update stores appropriately. Figure 19.4

provides a full set of rules.

As an example of the deployment of these semantic rules, we con-

sider the expression

let x = ref 3 in

x := 42;

!x

Here is the derivation in full.

{}, {} ⊢ let x = ref 3 in x := 42; !x

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{}, {} ⊢ ref 3 ⇓∣∣∣ {}, {} ⊢ 3 ⇓ 3, {}

⇓ l1, {l1 7→ 3}

{x 7→ l1}, {l1 7→ 3} ⊢ x := 42; !x

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ l1}, {l1 7→ 3} ⊢ x := 42

⇓∣∣∣∣∣ {x 7→ l1}, {l1 7→ 3} ⊢ x ⇓ l1, {l1 7→ 3}

{x 7→ l1}, {l1 7→ 3} ⊢ 42 ⇓ 42, {l1 7→ 3}

⇓ (), {l1 7→ 42}

{x 7→ l1}, {l1 7→ 42} ⊢ !x

⇓∣∣∣ {x 7→ l1}, {l1 7→ 42} ⊢ x ⇓ l1, {l1 7→ 42}

⇓ 42, {l1 7→ 42}

⇓ 42, {l1 7→ 42}

⇓ 42, {l1 7→ 42}
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E ,S ⊢ n ⇓ n,S (Rint )

E ,S ⊢ x ⇓ E(x),S (Rvar)

E ,S ⊢ fun x -> P ⇓ [E ⊢ fun x -> P ],S (Rfun)

E ,S ⊢ P + Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ m,S′

E ,S′ ⊢Q ⇓ n,S′′

⇓ m +n,S′′

(R+)

(and similarly for other binary operators)

E ,S ⊢ let x = D in B ⇓∣∣∣∣∣ E ,S ⊢ D ⇓ vD ,S′

E {x 7→ vD },S′ ⊢ B ⇓ vB ,S′′

⇓ vB ,S′′

(Rlet )

Ed ,S ⊢ P Q ⇓∣∣∣∣∣∣∣
Ed ,S ⊢ P ⇓ [El ⊢ fun x -> B ],S′

Ed ,S′ ⊢Q ⇓ vQ ,S′′

El {x 7→ vQ },S′′ ⊢ B ⇓ vB ,S′′′

⇓ vB ,S′′′

(Rapp)

Figure 19.4: Lexical environment
semantics rules for evaluating ex-
pressions, for a functional language
with naming, arithmetic, and mutable
storage.
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E ,S ⊢ ref P ⇓∣∣∣ E ,S ⊢ P ⇓ vP ,S′

⇓ l ,S′{l 7→ vP } (where l is a new location)

(Rref )

E ,S ⊢ ! P ⇓∣∣∣ E ,S ⊢ P ⇓ l ,S′

⇓ S′(l ),S′
(Rderef )

E ,S ⊢ P := Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ l ,S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ (),S′′{l 7→ vQ }

(Rassign)

E ,S ⊢ P ; Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ (),S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ vQ ,S′′

(Rseq)

Figure 19.4: (continued) Lexical envi-
ronment semantics rules for evaluating
expressions, for a functional language
with naming, arithmetic, and mutable
storage.

19.6.1 Lexical environment semantics of recursion

The extended language with references and assignment is sufficient to

provide a semantics for the recursive let rec construct. A simple way

to observe this is to reconstruct a let rec expression of the form

let rec x = D in B

as syntactic sugar for an expression that caches the recursion out using

just the trick described in Section 19.4: first assigning to x a mutable

reference to a special unassigned value, then evaluating the definition

D , replacing the value of x with the evaluated D , and finally, evaluating

B in that environment. We can carry out that recipe with the following

expression, which we can think of as the desugared let rec:

let x = ref unassigned in

x := D[x 7→ !x];

B [x 7→ !x]

(Since we’ve changed x to a reference type, we need to replace occur-

rences of x in D and B with !x to retrieve the referenced value.)

One way to verify that this approach works is to test it out in OCaml

itself. Take this application of the factorial function, for instance:
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# let rec f = fun n -> if n = 0 then 1

# else n * f (n - 1) in

# f 4 ;;

- : int = 24

Desugaring it as above, we get

# let unassigned = fun _ -> failwith "unassigned" ;;

val unassigned : 'a -> 'b = <fun>

# let f = ref unassigned in

# (f := fun n -> if n = 0 then 1

# else n * !f (n - 1));

# !f 4 ;;

- : int = 24

(To serve as the “unassigned” value, we define unassigned to simply

raise an exception.)

This expression, note, makes use of only the language constructs

provided in the semantics in the previous section. That semantics,

with its lexical environment and mutable store, thus has enough ex-

pressivity for capturing the approach to recursion described informally

in Section 19.4. In fact, we could even provide a semantic rule for let

rec by carrying through the semantics for the desugared expression.

This leads to the following let rec semantic rule for the let rec

construction:

E ,S ⊢ let rec x = D in B ⇓∣∣∣∣∣ E {x 7→ l },S{l 7→ unassigned} ⊢ D[x 7→ !x] ⇓ vD ,S′

E {x 7→ l },S′{l 7→ vD } ⊢ B [x 7→ !x] ⇓ vB ,S′′

⇓ vB ,S′′

(Rletrec)

Problem 195

For the formally inclined, prove that the semantic rule for let rec above is equivalent to
the syntactic sugar approach.

19.7 Supplementary material

• Lab 18: Environment semantics

• Lab 19: Synthesis: Cellular automata

• Lab 20: Synthesis: Digital halftoning

http://url.cs51.io/lab18
http://url.cs51.io/lab19
http://url.cs51.io/lab20
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Concurrency

Figure 20.1: Gordon Moore’s chart on
the basis of which his 1965 eponymous
“law” was extrapolated.

In 1965, Gordon Moore, one of the founders of the pioneering electron-

ics company Fairchild Semiconductor, noted the exponential growth

in the number of components that were being placed on integrated

circuit chips, the building blocks of all kinds of electronics but espe-

cially of computers. Extrapolating from just four points on a chart

(Figure 20.1), Moore saw that the number of integrated circuit compo-

nents had been growing at “a rate of roughly a factor of two per year”,

and he expected that rate to continue for the foreseeable future. Ten

years later, he revised his estimate to a doubling per two years. This

prediction became “Moore’s law”, and has been generalized to many

other aspects of computer technology and performance.

The generalized form of Moore’s law would have it that computer

performance, measured, say, in total number of instructions executed

per second, should grow exponentially as well, as indeed it has. Em-

pirical data on the number of standardized operations performed

per second, charted as squares in Figure 20.2, shows that Moore’s law

as applied to the performance of microprocessor chips has held up

remarkably well for many decades. Data on clock speed, the rate at

which individual instructions can be executed, charted as circles,

shows a different story. The clock speed of the processors showed the

same exponential growth through the mid to late 2000’s, but flattened

after that. What could account for this differential? If the processors

weren’t executing instructions faster, how could they be executing

more instructions in the same amount of time. The answer is given

by the third series, shown as triangles in Figure 20.2, which graphs the

number of processors per chip. Over the last decade or so, we’ve seen

a regular rise in the number of processors per chip, making up the

difference in Moore’s law by having multiple instructions executed in

parallel.

These days, specialized architectures like graphics processing units

(GPUs) and AI accelerators take advantage of even larger scale paral-
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Figure 20.2: Chart showing growth in
clock speed (in megaHertz (MHZ),
as circles), throughput (in Dhrystone
millions of instructions per second
(DMIPS), as squares), and number
of cores per chip for Intel and recent
AMD microcomputer chips. Note the
logarithmic vertical scale.

lelism to speed up complex highly structured computations for graph-

ics or machine learning. In fact, parallel computing is responsible for

the recent breakthroughs in machine learning performance, and is

in large part the future of maintaining the tremendous performance

improvements that Moore’s law has captured.

There’s no free lunch. Programming computations that happen

concurrently introduces new challenges, requiring new programming

abstractions to manage them. In this chapter, we’ll explore some of the

promise, difficulty, and tools of concurrent programming. As usual,

in the effort to simplify the management of the daunting problems of

concurrency, new abstractions will be crucial.

20.1 Sequential, concurrent, and parallel computation

It will be helpful, in thinking about these issues, to imagine compu-

tation as proceeding sequentially in a series of small atomic steps.

Indeed, computation does proceed that way, down at the level of ab-

straction at which the hardware processors operate. The role of a

compiler is to translate programs written using higher-level abstrac-

tions down to a sequence of atomic instructions directly runnable on

(possibly virtual) hardware.1

1 Exactly what constitutes an atomic
step depends on the particularities
of the hardware; we needn’t concern
ourselves with the details here. We’ll just
assume that operations like reading a
value from memory (as, for instance,
accessing a variable’s value), modifying
a value in memory (instantiating
a variable or updating a mutable
variable, for instance), performing a
simple operation on retrieved values
(arithmetic operations, for instance),
and the like are atomic. In the examples
we’ll use, we’ll write the atomic steps on
separate lines, so that any line of code
will be assumed to execute atomically.

Suppose we have two tasks (A and B) to complete, each requiring
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(a) (b) (c) (d)

Figure 20.3: Two tasks running in vari-
ous forms of sequential and concurrent
computation. Each task is depicted
as atomic steps (the individual boxes)
executing through time (running from
top to bottom). (a) Task A runs sequen-
tially to completion before task B. (b)
Coarsely concurrent execution of the
two tasks, with some steps of task B first
running after four steps of task A. (c)
Finer concurrent execution, interleaving
at each atomic step. (d) Parallel compu-
tation of the tasks, with task B beginning
execution after the fourth step of task A
and running simultaneously. The arrows
denote a dependency requiring task
B.1 to run after task A.4. Note that that
dependency is violated in (c).

execution of a sequence of atomic steps. One way of completing the

tasks is to execute the two tasks S E QU E N T I A L LY, all of the steps of Task

A before any of the steps of Task B, as depicted in Figure 20.3(a). Alter-

natively, we might execute some of the steps in Task A, then some from

Task B, then the remainder of Task A and the remainder of Task B (Fig-

ure 20.3(b)). The tasks are said to be running C O N C U R R E N T LY. Even

more fine-grained concurrency is possible of course (Figure 20.3(c)).

Why might such concurrency be useful? Through concurrent exe-

cution, Task B might be able to generate some useful behavior earlier

than having to wait for Task A to complete. Perhaps Task A part way

through its execution computes some value that is needed by Task

B, or vice versa. Waiting for Task A to complete may postpone Task

B for a long time. Indeed, some computations are intended never to

complete. Think of the process that runs a bank ATM, which is always

running a single program to handle requests from users as they walk

up to and interact with it. Although the ATM process never completes,

other processes may want to interact with it and intersperse their

computations on the same processor, perhaps to report changes to a

central database. In sum, concurrency allows multiple separate pro-

cesses to interact and communicate without requiring one of them to

complete before the other begins.

Where such concurrency is possible, a further benefit can accrue

– carrying out the steps of the tasks I N PA R A L L E L (Figure 20.3(d)) by

making use of separate hardware for processing the sequences of

instructions. Parallelism allows both tasks to complete in fewer time

steps, effectively trading time for “space” (hardware).

20.2 Dependencies

In taking advantage of concurrency or parallelism, delicate issues

quickly arise when there are dependencies between the two sequences
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of instructions. For instance, Task B might read a value at one of its

steps (its first step, say) that Task A computes at its, say, fourth step.

We’ve indicated such a dependency with the arrows in Figure 20.3.

If Task A and B run sequentially in that order, then of course the

value generated by Task A will be available to Task B at the proper time.

But concurrent computation is also possible, say if Task A completes

its first four steps before Task B begins. But other interleavings can

be problematic, for instance, if Tasks A and B interleave after each

step. Task B will then attempt to make use of the value that Task A will

calculate before it has actually been calculated. This kind of depen-

dency, where one task must read a value only after another task writes

it, is sometimes referred to as a R E A D - A F T E R- W R I T E D E P E N D E N C Y.

What happens when concurrent execution violates the read-after-write

dependency may not be well defined, but it certainly is not a good

situation.

In addition to read-after-write dependencies, other kinds of de-

pendencies (W R I T E - A F T E R- R E A D, W R I T E - A F T E R- W R I T E) are also

important. The details are beyond the scope of this discussion. At this

point, we’re merely concerned with how to allow concurrency while

avoiding violations of ordering dependencies whatever they might be.

In summary, if we just allow tasks to interleave however they hap-

pen to, with no control over which parts of which task run when, de-

pendencies introduce a kind of race between the tasks. Will Task A’s

write step run faster and execute, as it should, before Task B’s read? Or

will Task B win the race, performing its read before task A has a chance

to write? This kind of R AC E C O N D I T I O N leads to the possibility of a

new kind of error. Gaining the benefits of concurrency and parallelism,

while avoiding race conditions and other new classes of errors, is the

challenge of concurrent and parallel programming.

20.3 Threads

In order to demonstrate these issues and experiment with abstractions

that can help avoid these new classes of errors, we need a way to im-

plement concurrency. OCaml provides a programming abstraction

that allows us to experiment with concurrency, the T H R E A D. A thread

can be thought of as providing a separate virtual processor.2 2 OCaml thread’s provide concurrency,
not true parallelism, but the issues
they raise apply equally well to parallel
processing, so they’re all we’ll need
to demonstrate the problems. Other
OCaml modules, and aspects of many
other programming languages, provide
concurrency and parallelism constructs
that introduce just the same issues.

Suppose we need to do two tasks – call them Task A and B as before

– implemented as OCaml functions named accordingly. Perhaps we

want to sum the results returned by these two tasks. We can easily

execute them sequentially, task A before B:

let resultA = taskA () in

let resultB = taskB () in
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(* log thread_name msg -- Prints a message recording that a

thread with the given `thread_name` has generated a log

message `msg`. Also prints an indication of time in seconds

since an initialization time. Used for tracking concurrent

executions. *)

let log =

(* store a fixed marker time for comparison *)

let init_time = Unix.gettimeofday () in

fun thread_name msg ->

Printf.printf "[%3.4f %s: %s]\n%!"

((Unix.gettimeofday ()) -. init_time)

thread_name

msg ;;

(* task_delayed name delay value -- Prints a message

recording that a thread with the given `thread_name` has

generated a log message `msg`. Also prints an indication of

time in seconds since an initialization time. Used for

tracking concurrent executions. *)

let task_delayed (name : string)

(delay : float)

(value : 'a)

: 'a =

log name "starts";

Thread.delay delay;

log name "ends";

value ;;

(* Two sample tasks taking differing lengths of time and

returning different values. *)

let task_short () = task_delayed "task_short" 0.1 1 ;;

let task_long () = task_delayed "task_long " 0.2 2 ;;

Figure 20.4: For reference, some lo-
gistical code used in the concurrency
demonstrations.
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resultA + resultB ;;

We can think of the two tasks (along with the computation of their

sum) as being executed in a single thread of computation. The se-

mantics of the let construct ensures that taskA () will be evaluated,

generating resultA, before taskB () begins its evaluation.

In order to demonstrate the idea, and prepare for the significantly

more subtle examples to come, we define a test function that takes two

functions as its argument, which play the roles of tasks A and B.

# let test_sequential taskA taskB =

# let resultA = taskA () in

# let resultB = taskB () in

# resultA + resultB ;;

val test_sequential : (unit -> int) -> (unit -> int) -> int = <fun>

We can test this sequential computation using some simulated tasks.

The unit function task_short simulates a task that engages in a

shorter computation (0.1 seconds) returning the value 1. The corre-

sponding function task_long takes longer (0.2 seconds) and returns

the value 2. (The details of how they’re implemented aren’t important,

but for completeness, they’re provided in Figure 20.4.) Let’s test it out.

# test_sequential task_short task_long ;;

[1.1147 task_short: starts]

[1.2149 task_short: ends]

[1.2149 task_long : starts]

[1.4150 task_long : ends]

- : int = 3

The test returns the summed results 3. Along the way, various key

events are logged. We see the start of the short task and its ending,

followed by the start and end of the long task, indicating their sequen-

tiality. The logged start and end times indicate that the short and long

tasks required about 0.1 and 0.2 seconds, respectively, together requir-

ing 0.3 seconds, as expected.

If we’d like the two tasks to execute concurrently, we can establish

a separate thread (that is, a separate virtual processor) corresponding

to taskA. We refer to this process as F O R K I N G a new thread. OCaml

provides for creating and manipulating threads in its Thread module.3 3 The Thread module is part of OCaml’s
threads library, which allows for creating
multiple concurrent threads. To make
use of the library in the R E P L, you’ll
need to make it available with

#use "topfind" ;;

#thread ;;

To fork a new thread, we use the Thread.create function, which takes

a function and its argument and returns a separate new thread of com-

putation (a value of type Thread.t) in which the function is applied to

its argument. Its type is thus (’a -> ’b) -> ’a -> Thread.t. So we

can evaluate tasks A and B in separate threads, concurrently, as follows:

let threadA = Thread.create taskA () in

let resultB = taskB () in

...
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The evaluation of the Thread.create expression returns immediately,

without waiting for the result of the application of taskA to () to finish

in the new thread. Thus when taskB () is evaluated, it doesn’t wait

until taskA completes.4 4 The Thread library allows for concur-
rent execution of the various threads
forked in the process, not parallel
execution. An exception is that the
Thread.delay function, which we use
to simulate computations that take
a long time, allows other threads to
continue to run during the delay period.

20.4 Interthread communication

We’ve enabled two tasks to operate concurrently using threads. But

we have no way as of yet for threads to communicate with each other.

For instance, in the example above, how can taskA, isolated in its

own thread, inform the thread running taskB about its return value?

Similarly, how can taskB communicate information to taskA if it

needs to?

A simple mechanism for this interthread communication is for the

threads to share mutable values, which serve as channels of commu-

nication between the threads. Let’s start with how the created thread

executing taskA can communicate its return value to the main thread

that needs to calculate the sum.

We’ll define another test function called test_communication

to test the communication between two tasks executed in separate

threads as above.

let test_communication taskA taskB =

...

We’ll use a shared mutable value called shared_result of type int

option, initially None since no result is yet available.

...

let shared_result = ref None in

...

Now we can create a new thread for executing task A, saving its return

value in the shared result.

...

let _thread =

Thread.create

(fun () -> shared_result := Some (taskA ())) () in

...

In the original thread, we perform task B, saving its result.

...

let resultB = taskB () in

...

Finally, we can extract the result from task A from the shared value, and

compute with the two results, by adding them as before.
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...

match !shared_result with

| Some resultA ->

(* compute with the two results *)

resultA + resultB

| None ->

(* Oops, taskA hasn't completed! *)

failwith "shouldn't happen!" ;;

Putting it all together, we have

# let test_communication taskA taskB =

# let shared_result = ref None in

# let _thread =

# Thread.create

# (fun () -> shared_result := Some (taskA ())) () in

# let resultB = taskB () in

# match !shared_result with

# | Some resultA ->

# (* compute with the two results *)

# resultA + resultB

# | None ->

# (* Oops, taskA hasn't completed! *)

# failwith "shouldn't happen!" ;;

val test_communication : (unit -> int) -> (unit -> int) -> int =

<fun>

Again, we can test using the simulated tasks. To start, we fork the

new thread running the shorter task, with the longer task in the main

thread.

# test_communication task_short task_long ;;

[2.1245 task_long : starts]

[2.1245 task_short: starts]

[2.2247 task_short: ends]

[2.3246 task_long : ends]

- : int = 3

the communication works as expected. The short task returns 1 –

passed through and retrievable from the shared variable – and the long

task returns 2. The test as a whole computes their sum, 3 as expected.

The logged events show the starting of the long task in the main

thread, followed immediately by the short task starting in the newly

created thread. The latter short thread completes quickly (it’s shorter,

after all), ending before the long task does. The main thread can extract

the completed value for the short task and add it to the result from the

long task.5 5 As before, the logged times indicate
that the short and long tasks required
about 0.1 and 0.2 seconds. This time,
however, the overall computation re-
quires only 0.2 seconds, since the delay
function allows for some parallelism
between the two threads (as noted
in footnote 4. The simulation thus
gives a hint of the potential for parallel
processing to speed computation.

But what if the task in the forked thread takes longer than that in

the main thread? We can simulate this by swapping the long and short

tasks in the test function.

# test_communication task_long task_short ;;

[2.3762 task_short: starts]
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[2.3762 task_long : starts]

[2.4763 task_short: ends]

Exception: Failure "shouldn't happen!".

In this version of the test, the short task in the main thread completes

before the forked thread has time to complete the long task and update

the shared variable, leading to a run-time exception. The code has a

race condition with respect to a read-after-write dependency. These

two executions of the test demonstrate that, depending on which task

“wins the race”, the value to be read may or may not be written in time

as it needs to be.

In general, one doesn’t have the kind of detailed information about

run times of various tasks as we have for task_short and task_long.

This kind of concurrent computation, without careful controls, thus

leads to indeterminacy at runtime. And debugging these intermittent

bugs that can come and go, perhaps appearing only rarely, can be

especially confounding. More tools are needed.

The lesson here is that the main thread shouldn’t attempt to use the

shared variable until the forked thread has completed. We thus need

a way of guaranteeing that a thread has completed. One solution you

may have thought of is to have the main thread test if the shared value

has not been properly set, and if not, to just “try again later”. We can

implement this with a simple loop,

while !shared_result == None do

Thread.delay 0.01

done;

which continually waits for a fraction of a second so long as the shared

result has not been properly set, a technique called BU S Y WA I T I N G.

# let test_communication taskA taskB =

# let shared_result = ref None in

# let _thread =

# Thread.create

# (fun () -> shared_result := Some (taskA ())) () in

# let resultB = taskB () in

# while !shared_result == None do

# Thread.delay 0.01

# done;

# match !shared_result with

# | Some resultA ->

# (* compute with the two results *)

# resultA + resultB

# | None ->

# (* Oops, taskA hasn't completed! *)

# failwith "shouldn't happen!" ;;

val test_communication : (unit -> int) -> (unit -> int) -> int =

<fun>

The errant race condition is now handled properly.
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# test_communication task_long task_short ;;

[3.5867 task_short: starts]

[3.5867 task_long : starts]

[3.6868 task_short: ends]

[3.7868 task_long : ends]

- : int = 3

But this kind of brute force trick of repeatedly polling the shared vari-

able until it is ready is profligate and inelegant. It can waste compu-

tation that would be better allocated to other threads, and can waste

time if the delay is longer than needed.

Instead, we’d like to be able to directly specify to wait until

the forked thread completes. The companion to the fork function

Thread.create is the join function Thread.join. Thread.join

takes a thread as its argument and returns only once that thread has

completed. By requiring the join before accessing the shared variable,

we are guaranteed that the variable will have been updated at the time

that we need it.

# let test_communication taskA taskB =

# let shared_result = ref None in

# let thread =

# Thread.create

# (fun () -> shared_result := Some (taskA ())) () in

# let resultB = taskB () in

# Thread.join thread;

# match !shared_result with

# | Some resultA ->

# (* compute with the two results *)

# resultA + resultB

# | None ->

# (* Oops, taskA hasn't completed! *)

# failwith "shouldn't happen!" ;;

val test_communication : (unit -> int) -> (unit -> int) -> int =

<fun>

Using this version of the test, the race condition is avoided, and the

calculation completes properly.

# test_communication task_long task_short ;;

[4.5455 task_short: starts]

[4.5455 task_long : starts]

[4.6456 task_short: ends]

[4.7457 task_long : ends]

- : int = 3

20.5 Futures

The structure of this small example, in which a thread is forked to

allow it to compute a return value that is needed in the future, is so

common that it deserves its own abstraction, a kind of value dubbed
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a F U T U R E. This abstraction is implemented via two functions: The

future function takes a task to be carried out for its return value, and

returns a “future value”. We can later use the force function to force

the future value to be extracted when available. A module signature

can help clarify the needed functionality:

# module type FUTURE =

# sig

# type 'result future

#

# (* future fn x -- Forks a new thread within which `fn`
# is applied to `x`. Immediately returns a `future`
# which can be used to synchronize with the thread

# and extract the result. *)

# val future : ('arg -> 'result) -> 'arg -> 'result future

#

# (* force fut -- Causes the calling thread to wait until the

# thread computing the future value `fut` is done and then

# returns its value. *)

# val force : 'result future -> 'result

# end ;;

module type FUTURE =

sig

type 'result future

val future : ('arg -> 'result) -> 'arg -> 'result future

val force : 'result future -> 'result

end

There are multiple ways to implement this functionality, but we’ll

use the shared value method from the previous example. In this imple-

mentation, a future value (an element of the future type) is a record

that contains the thread identifier in which the future task is being car-

ried out and the mutable variable for communicating the result back to

the calling thread.

# module Future : FUTURE =

# struct

# type 'result future = {tid : Thread.t;

# value : 'result option ref}

#

# let future (f : 'arg -> 'result) (x : 'arg) : 'result future =

# let r : 'result option ref = ref None in

# let t = Thread.create (fun () -> r := Some (f x)) ()

# in {tid = t; value = r}

#

# let force (f : 'result future) : 'result =

# Thread.join f.tid;

# match !(f.value) with

# | Some v -> v

# | None -> failwith "impossible!"

# end ;;

module Future : FUTURE
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With the future abstraction in hand, the test_communication

example above can be greatly simplified.

# let test_future taskA taskB =

# let futureA = Future.future taskA () in

# let resultB = taskB () in

# Future.force futureA + resultB ;;

val test_future : (unit -> int) -> (unit -> int) -> int = <fun>

# test_future task_long task_short ;;

[6.3619 task_short: starts]

[6.3619 task_long : starts]

[6.4620 task_short: ends]

[6.5620 task_long : ends]

- : int = 3

This is hardly more complicated than the sequential version (test_-

sequential) that we started with above, requiring only the simple

addition of the highlighted future call.

Exercise 196

Exercise 96 concerned implementing a fold operation over binary trees defined by

# type 'a bintree =
# | Empty
# | Node of 'a * 'a bintree * 'a bintree ;;
type 'a bintree = Empty | Node of 'a * 'a bintree * 'a bintree

Define a version of the fold operation, foldbt_conc, that performs the recursive folds of
the left and right subtrees concurrently, making use of futures to ensure that results are
available when needed.

20.6 Futures are not enough

The sharing of mutable data across two concurrent threads is a valu-

able ability. It implements a kind of communication channel between

the threads. But managing this communication is complex. We’ve al-

ready seen this in the context of a thread’s “return value”. The calling

thread mustn’t read the shared variable that will be storing the called

thread’s return value until the latter has completed its computation

and updated the return value. Managing this ordering is the whole

point of the future/force abstraction.

Sharing mutable data across threads is a useful technique well

beyond just allowing for return values to be communicated.

1. Threads may have need for coordinating data manipulation beyond

the mere passing of a return value. For instance, think of multiple

threads manipulating a shared database.

2. In the case of threads that are not intended to terminate, the whole

notion of a return value is inapplicable. Importantly, not all con-

current computations are intended to terminate. Indeed, one of the
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benefits of concurrency as a programming concept is that it allows

multiple threads of nonterminating computation to interact. We

still need to manage the interaction so that the concurrent com-

putations satisfy the various dependencies among them without

dangerous race conditions.

A standard example of this kind of concurrent nonterminating

computation is the ATM. ATMs are computers that run a program

that interacts with bank patrons to allow them to manipulate their

bank accounts in various ways. The bank accounts constitute a shared

database of mutable data. And because banks have multiple geograph-

ically distributed ATMs, multiple instances of the program are running

concurrently, and potentially transforming the same shared data, the

balances of the various accounts.

To demonstrate the problem, let’s think of a bank as having multiple

accounts each of which is an instance of an account class defined as

follows:

# class account (initial_balance : int) =

# object

# val mutable balance = initial_balance

#

# method balance = balance

#

# method deposit (amt : int) : unit =

# balance <- balance + amt

#

# method withdraw (amt : int) : int =

# if balance >= amt then begin

# balance <- balance - amt;

# amt

# end else 0

# end ;;

class account :

int ->

object

val mutable balance : int

method balance : int

method deposit : int -> unit

method withdraw : int -> int

end

The deposit and withdraw methods both potentially affect the value

of the mutable balance variable. The withdraw function, in particular,

verifies that the balance is sufficient to cover the withdrawal amount,

updates the balance accordingly, and returns the amount to be dis-

pensed (0 if the balance is insufficient).

Now what happens when we try multiple concurrent withdrawals

from the same account? To simulate such an occurrence, the following

test_wds function carries out withdrawals of $75 and $50 in separate
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threads (call them “thread A” and “thread B” for ease of reference) from

a single account with initial balance of $100, using a future for the

larger withdrawal. To track what goes on, the test function returns

the amount dispensed in thread A and thread B, along with the final

balance in the account.

# let test_wds () =

# let acct = new account 100 in

# let threadA_ftr = Future.future acct#withdraw 75 in

# let threadB = acct#withdraw 50 in

# let threadA = (Future.force threadA_ftr) in

# threadA, threadB, acct#balance ;;

val test_wds : unit -> int * int * int = <fun>

What behavior would we like to see in this case? One or the other

of the two withdrawals, whichever comes first, should see a sufficient

balance, dispense the requested amount, and update the balance

accordingly. The other attempted withdrawal should see a reduced

and insufficient balance and dispense no funds. In particular, if task A

completes first, the two accounts should see withdrawals of $75 and $0

respectively, leaving a balance of $25, that is, the simulation function

should return the triple (75, 0, 25). If task B completes first, the two

accounts should see withdrawals of $0 and $50 respectively, leaving a

balance of $50, that is, the simulation function should return the triple

(0, 50, 50). Let’s try it.

# test_wds () ;;

- : int * int * int = (0, 50, 50)

In order to experiment with the possibility of interleavings of the

various components of the withdrawals, we make two changes to the

withdrawal simulation. First, we divide the balance update

balance <- balance - amt

into two parts: the computation of the updated balance and the up-

date of the balance variable itself:

let updated = balance - amt in

balance <- updated

Doing so separates the reading of the shared balance from its writing,

allowing interposition of other threads in between.

Second, we introduce some random delays at various points in

the computation: before the withdrawal first executes, immediately

after the balance check, and after computing the updated balance just

before carrying out the update. For this purpose, we use a function

random_delay, which pauses a thread for a randomly selected time

interval.
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# let random_delay (max_delay : float) : unit =

# Thread.delay (Random.float max_delay) ;;

val random_delay : float -> unit = <fun>

Updating the withdrawal function to insert these delays, we have

method withdraw (amt : int) : int =

random_delay 0.004;

if balance >= amt then begin

random_delay 0.001;

let updated = balance - amt in

random_delay 0.001;

balance <- updated;

amt

end else 0 ;;

valid? first second balance count

75 50 −25 29
75 50 50 27
75 50 25 26

✓ 75 0 25 11
✓ 0 50 50 7

Figure 20.5: Table of outcomes from
multiple runs of simultaneous with-
drawals. Each row represents a possible
outcome, with columns showing the
amount dispensed for the first with-
drawal, the amount dispensed for the
second withdrawal, the final balance,
and the number of times this outcome
occurred in 100 trials. Only the check-
marked trials are valid in respecting
dependencies.

Here is a typical outcome from this simulation.

# test_wds () ;;

- : int * int * int = (75, 50, -25)

If we run the simulation many times, we see (Figure 20.5) that the

result is quite variable. Certainly, there are many occurrences (about

half) showing the desired behavior, with either $75 or $50 dispensed

and a final balance of $25 or $50, respectively. But we also see plenty

of instances where both withdrawals go through, dispensing both $75

and $50, leaving a final balance of $−25. Or $25. Or $50. The use of

future ensures that the return value dependency is properly obeyed,

but the various dependencies having to do with the updates to and

uses of the account’s balance are uncontrolled. Different interleavings

of these operations can yield different results. Let’s examine a few of

the many possible interleavings.

First, thread A (the $75 withdrawal) may execute fully before thread

B (the $50 withdrawal) begins. That is, they may execute sequentially.

This interleaving is depicted in Figure 20.6. In this representation of

the two threads executing, the executed lines of thread A are on the

left, thread B on the right. We assume that each line of code executes

atomically, with the order of the numbered lines indicating the order

in which they are executed in the concurrent computation. The el-

lipses (· · · ) indicate code lines that were not executed since they fell in

the non-chosen branch of a conditional. In line 1, the balance test in

thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. let updated = balance - amt in
3. balance <- updated;
4. amt
5. · · · if balance >= amt then begin

· · ·
6. end else 0

Figure 20.6: An unproblematic (essen-
tially sequential) interleaving of the
threads.
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thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. let updated = balance - amt in
3. if balance >= amt then begin
4. let updated = balance - amt in
5. balance <- updated;
6. amt
7. · · · balance <- updated;
8. amt

· · ·

Figure 20.7: A problematic interleaving
of the threads.

thread A is evaluated. Since the balance is initially 100, and the with-

drawal amount is 75, the condition holds and lines 2-4 in the then

branch are executed. Line 3 in particular updates the shared balance

to 25, so that in line 5 when thread B tests the balance, the test fails

and the second withdrawal does not complete (line 6). In summary,

the $75 withdrawal attempt succeeds, dispensing the $75, and the $50

withdrawal attempt fails, leaving a balance of $25.

Of course, if thread B had executed fully before thread A, the cor-

responding result would have occurred, dispensing only the $50 and

leaving a balance of $50.

But other results are also possible. For instance, consider the in-

terleaving in Figure 20.7. Each thread verifies the balance as being

adequate and computes its updated value before the other performs

the balance update. Both threads go on to update the balance (lines

5 and 7); since thread B updates the balance later, its balance value,

$50, overwrites thread A’s $25 balance, so the final balance is $50. In

summary, both attempted withdrawals succeed, dispensing both $75

and $50, leaving a surprising $50 balance. Sure enough, Figure 20.5

indicates that such outcomes were actually attested in the simulations.

Exercise 197

Construct an interleaving in which both withdrawals succeed, leaving a balance of $25.

Exercise 198

Construct an interleaving in which both withdrawals succeed, leaving a balance of $−25.

As Figure 20.5 shows, and these possible interleavings explain,

there are important dependencies that are not being respected in the

concurrent implementation of the account operations. A solution to

this problem of controlling data dependencies requires further tools.

20.7 Locks

To gain better control over the interleavings, we introduce a new ab-

straction, the L O C K. The underlying idea is that while a thread is ex-

ecuting the withdrawal method, it ought to be the only thread with

access to the balance it is manipulating. Just as you might lock your

door to prevent others from using your car, you might want to lock
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some data to prevent others from manipulating it. OCaml provides a

simple interface to a locking mechanism called M U T E X L O C K S in its

Mutex library. The name comes from the idea of mutual exclusion;

other threads should be excluded from certain regions of code when a

lock is in force.

To create a mutex lock for a given datum – the mutable balance, say,

in the ATM example – we use Mutex.create.

# let balance_lock = Mutex.create () ;;

val balance_lock : Mutex.t = <abstr>

As shown, this creates a lock of type Mutex.t. We can then lock

and unlock the lock as needed with the functions Mutex.lock and

Mutex.unlock.

The mutex locks work as follows. When Mutex.lock is called on a

lock, the lock is first verified to be in its unlocked state. If so, the lock

switches to the locked state and computation proceeds.6 But if not, 6 Crucially, the testing for unlocked
status and the subsequent locking
occur atomically, so that other threads
can’t interleave between them. How
this is accomplished, the subject of
fundamental research in concurrent
computation, is well beyond the scope
of this text.

the thread in which the call was made is suspended until such time as

the lock becomes unlocked, presumably by a call to Mutex.unlock in

another thread.

Inserting the locks in the ATM example, we would have a withdraw

method like this:

method withdraw (amt : int) : int =

Mutex.lock balance_lock;

if balance >= amt then begin

balance <- balance - amt;

amt

end else 0;

Mutex.unlock balance_lock ;;

The code between the locking and unlocking is the C R I T I C A L R E G I O N,

a computation that must be carried out atomically from the point of

view of the resource that is being locked. In this case, the entire body of

the withdraw method is a critical region.

Now consider the previous problematic case of Figure 20.7 – in

which thread B’s withdrawal code begins executing partway through

thread A’s withdrawal code – except now with the locking implementa-

tion above. As seen in Figure 20.8, thread A now begins by establishing

the balance lock in step 1. When the first step of thread B executes at

the intermediate point within thread A’s execution (after step 3) and

attempts to itself acquire the balance lock, the lock causes thread B to

suspend until such time as the lock becomes available, which is not

until thread A releases the lock at step 6. The delay in thread B changes

the interleaving to a safe one, like that of Figure 20.6.
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thread A ($75 withdrawal) thread B ($50 withdrawal)

1. Mutex.lock balance_lock;
2. if balance >= amt then begin
3. let updated = balance - amt in

Mutex.lock balance_lock;
4. balance <- updated; =====⇒ thread B suspended
5. amt

· · ·
6. Mutex.unlock balance_lock;
7. Mutex.lock balance_lock;
8. if balance >= amt then begin
9. let updated = balance - amt in

10. balance <- updated;
11. amt

· · ·
12. Mutex.unlock balance_lock;

Figure 20.8: The problematic interleav-
ing, corrected by the use of locks.

20.7.1 Abstracting lock usage

This idiom – wrapping a critical region with a lock at the beginning and

an unlock at the end – captures the stereotypical use of locks.

In this idiom, the lock is explicitly unlocked after the need for the

lock is over. The unlocking is crucial; without it, other threads would

be permanently prevented from carrying out their own computations

requiring the lock. We can codify the importance of matching the locks

and unlocks by way of an abstracted function that wraps a computa-

tion with the lock and its corresponding unlock. We call the function

with_lock:

# (* with_lock l f -- Run thunk `f` in context of acquired lock `l`,
# unlocking on return *)

# let with_lock (l : Mutex.t) (f : unit -> 'a) : 'a =

# Mutex.lock l;

# let result = f () in

# Mutex.unlock l;

# result ;;

val with_lock : Mutex.t -> (unit -> 'a) -> 'a = <fun>

If we stick with using with_lock, we never need to worry that we will

perform a lock without the matching unlock, in keeping with the edict

of prevention.

Or will we? What would happen if the computation of f () raised

an exception of some sort? The body of the let will never be per-

formed, and the lock will not be unlocked! (Of course, that possibility

also held for the withdraw method just above.) We’ll want to fix that by

adjusting with_lock to make sure to handle exceptions properly, fur-

ther manifesting the edict of prevention. We leave that for an exercise.

Exercise 199

Define a version of with_lock that handles exceptions by making sure to unlock the
lock.

Using with_lock, the withdraw method becomes

method withdraw (amt : int) : int =
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with_lock balance_lock (fun () ->

if balance >= amt then begin

balance <- balance - amt;

amt

end else 0) ;;

With this modified implementation of accounts, the simulation of

many trials of simultaneous deposits performs much better, with only

valid results, as depicted in Figure 20.9.

valid? first second balance count

✓ 0 50 50 51
✓ 75 0 25 49

Figure 20.9: Rerunning the test of
simultaneous withdrawals, with locking
in place, all trials now respect the
dependencies, though the results can
still vary depending on which of the two
withdrawals in each trial happens to
occur first.

20.8 Deadlock
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Final project: Implementing MiniML

The culminative final project for CS51 is the implementation of a

small subset of an OCaml-like language. Unlike the problem sets, the

final project is more open-ended, and we expect you to work more

independently, using the skills of design, abstraction, testing, and

debugging that you’ve learned during the course.

A.1 Overview

Unlike OCaml and the ML programming language it was derived from,

the language you will be implementing includes only a subset of con-

structs, has only limited support for types (including no user-defined

types), and does no type inference (enforcing type constraints only at

run-time). On the other hand, the language is “Turing-complete”, as

expressive as any other programming language in the sense specified

by the Church-Turing thesis. Because the language is so small, we refer

to it as MiniML (pronounced “minimal”).

The implementation of this OCaml subset MiniML is in the form of

an interpreter for expressions of the language written in OCaml itself,

a M E TAC I RC U L A R I N T E R P R E T E R. Actually, you will implement a series

of interpreters that vary in the semantics they manifest. The first is

based on the substitution model (Chapter 13); the second a dynami-

cally scoped environment model (Chapter 19); and the third, a version

of the second implementing one or more extensions of your choosing,

with lexical scoping being a simple and highly recommended option.

This chapter builds on the idea of specifying the semantics of a pro-

gramming language and implementing that specification begun in

Chapters 13 and 19. The exercises herein are to test your understand-

ing. We recommend that you do the exercises, but you won’t be turning

them in and we won’t be supplying answers. The S TAG E S provide a

sequence of nine stages to implement the MiniML interpreter. It’s the

result of working on these stages that you will be turning in and on

https://url.cs51.io/r0y
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which the project grade will be based.

This project specification is divided into three sections (correspond-

ing to the section numbers marked below):

Substitution model (Section A.2) Implementation of a MiniML inter-

preter using the substitution semantics for the language.

Dynamic scoped environment model (Section A.3) Implementation of

a MiniML interpreter using the environment model and manifesting

dynamic scoping.

Extensions (Section A.4) Implementation of one or more extensions

to the basic MiniML language of your choosing. Special attention is

paid below to an extension to the environment model manifesting

lexical scoping (Section A.4.2).

A.1.1 Grading and collaboration

As with all the individual problem sets in the course, your project is to

be done individually, under the course’s standard rules of collabora-

tion. (The sole exception is described in Section A.6.) You should not

share code with others, nor should you post public questions about

your code on Piazza. If you have clarificatory questions about the

project assignment, you can post those on Piazza and if appropriate

we will answer them publicly so the full class can benefit from the

clarification.

The final project will be graded based on correctness of the imple-

mentation of the first two stages; design and style of the submitted

code; and scope of the project as a whole (including the extensions) as

demonstrated by a short paper describing your extensions, which is

assessed for both content and presentation.

It may be that you are unable to complete all the code stages of the

final project. You should make sure to keep versions at appropriate

milestones so that you can always roll back to a working partial project

to submit. Using git will be especially important for this version

tracking if used properly.

Some students or groups might prefer to do a different final project

on a topic of their own devising. For students who have been doing

exceptionally well in the course to date, this may be possible. See

Section A.6 for further information.

A.1.2 A digression: How is this project different from a problem

set?

We frequently get questions about the final project of the following

sort: Do I need to implement X? Am I supposed to handle Y? Is it a
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sufficient extension to do Z? Should I provide tests for W? Is U the right

way to handle V? Do I have to discuss P in the writeup?

The final project description doesn’t specify answers to many ques-

tions of this sort. This is not an oversight; it is a pedagogical choice.

In the world of software design and development, there are an infi-

nite number of choices to make, and there are often no right answers,

merely tradeoffs. Part of the point of the course is that there are many

ways to implement software for a particular purpose, and they are not

all equally good. (See Section 1.2.) The final project is the place in the

course where you are most clearly on your own to deploy the ideas

from the course to make these choices and demonstrate your best un-

derstanding of the tradeoffs involved. By implementing X, you may not

have time to test Y. By implementing only Z, you may be able to do so

with a more elegant or generalizable approach. By adding tests for W,

you may not have time to fully discuss P in the writeup. So it goes.

Perhaps the most important of the major tradeoffs is that between

spending time to make improvements to the CS51 final project soft-

ware and writeup and spending time on other non-CS51 efforts. Be-

cause choices made in negotiating this tradeoff don’t fall solely within

the environment of CS51, it is inherently impossible for course staff

to give you advice on what to do. You’ll have to decide whether your

time is better spent, say, systematizing your unit tests for the project, or

working on the final paper in your Gen Ed course; further augmenting

your implementation of int arithmetic to handle bignums, or studying

for the math midterm that the instructor fatuously scheduled during

reading period; generating further demonstrations of the mutable ar-

ray extension you added by implementing a suite of in-place sorting

algorithms, or wrangling members of the student organization you find

yourself running because the president is awol.

With the final project, you are on your own. Not for issues of clari-

fication of this project description, where the course staff stand ready

to help on Piazza and in office hours. But on deontic issues, issues of

what’s better or worse, what you “should” do or mustn’t, what is re-

quired or forbidden. This is a kind of freedom, and like all freedoms,

it is not without consequences, but they are consequences you must

inevitably reconcile on your own.

A.2 Implementing a substitution semantics for MiniML

You’ll start your implementation with a substitution semantics for

MiniML. The abstract syntax of the language is given by the following

type definition:
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type unop =

| Negate ;;

type binop =

| Plus

| Minus

| Times

| Equals

| LessThan ;;

type varid = string ;;

type expr =

| Var of varid (* variables *)

| Num of int (* integers *)

| Bool of bool (* booleans *)

| Unop of unop * expr (* unary operators *)

| Binop of binop * expr * expr (* binary operators *)

| Conditional of expr * expr * expr (* if then else *)

| Fun of varid * expr (* function def'ns *)

| Let of varid * expr * expr (* local naming *)

| Letrec of varid * expr * expr (* rec. local naming *)

| Raise (* exceptions *)

| Unassigned (* (temp) unassigned *)

| App of expr * expr ;; (* function app'ns *)

These type definitions can be found in the partially implemented

Expr module in the files expr.ml and expr.mli. You’ll notice that

the module signature requires additional functionality that hasn’t

been implemented, including functions to find the free variables in

an expression, to generate a fresh variable name, and to substitute

expressions for free variables, as well as to generate various string

representations of expressions.

Exercise 200

Write a function exp_to_concrete_string : expr -> string that converts an
abstract syntax tree of type expr to a concrete syntax string. The particularities of what
concrete syntax you use is not crucial so long as you do something sensible along the
lines we’ve exemplified. (This function will actually be quite helpful in later stages.)

To get things started, we also provide a parser for the MiniML lan-

guage, which takes a string in a concrete syntax and returns a value of

this type expr; you may want to extend the parser in a later part of the

project (Section A.4.3).1 The compiled parser and a read-eval-print 1 The parser that we provide makes use
of the OCaml package menhir, which
is a parser generator for OCaml. You
should have installed it as per the setup
instructions provided at the start of the
course by running the following opam
command:

% opam install -y menhir

The menhir parser generator will be
discussed further in Section A.4.3.

loop for the language are available in the following files:

evaluation.ml The future home of anything needed to evaluate ex-

pressions to values. Currently, it provides a trivial “evaluator”

eval_t that merely returns the expression unchanged.

miniml.ml Runs a read-eval-print loop for MiniML, using the

Evaluation module that you will complete.
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miniml_lex.mll A lexical analyzer for MiniML. (You should never need

to look at this unless you want to extend the parser.)

miniml_parse.mly A parser for MiniML. (Ditto.)

What’s left to implement is the Evaluation module in

evaluation.ml.

Start by familiarizing yourself with the code. You should be able to

compile miniml.ml and get the following behavior.2 2 In building the project, you may find
that you get a warning of the form:

+ menhir -ocamlc ’ocamlfind ocamlc
-thread -strict-sequence
-package graphics
-package CS51Utils -w
A-4-33-40-41-42-43-34-44’
-infer miniml_parse.mly

Warning: 15 states have
shift/reduce conflicts.

Warning: one state has
reduce/reduce conflicts.

Warning: 198 shift/reduce
conflicts were arbitrarily
resolved.

Warning: 18 reduce/reduce
conflicts were arbitrarily
resolved.

You can safely ignore this message
from the parser generator, which is
reporting on some ambiguities in the
MiniML grammar that it has resolved
automatically.

# ocamlbuild -use-ocamlfind miniml.byte

Finished, 13 targets (12 cached) in 00:00:00.

# ./miniml.byte

Entering miniml.byte...

<== 3 ;;

Fatal error: exception Failure("exp_to_abstract_string

not implemented")

Stage 201

Implement the function exp_to_abstract_string : expr ->

string to convert abstract syntax trees to strings representing their

structure and test it thoroughly. If you did Exercise 200, the experience

may be helpful here, and you’ll want to also implement exp_to_-

concrete_string : expr -> string for use in later stages as well.

The particularities of what concrete syntax you use to depict the ab-

stract syntax is not crucial – we won’t be checking it – so long as you do

something sensible along the lines we’ve exemplified.

After this (and each) stage, it would be a good idea to commit the

changes and push to your remote repository as a checkpoint and

backup.

Once you write the function exp_to_abstract_string, you should

have a functioning read-eval-print loop, except that the evaluation

part doesn’t do anything. (The R E P L calls the trivial evaluator eval_t,

which essentially just returns the expression unchanged.) Conse-

quently, it just prints out the abstract syntax tree of the input concrete

syntax:

# ./miniml.byte

Entering miniml.byte...

<== 3 ;;

==> Num(3)

<== 3 4 ;;

==> App(Num(3), Num(4))

<== (((3) ;;

xx> parse error
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<== let f = fun x -> x in f f 3 ;;

==> Let(f, Fun(x, Var(x)), App(App(Var(f), Var(f)), Num(3)))

<== let rec f = fun x -> if x = 0 then 1 else x * f (x - 1) in f 4 ;;

==> Letrec(f, Fun(x, Conditional(Binop(Equals, Var(x), Num(0)), Num(1),

Binop(Times, Var(x), App(Var(f), Binop(Minus, Var(x), Num(1)))))),

App(Var(f), Num(4)))

<== Goodbye.

Exercise 202

Familiarize yourself with how this “almost” R E P L works. How does eval_t get called?
What does eval_t do and why? What’s the point of the Env.Val in the definition? Why
does eval_t take an argument _env : Env.env, which it just ignores? (These last two
questions are answered a few paragraphs below. Feel free to read ahead.)

To actually get evaluation going, you’ll need to implement a substi-

tution semantics, which requires completing the functions in the Expr

module.

Stage 203

Start by writing the function free_vars in expr.ml, which takes an

expression (expr) and returns a representation of the free variables

in the expression, according to the definition in Figure 13.3. Test this

function completely.

Stage 204

Next, write the function subst that implements substitution as defined

in Figure 13.4. In some cases, you’ll need the ability to define new fresh

variables in the process of performing substitutions. You’ll see we call

for a function new_varname to play that role. Looking at the gensym

function that you wrote in lab might be useful for that. Once you’ve

written subst make sure to test it completely.

You’re actually quite close to having your first working interpreter

for MiniML. All that is left is writing a function eval_s (the ‘s’ is for

substitution semantics) that evaluates an expression using the substitu-

tion semantics rules. (Those rules are, conveniently, described in detail

in Chapter 13, and summarized in Figure 13.5.) The eval_s func-

tion walks an abstract syntax tree of type expr, evaluating subparts

recursively where necessary and performing substitutions when ap-

propriate. The recursive traversal bottoms out when it gets to primitive

values like numbers or booleans or in applying primitive functions like

the unary or binary operators to values. It is at this point that the eval-

uator can see if the operators are being applied to values of the right

type, integers for the arithmetic operators, for instance, or integers or

booleans for the comparison operators.

For consistency with the environment semantics that you will im-

plement later as the function eval_d, both eval_t and eval_s take
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a second argument, an environment, even though neither evaluator

needs an environment. Thus your implementation of eval_s can just

ignore the environment.

We’d also like the various evaluation functions eval_t, eval_s,

eval_d, and (if implemented) eval_l to all have the same return type

as well. Looking ahead, the lexically-scoped environment semantics

implemented in eval_l must allow for the result of evaluation to go

beyond the simple expression values we’ve used so far. In particular,

for the lexical environment semantics, we’ll want to add closures as

a new sort of value, as described in Section A.4.2. We’ve provided a

variant type Env.value that allows for both the simple expression

values of the sort that eval_s and eval_d generate and for closures,

which only the environment-based lexical-scoped evaluator needs to

generate. For consistency, then, you should make sure that eval_s,

as well as the later evaluation functions, are of type Expr.expr ->

Env.env -> Env.value. This will ensure that your code is consistent

with our unit tests as well. You’ll note that the eval_t evaluator that

we provide already does this. In order to be type-consistent, it takes an

extra env argument that it doesn’t need or use, and it converts its expr

argument to the value type by adding the Env.Val value constructor

for that type. (This may help with Exercise 202.)

Stage 205

Implement the eval_s : Expr.expr -> Env.env -> Env.value

function in evaluation.ml. (You can hold off on completing the

implementation of the Env module for the time being. That comes into

play in later sections.) We recommend that you implement it in stages,

from the simplest bits of the language to the most complex. You’ll want

to test each stage thoroughly using unit tests as you complete it. Keep

these unit tests around so that you can easily unit test the later versions

of the evaluator that you’ll develop in future sections.

Using the substitution semantics, you should be able to handle

evaluation of all of the MiniML language. If you want to postpone

handling of some parts while implementing the evaluator, you can

always just raise the EvalError exception, which is intended just

for this kind of thing, when a MiniML runtime error occurs. Another

place EvalError will be useful is when a runtime type error occurs, for

instance, for the expressions 3 + true or 3 4 or let x = true in y.

Now that you have implemented a function to evaluate expressions,

you can make the R E P L loop worthy of its name. Notice at the bottom

of evaluation.ml the definition of evaluate, which is the function

that the R E P L loop in miniml.ml calls. Replace the definition with the

one calling eval_s and the R E P L loop will evaluate the read expres-
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sion before printing the result. It’s more pleasant to read the output

expression in concrete rather than abstract syntax, so you can replace

the exp_to_abstract_string call with a call to exp_to_concrete_-

string. You should end up with behavior like this:

# miniml_soln.byte

Entering miniml_soln.byte...

<== 3 ;;

==> 3

<== 3 + 4 ;;

==> 7

<== 3 4 ;;

xx> evaluation error: (3 4) bad redex

<== (((3) ;;

xx> parse error

<== let f = fun x -> x in f f 3 ;;

==> 3

<== let rec f = fun x -> if x = 0 then 1 else x * f (x - 1) in f 4 ;;

xx> evaluation error: not yet implemented: let rec

<== Goodbye.

Some things to note about this example:

• The parser that we provide will raise an exception

Parsing.Parse_error if the input doesn’t parse as well-formed

MiniML. The R E P L handles the exception by printing an appropri-

ate error message.

• The evaluator can raise an exception Evaluation.EvalError at

runtime if a (well-formed) MiniML expression runs into problems

when being evaluated.

• You might also raise Evaluation.EvalError for parts of the eval-

uator that you haven’t (yet) implemented, like the tricky let rec

construction in the example above.

Stage 206

After you’ve changed evaluate to call eval_s, you’ll have a complete

working implementation of MiniML. As usual, you should save a snap-

shot of this using a git commit and push so that if you have trouble

down the line you can always roll back to this version to submit it.

A.3 Implementing an environment semantics for MiniML

The substitution semantics is sufficient for all of MiniML because it is

a pure functional programming language. But binding constructs like
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let and let rec are awkward to implement, and extending the lan-

guage to handle references, mutability, and imperative programming

is impossible. For that, you’ll extend the language semantics to make

use of an environment that stores a mapping from variables to their

values, as described in Chapter 19. We’ve provided a type signature for

environments. It stipulates types for environments and values, and

functions to create an empty environment (which we’ve already imple-

mented for you), to extend an environment with a new B I N D I N G, that

is, a mapping of a variable to its (mutable) value, and to look up the

value associated with a variable.

The implementation of environments for the purpose of this project

follows that described in Section 19.5. We make use of an environment

that allows the values to be mutable:

type env = (varid * value ref) list

This will be helpful in the implementation of recursion.

Stage 207

Implement the various functions involved in the Env module and test

them thoroughly.

How will these environments be used? Atomic literals – like numer-

als and truth values – evaluate to themselves as usual, independently

of the environment. But to evaluate a variable in an environment, we

look up the value that the environment assigns to it and return that

value.

A slightly more complex case involves function application, as in

this example:

(fun x -> x + x) 5

The abstract syntax for this expression is an application of one expres-

sion to another. Recall the environment semantics rule for applications

from Figure 19.1:

E ⊢ P Q ⇓∣∣∣∣∣∣∣
E ⊢ P ⇓ fun x -> B

E ⊢Q ⇓ vQ

E {x 7→ vQ } ⊢ B ⇓ vB

⇓ vB

(Rapp)

According to this rule, to evaluate an application P Q in an environ-

ment E ,

1. Evaluate P in E to a value vP , which should be a function of the

form fun x -> B . If vP is not a function, raise an evaluation error.
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2. Evaluate Q in the environment E to a value vQ .

3. Evaluate B in the environment obtained by extending E with a

binding of x to vQ .

The formal semantics rule translates to what is essentially pseudocode

for the interpreter.

In the example: (1) fun x -> x + x is already a function, so evalu-

ates to itself. (2) The argument 5 also evaluates to itself. (3) The body x

+ x is thus evaluated in an environment that maps x to 5.

For let expressions, a similar evaluation process is used. Recall the

semantics rule:

E ⊢ let x = D in B ⇓∣∣∣∣∣ E ⊢ D ⇓ vD

E {x 7→ vD } ⊢ B ⇓ vB

⇓ vB

(Rlet )

We’ll apply this rule in evaluating an expression like

let x = 3 * 4 in x + 1 ;;

To evaluate this expression in, say, the empty environment, we first

evaluate (recursively) the definition part in the same empty envi-

ronment, presumably getting the value 12 back. We then extend the

environment to associate that value with the variable x to form a new

environment, and then evaluate the body x + 1 in the new environ-

ment. In turn, evaluating x + 1 involves recursively evaluating x and

1 in the new environment. The latter is straightforward. The former

involves just looking up the variable in the environment, retrieving

the previously stored value 12. The sum can then be computed and

returned as the value of the entire let expression.

Don’t be surprised that this dynamically scoped evaluator exhibits

all of the divergences from the substitution-based evaluator that were

discussed in Section 19.2.1. For instance, the evaluator will return

different values for certain expressions; it will allow let-bound vari-

ables to be used recursively; and it will fail on simple curried functions.

That’s fine. Indeed, it’s a sign you’ve implemented the dynamic scope

regime correctly. But it does motivate implementation of a lexical-

scoped version of the evaluator described below.

Stage 208

Implement another evaluation function eval_d : Expr.expr ->

Env.env -> Env.value (the ‘d’ is for dynamically scoped environment

semantics), which works along the lines just discussed. Make sure to

test it on a range of tests exercising all the parts of the language.
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A.4 Extending the language

In this final part of the project, you will extend MiniML in one or more

ways of your choosing.

A.4.1 Extension ideas

Here are a few ideas for extending the language, very roughly in or-

der from least to most ambitious. Especially difficult extensions are

marked with ❢ symbols.

1. Add additional atomic types (floats, strings, unit, etc.) and corre-

sponding literals and operators.

2. Modify the environment semantics to manifest lexical scope in-

stead of dynamic scope (Section A.4.2).

3. Augment the syntax by allowing for one or more bits of syntactic

sugar, such as the curried function definition notation seen in let

f x y z = x + y * z in f 2 3 4.

4. Add lists to the language.

5. Add records to the language.

6. Add references to the language, by adding operators ref, !, and :=.

Since the environment is already mutable, you can even implement

this extension without implementing stores and modifying the type

of the eval function, though you may want to anyway.

7. Add laziness to the language (by adding refs and syntactic sugar for

the lazy keyword). If you’ve also added lists, you’ll be able to build

infinite streams.

8. Add better support for exceptions, for instance, multiple different

exception types, exceptions with arguments, exception handling

with try...with....

9. ❢ Add simple compile-time type checking to the language. For this

extension, the language would be extended so that every intro-

duction of a bound variable (in a let, let rec, or fun construct)

is accompanied by its (monomorphic) type. The abstract syntax

would need to be extended to store those types, and you would

write a function to walk the tree to verify that every expression in

the program is well typed. This is a quite ambitious project.

10. ❢❢ Add type inference to the language, so that (as in OCaml) types

are inferred even when not given explicitly. This is extremely ambi-

tious, not for the faint of heart. Do not attempt to do this.
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Most of the extensions (in fact, all except for (2)) require extensions

to the concrete syntax of the language. We provide information about

extending the concrete syntax in Section A.4.3. Many other extensions

are possible. Don’t feel beholden to this list. Be creative!

In the process of extending the language, you may find the need to

expand the definition of what an expression is, as codified in the file

expr.mli. Other modifications may be necessary as well. That is, of

course, expected, but you should make sure that you do so in a manner

compatible with the existing codebase so that unit tests based on the

provided definitions continue to function. The ability to submit your

code for testing should help with this process. In particular, if you have

to make changes to mli files, you’ll want to do so in a way that extends

the signature, rather than restricting it.

Most importantly: It is better to do a great job (clean, elegant de-

sign; beautiful style; well thought-out implementation; evocative

demonstrations of the extended language; literate writeup) on a

smaller extension, than a mediocre job on an ambitious extension.

That is, the scope aspect of the project will be weighted substantially

less than the design and style aspects. Caveat scriptor.

A.4.2 A lexically scoped environment semantics

One possible extension is to implement a lexically scoped environ-

ment semantics, perhaps with some further extensions. Consider the

following OCaml expression, reproduced from Section 19.2.2:

let x = 1 in

let f = fun y -> x + y in

let x = 2 in

f 3 ;;

Exercise 209

What should this expression evaluate to? Test it in the OCaml interpreter. Try this
expression using your eval_s and eval_d evaluators. Which ones accord with OCaml’s
evaluation?

The eval_d evaluator that you’ve implemented so far is dynamically

scoped. The values of variables are governed by the dynamic ordering

in which they are evaluated. But OCaml is lexically scoped. The values

of variables are governed by the lexical structure of the program. (See

Section 19.2.2 for further discussion.) In the case above, when the

function f is applied to 3, the most recent assignment to x is of the

value 2, but the assignment to the x that lexically outscopes f is of the

value 1. Thus a dynamically scoped language calculates the body of f,

x + y, as 2 + 3 (that is, 5) but a lexically scoped language calculates

the value as 1 + 3 (that is, 4).
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The substitution semantics manifests lexical scope, as it should,

but the dynamic semantics does not. To fix the dynamic semantics, we

need to handle function values differently. When a function value is

computed (say the value of f, fun y -> x + y), we need to keep track

of the lexical environment in which the function occurred so that when

the function is eventually applied to an argument, we can evaluate

the application in that lexical environment – the environment when

the function was defined – rather than the dynamic environment – the

environment when the function was called.

The technique to enable this is to package up the function being

defined with a snapshot of the environment at the time of its defini-

tion into a closure. There is already provision for closures in the env

module. You’ll notice that the value type has two constructors, one

for normal values (like numbers, booleans, and the like) and one for

closures. The Closure constructor just packages together a function

with its lexical environment.

Stage 210

(if you decide to do a lexically scoped evaluator in service of your ex-

tension) Make a copy of your eval_d evaluation function and call it

eval_l (the ‘l’ for lexically scoped environment semantics). Modify the

code so that the evaluation of a function returns a closure containing

the function itself and the current environment. Modify the function

application part so that it evaluates the body of the function in the

lexical environment from the corresponding closure (appropriately

updated). As usual, test it thoroughly. If you’ve carefully accumulated

good unit tests for the previous evaluators, you should be able to fully

test this new one with just a single function call.

Do not just modify eval_d to exhibit lexical scope, as this will cause

our unit tests for eval_d (which assume that it is dynamically scoped)

to fail. That’s why we ask you to define the lexically scoped evaluator

as eval_l. The copy-paste recommendation for building eval_l from

eval_d makes for simplicity in the process, but will undoubtedly leave

you with redundant code. Once you’ve got this all working, you may

want to think about merging the two implementations so that they

share as much code as possible. Various of the abstraction techniques

you’ve learned in the course could be useful here.

Implementing recursion in the lexically-scoped evaluator By far the

trickiest bit of implementing lexical scope is the treatment of recur-

sion, so we address it separately. Consider this expression, which

makes use of an (uninteresting) recursive function:

let rec f = fun x -> if x = 0 then x else f (x - 1) in f 2 ;;
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The let rec expression has three parts: a variable name, a definition

expression, and a body. To evaluate it, we ought to first evaluate the

definition part, but using what environment? If we use the incoming

(empty) environment, then what will we use for a value of f when we

reach it? Ideally, we should use the value of the definition, but we don’t

have it yet.

Following the approach described in Section 19.6.1, in the interim,

we’ll extend the environment with a special value, Unassigned, as the

value of the variable being recursively defined. You may have noticed

this special value in the expr type; uniquely, it is never generated by

the parser. We evaluate the definition in this extended environment,

hopefully generating a value. (The definition part better not ever eval-

uate the variable name though, as it is unassigned; doing so should

raise an EvalError. An example of this run-time error might be let

rec x = x in x.) The value returned for the definition can then re-

place the value for the variable name (thus the need for environments

to map variables to mutable values) and the environment can then be

used in evaluating the body.

In the example above, we augment the empty environment with a

binding for f to Unassigned and evaluate fun x -> if x = 0 then

x else f (x - 1) in that environment. Since this is a function, it

is already a value, so evaluates to itself. (Notice how we never had to

evaluate f in generating this value.)

Now the environment can be updated to have f have this function

as a value – not extended (using the extend function) but *actually

modified* by replacing the value stored in the value ref associated

with f in the environment. Finally, the body f 2 is evaluated in this

environment. The body, an application, evaluates f by looking it up in

this environment yielding fun x -> if x = 0 then x else f (x -

1) and evaluates 2 to itself, then evaluates the body of the function in

the prevailing environment (in which f has its value) augmented with a

binding of x to 2.

In summary, a let rec expression like let rec x = D in B is

evaluated via the following five-step process:

1. Extend the incoming environment with a binding of x to

Unassigned; call this extended environment env_x.

2. Evaluate the definition subexpression D in that environment to get a

value v_D.

3. Mutate env_x so that x now maps to v_D.

4. Evaluate the body subexpression B to get a value v_B.

5. Return v_B.
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A.4.3 The MiniML parser

We provided you with a MiniML parser that converts the concrete

syntax of MiniML to an abstract syntax representation using the expr

type. But to extend the implemented language, you’ll typically need

to extend the parser. Feel free to do so, but make sure that you extend

the language by adding new constructs to the expr type, without

changing the ones that are already given. For instance, if you want to

add support for multiple exceptions, you’ll want to leave the Raise

construct as is (so we can test it with our unit tests) and add your own

new construct, say RaiseExn for the extension.

The parser we provided was implemented using ocamllex and

menhir, programs designed to build lexical analyzers and parser

for programming languages. Documentation for them can be

found at http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.

html, http://cambium.inria.fr/~fpottier/menhir/manual.html,

and tutorial material is available at https://ohama.github.io/

ocaml/ocamllex-tutorial/ and https://dev.realworldocaml.org/

parsing-with-ocamllex-and-menhir.html.

In summary, ocamllex takes a specification of the tokens of a

programming language in a file, in our case miniml_lex.mll. The

ocamlbuild system knows how to use ocamllex to turn such files into

OCaml code for a lexical analyzer in the file miniml_lex.ml. Simi-

larly, a menhir specification of a parser in a file miniml_parse.mly

will be transformed by menhir (automatically with ocamlbuild) to

a parser in miniml_parse.ml. By modifying miniml_lex.mll and

miniml_parse.mly, you can modify the concrete syntax of the MiniML

language, which may be useful for many of the extensions you might

be interested in.

A.5 Submitting the project

Stage 211

Write up your extensions in a short but formal paper describing and

demonstrating any extensions and how you implemented them.

Use Markdown or LATEX format, and name the file writeup.md or

writeup.tex. You’ll submit both the source file and a rendered PDF

file.

In addition to submitting the code implementing MiniML to the

course grading server through the normal process, you should sub-

mit the writeup.md or writeup.tex file and the rendered PDF file

writeup.pdf as well.

Make sure to use git add to track any new files you create for

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://cambium.inria.fr/~fpottier/menhir/manual.html
https://ohama.github.io/ocaml/ocamllex-tutorial/
https://ohama.github.io/ocaml/ocamllex-tutorial/
https://dev.realworldocaml.org/parsing-with-ocamllex-and-menhir.html
https://dev.realworldocaml.org/parsing-with-ocamllex-and-menhir.html
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the final project (such as your writeup or any code files for testing)

before submitting. You can run git status to see if there are any

untracked files in your repository. Finally, remember that you can look

on Gradescope to check that your submissions contains the files you

expect. Unfortunately, we can’t accept any files that are not submitted

on time.

A.6 Alternative final projects

Students who have been doing exceptionally well in the course to date

can petition to do alternative final projects of their own devising, under

the following stipulations:

1. Alternative final projects can be undertaken individually or in

groups of up to four.

2. The implementation language for the project must be OCaml.

3. You will want to talk to course staff about your ideas early to get

initial feedback.

4. You will need to submit a proposal for the project by April 16, 2021.

The proposal should describe what the project goals are, how you

will go about implementing the project, and how the work will be

distributed among the members of the group (if applicable).

5. You will receive notification around April 19, 2021 as to whether

your request has been approved. Approval will be based on perfor-

mance in the course to date and the appropriateness of the project.

6. You will submit a progress report by April 26, 2021, including a

statement of progress, any code developed to date, and any changes

to the expected scope of the project.

7. You will submit the project results, including all code, a demon-

stration of the project system in action, and a paper describing the

project and any results, by May 5, 2021.

8. You will be scheduled to perform a presentation and demonstration

of your project for course staff during reading period.

9. The group as a whole may drop out of the process at any time.

Individual members of the group would then submit instead the

standard final project described here.
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Problem sets

A.1 The prisoners’ dilemma

I’m an apple farmer who hates apples but loves broccoli. You’re a

broccoli farmer who hates broccoli but loves apples. The obvious

solution to this sad state of affairs is for us to trade – I ship you a box of

my apples and you ship me a box of your broccoli. Win-win.

But I might try to get clever by shipping an empty box. Instead of

cooperating, I “defect”. I still get my broccoli from you (assuming you

don’t defect) and get to keep my apples. You, thinking through this

scenario, realize that you’re better off defecting as well; at least you’ll

get to keep your broccoli. But then, nobody gets what we want; we’re

both worse off. The best thing to do in this D O N AT I O N G A M E seems to

be to defect.

It’s a bit of a mystery, then, why people cooperate at all. The answer

may lie in the fact that we engage in many rounds of the game. If you

get a reputation for cooperating, others may be willing to cooperate as

well, leading to overall better outcomes for all involved.

The donation game is an instance of a classic game-theory thought

experiment called the P R I S O N E R ’ S D I L E M M A. A prisoner’s dilemma is

a type of game involving two players in which each player is individ-

ually incentivized to choose a particular action, even though it may

not result in the best global outcome for both players. The outcomes

are commonly specified through a payoff matrix, such as the one in

Table A.1.

Player 2
Cooperate Defect

Player 1
Cooperate (3, 3) (−2, 5)

Defect (5, −2) (0, 0)

Table A.1: Example payoff matrix for
a prisoner’s dilemma. This particular
payoff matrix corresponds to a donation
game in which providing the donation
(of apples or broccoli, say) costs 2 unit
and receiving the donation provides a
benefit of 5 units.

To read the matrix, Player 1’s actions are outlined at the left and

Player 2’s actions at the top. The entry in each box corresponds to a

payoff to each player, depending on their respective actions. For in-

stance, the top-right box indicates the payoff when Player 1 cooperates

and Player 2 defects. Player 1 receives a payoff of −2 and Player 2 re-

ceives a payoff of 5 in that case.

To see why a dilemma arises, consider the possible actions taken
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by Player 1. If Player 2 cooperates, then Player 1 should defect rather

than cooperating, since the payoff from defecting is higher (5 > 3).

If Player 2 defects, then Player 1 should again defect since the payoff

from defecting is higher (0 > −2). The same analysis applies to Player

2. Therefore, both players are incentivized to defect. However, the

payoff from both players defecting (each getting 0) is objectively worse

for both players than the payoff from both players cooperating (each

getting 3).

An I T E R AT E D P R I S O N E R ’ S D I L E M M A is a multi-round prisoner’s

dilemma, where the number of rounds is not known.1 A S T R AT E G Y 1 If the number of rounds is known
by the players ahead of time, players
are again incentivized to defect for
all rounds. We will not delve into
the reasoning here, as that is outside
the scope of this course, but it is an
interesting result!

specifies what action to take based on a history of past rounds of a

game. We can (and will) represent a history as a list of pairs of actions

(cooperate or defect) taken in the past, and a strategy as a function

from histories to actions.

For example, a simple strategy is to ignore the histories and always

defect. We call that the “nasty” strategy. More optimistic is the “patsy”

strategy, which always cooperates.

Whereas the above analysis showed both players are incentivized

to defect in a single-round prisoner’s dilemma (leading to the nasty

strategy), that is no longer necessarily the case if there are multiple

rounds. Instead, more complicated strategies can emerge as players

can take into account the history of their opponent’s plays and their

own. A particularly effective strategy – effective because it leads to

cooperation, with its larger payoffs – is T I T- F O R- TAT. In the tit-for-tat

strategy, the player starts off by cooperating in the first round, and then

in later rounds chooses the action that the other player just played,

rewarding the other player’s cooperation by cooperating and punishing

the other player’s defection by defecting.

In this problem set, you’ll complete a simulation of the iterated

prisoner’s dilemma that allows for testing different payoff matrices and

strategies.

A.2 Higher-order functional programming

This assignment focuses on programming in the higher-order func-

tional programming paradigm, with special attention to the idiomatic

use of higher-order functions like map, fold, and filter. In doing so,

you will exercise important features of functional languages, such as

recursion, pattern matching, and list processing.
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A.3 Bignums and RSA encryption

Cryptography is the science of methods for storing or transmitting

messages securely and privately.

Cryptographic systems typically use keys for encryption and decryp-

tion. An encryption key is used to convert the original message (the

plaintext) to coded form (the ciphertext). A corresponding decryption

key is used to convert the ciphertext back to the original plaintext.

In traditional cryptographic systems, the same key is used for both

encryption and decryption, which must be kept secret. Two parties

can exchange coded messages only if they share the secret key. Since

anyone who learned that key would be able to decode the messages,

keys must be carefully guarded and transmitted only under tight se-

curity, for example, couriers handcuffed to locked, tamper-resistant

briefcases!

Figure A.1: Whitfield Diffie (1944–) and
Martin Hellman (1948–), co-inventors of
public-key cryptography, for which they
received the Turing Award in 2015.

In 1976, Diffie and Hellman initiated a new era in cryptography with

their discovery of a new approach: public-key cryptography. In this

approach, the encryption and decryption keys are different from each

other. Knowing the encryption key cannot help you find the decryp-

tion key. Thus, you can publish your encryption key publicly – on the

web, say – and anyone who wants to send you a secret message can use

it to encode a message to send to you. You do not have to worry about

key security at all, for even if everyone in the world knew your encryp-

tion key, no one could decrypt messages sent to you without knowing

your decryption key, which you keep private to yourself. You used

public-key encryption when you set up your CS51 git repositories: the

command ssh-keygen generated a public encryption key and private

decryption key for you. You uploaded the public key and (hopefully)

kept the private key to yourself.

The best known public-key cryptosystem is due to computer sci-

entists Rivest, Shamir, and Adelman, and is known by their initials,

RSA. The security of your web browsing probably depends on RSA en-

cryption. The system relies on the fact that there are fast algorithms

for exponentiation and for testing prime numbers, but no known fast

algorithms for factoring extremely large numbers. In this problem set

you will complete an implementation of a version of the RSA system.

(If you’re interested in some of the mathematics behind RSA, see Sec-

tion ??. However, an understanding of that material is not needed to

complete the problem set.)

Crucially, RSA requires manipulation of very large integers, much

larger than can be stored, for instance, as an OCaml int value. OCaml’s

int type has a size of 63 bits, and therefore can represent integers be-

tween −262 and 262 −1. These limits are available as OCaml constants
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min_int and max_int:

# min_int, max_int ;;

- : int * int = (-4611686018427387904, 4611686018427387903)

The int type can then represent integers with up to 18 or so digits, that

is, integers in the quintillions, but RSA needs integers with hundreds of

digits.

Computer representations for arbitrary size integers are tradition-

ally referred to as B I G N U M S. In this assignment, you will be imple-

menting bignums, along with several operations on bignums, includ-

ing addition and multiplication. We provide code that will use your

bignum implementation to implement the RSA cryptosystem. Once

you complete your bignum implementation, you’ll be able to encrypt

and decrypt messages using this public-key cryptosystem, and dis-

cover a hidden message that we’ve provided encoded in this way.

A.4 Symbolic differentiation

Solving an equation like x2 = x + 1 N U M E R I C A L LY yields a particu-

lar number as an approximation to the solution for x, for instance,

1.618. Solving the equation S Y M B O L I C A L LY yields an expression repre-

senting the solution exactly, for instance, 1+p5
2 . (The golden ratio! See

Exercise 8.) The earliest computing devices were used to calculate nu-

merically. Charles Babbage envisioned his analytical engine as a device

for calculating numeric tables, and Ada Lovelace’s famous program for

Babbage’s analytical engine numerically calculated Bernoulli numbers.

Figure A.2: A rare daguerrotype of Ada
Lovelace (Augusta Ada King, Countess
of Lovelace, 1815–1852) by Antoine
Claudet, taken c. 1843, around the
time she was engaged in writing her
notes on the Babbage analytical engine.
(Menabrea and Lovelace, 1843)

But Lovelace (Figure A.2) was perhaps the first computer scientist

to have the revolutionary idea that computers could be used for much

more than numerical calculations.

The operating mechanism. . . might act upon other things besides num-

ber, were objects found whose mutual fundamental relations could be

expressed by those of the abstract science of operations, and which

should be also susceptible of adaptations to the action of the operating

notation and mechanism of the engine. Supposing, for instance, that

the fundamental relations of pitched sounds in the science of harmony

and of musical composition were susceptible of such expression and

adaptations, the engine might compose elaborate and scientific pieces

of music of any degree of complexity or extent. (Menabrea and Lovelace,

1843, page 694)

One of the applications of the power of computers to transcend nu-

merical calculation, which Lovelace immediately saw, was to engage in

mathematics symbolically rather than numerically.

It seems to us obvious, however, that where operations are so indepen-

dent in their mode of acting, it must be easy by means of a few simple

https://url.cs51.io/5fq
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provisions and additions in arranging the mechanism, to bring out a

double set of results, viz. – 1st, the numerical magnitudes which are the

results of operations performed on numerical data. (These results are

the primary object of the engine). 2ndly, the symbolical results to be

attached to those numerical results, which symbolical results are not

less the necessary and logical consequences of operations performed

upon symbolical data, than are numerical results when the data are

numerical. (Menabrea and Lovelace, 1843, page 694–5)

Figure A.3: John McCarthy (1927–2011),
one of the founders of (and coiner
of the term) artificial intelligence.
His LISP programming language was
widely influential in the history of
programming languages. He was
awarded the Turing Award in 1971.

The first carrying out of symbolic mathematics by computer arose

over a hundred years later, in the work of Turing-Award-winning

computer scientist John McCarthy (Figure A.3). In the summer of 1958,

McCarthy made a major contribution to the field of programming

languages. With the objective of writing a program that performed

symbolic differentiation (that is, the process of finding the derivative

of a function) of algebraic expressions in an effective way, he noticed

that some features that would have helped him to accomplish this task

were absent in the programming languages of that time. This led him

to the invention of the programming language LISP (McCarthy, 1960)

and other ideas, such as the concept of list processing (from which

LISP derives its name), recursion, and garbage collection, which are

essential to modern programming languages.

McCarthy saw that the power of higher-order functional program-

ming, together with the ability to manipulate structured data, make

it possible to carry out such symbolic mathematics in an especially

elegant manner. However, it was Jean Sammet (Figure A.4) who first

envisioned a full system devoted to symbolic mathematics more gen-

erally. Her FORMAC system (Sammet, 1993) ushered in a wave of

symbolic mathematics systems that have made good on Lovelace’s

original observation. Nowadays, symbolic differentiation of algebraic

expressions is a task that can be conveniently accomplished on mod-

ern mathematical packages, such as Mathematica and Maple.

Figure A.4: Jean Sammet (1928–2017),
head of the FORMAC project to build
“the first widely available programming
language for symbolic mathematical
computation to have significant prac-
tical usage” (Sammet, 1993). She was
awarded the Augusta Ada Lovelace
Award in 1999 and the Computer Pi-
oneer Award in 2009 for her work on
FORMAC and (with Admiral Grace
Hopper) the programming language
COBOL.

This assignment focuses on using abstract data types to design

your own mini-language – a mathematical expression language over

which you’ll perform symbolic mathematics by computing derivatives

symbolically.

A.5 Ordered collections

In this assignment you will use modules to define several useful ab-

stract data types (ADT). The particular ADTs that you’ll be implement-

ing are ordered collections (as implemented through binary search

trees) and priority queues (as implemented through binary search

trees and binary heaps).

An ordered collection is a collection of elements that have an in-

https://web.archive.org/web/20080309214223/http://www.awc-hq.org/lovelace/1989.htm
https://web.archive.org/web/20080309214223/http://www.awc-hq.org/lovelace/1989.htm
https://www.computer.org/web/awards/pioneer-jean-sammet
https://www.computer.org/web/awards/pioneer-jean-sammet
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trinsic ordering to them. Natural operations on ordered collections

include insertion of an element, deletion of an element, searching for

an element, and access to the minimum and maximum elements. Pri-

ority queues constitute a special case of ordered collection in which

the only operations are insertion of an element and extraction of the

minimum element.

A.6 The search for intelligent solutions

In this assignment, you will apply your knowledge of OCaml modules

and functors to complete the implementation of a program for solving

search problems, a core problem in the field of artificial intelligence.

In the course of working on this assignment, you’ll implement a more

efficient queue module using two stacks; create a higher-order functor

that abstracts away details of search algorithms and puzzle imple-

mentations; and compare, visualize, and analyze the performance of

various search algorithms on different puzzles.

A.6.1 Search problems

The field of A RT I F I C I A L I N T E L L I G E N C E pursues the computational

emulation of behaviors that in humans are indicative of intelligence.

A hallmark of intelligent behavior is the ability to figure out how to

achieve some desired goal. Let’s consider an idealized version of

this behavior – puzzle solving. A puzzle can be in any of a variety of

S TAT E S. The puzzle starts in a specially designated I N I T I A L S TAT E,

and we desire to reach a G OA L S TAT E by finding a sequence of M OV E S

that, when executed starting in the initial state, reach the goal state.

Figure A.5 provides some examples of this sort of puzzle – peg solitaire,

the 8-puzzle, and a maze puzzle.

1

23

4
5
6

7
8

(a) (b) (c)

Figure A.5: Some puzzles based on
search for a goal state. (a) the peg
solitaire puzzle; (b) the sliding-tile 8
puzzle; (c) a maze puzzle.

A good example is the 8 puzzle, depicted in Figure A.6. (You may

know it better as the 15 puzzle, its larger 4 by 4 version.) A 3 by 3 grid of

numbered tiles, with one tile missing, allows sliding of a tile adjacent to

the empty space. The goal state is to be reached by repeated moves of

this sort. But which moves should you make?

https://url.cs51.io/0jl
https://url.cs51.io/6ya
https://url.cs51.io/13be4e
https://url.cs51.io/6ya
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Figure A.6: The 8 puzzle: (a) an initial
state, (b) the goal state, (c-f) the states
resulting from moving up, down,
left, and right from the initial state,
respectively.

Solving goal-directed problems of this sort requires a S E A RC H

among all the possible move sequences for one that achieves the

goal. You can think of this search process as a walk of a S E A RC H T R E E,

where the nodes in the tree are the possible states of the puzzle and the

directed edges correspond to moves that change the state from one to

another. Figure A.7 depicts a small piece of the tree corresponding to

the 8 puzzle.
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Figure A.7: A snippet from the search
tree for the 8 puzzle.

To solve a puzzle of this sort, you maintain a collection of states to

be searched, which we will call the pending collection. The pending

collection is initialized with just the initial state. You can then take a

state from the pending collection and test it to see if it is a goal state. If

so, the puzzle has been solved. But if not, this state’s N E I G H B O R states

– states that are reachable in one move from the current state – are

added to the pending collection (or at least those that have not been

visited before) and the search continues.

To avoid adding states that have already been visited before, you’ll
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need to keep track of a set of states that have already been visited,

which we’ll call the visited set, so you don’t revisit one that has already

been visited. For instance, in the 8 puzzle, after a down move, you don’t

want to then perform an up move, which would just take you back to

where you started. (The standard OCaml Set library will be useful here

to keep track of the set of visited states.)

Of course, much of the effectiveness of this process depends on the

order in which states are taken from the collection of pending states as

the search proceeds. If the states taken from the collection are those

most recently added to the collection (last-in, first-out, that is, as a

stack), the tree is being explored in a D E P T H - F I R S T manner. If the

states taken from the collection are those least recently added (first-in,

first-out, as a queue), the exploration is B R E A D T H - F I R S T. Other orders

are possible, for instance, the states might be taken from the collection

in order of how closely they match the goal state (using some metric

of closeness). This regime corresponds to B E S T- F I R S T or G R E E DY

S E A RC H.

A.7 Refs, streams, and music

In this problem set you will work with two new ideas: First, we provide

a bit of practice with imperative programming, emphasizing mutable

data structures and the interaction between assignment and lexical

scoping. Since this style of programming is probably most familiar to

you, this portion of the problem set is brief. Second, we introduce lazy

programming and its use in modeling infinite data structures. This

part of the problem set is more extensive, and culminates in a project

to generate infinite streams of music.

A.8 Force-directed graph drawing

You’ll be familiar with graph drawings, those renderings of nodes and

edges between them that depict all kinds of networks – both physical

and virtual. These drawings are ubiquitous, in large part because of

their fabulous utility. Examples date from as early as the Middle Ages

(see Figure A.8(a)), when they were used to depict family trees and

categorizations of vices and virtues. These days, they are used to depict

everything from molecular interactions to social networks.

To gain the best benefit from visualizing graphs through a graph

drawing, the nodes and edges must be laid out well. In this problem

set, you’ll complete the implementation of a system for force-directed

graph layout. A modern example of what can be done with force-

directed graph drawing is provided in Figure A.8(b). If you’d like to get

https://url.cs51.io/25x
https://url.cs51.io/8nb
https://url.cs51.io/60r
https://url.cs51.io/6c0
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(a) (b)

Figure A.8: Two sample graph draw-
ings several hundred years apart.
(a) A graph drawing from the 14th
century with nodes depicting logi-
cal propositions in an argument and
edges depicting relations among
them. From Kruja et al. (2001). (b)
Snapshot of a dynamic interactive force-
directed graph drawing built using D3
(https://mbostock.github.io/d3/talk/
20111116/force-collapsible.html), from
the D3 gallery.

a sense of what can be done with force-directed graph drawing, you

can play around with the graph visualization from which this snapshot

came. In carrying out this project, you’ll be making use of the object-

oriented programming paradigm supported by OCaml.

A note of assuagement: Although this problem set document uses

a lot of physics terminology, you really don’t need to know any physics

whatsoever to do the problem set. All of the physics-related code is in

portions of the code-base (graphdraw.ml and controls.ml) that we

have provided for you and that you won’t need to modify.

A.8.1 Background

A G R A P H is a mathematical object defined as a set of N O D E S and

E D G E S connecting the nodes. As an example, consider a set of four

nodes (numbered 0 to 3) connected with edges cyclically, 0 to 1, 1 to

2, 2 to 3, and 3 to 0, plus an extra edge from 0 to 2. A G R A P H D R AW-

I N G is a depiction of a graph in two (or sometimes three) dimensions

indicating the nodes in the graph by graphical symbols of various

sorts (circles, squares, and the like) and edges by lines drawn between

the nodes. Other aspects of the graph are also typically manifested in

graphical properties. For instance, groups of nodes might be aligned

horizontally or vertically, or grouped with a zone box surrounding

them, or laid out symmetrically or in a hub-and-spoke motif.

For the example four-node graph just presented, if we depict the

nodes as small circles, placed more or less randomly on a drawing

“canvas”, we might get a graph drawing like Figure A.9(a). It’s not par-

ticularly visually pleasing.

Much more attractive layouts can be generated by thinking of the

positions at which the nodes are to be placed as physical M A S S E S sub-

https://mbostock.github.io/d3/talk/20111116/force-collapsible.html
https://mbostock.github.io/d3/talk/20111116/force-collapsible.html
https://mbostock.github.io/d3/talk/20111116/force-collapsible.html
https://mbostock.github.io/d3/talk/20111116/force-collapsible.html
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(a) (b) (c) (d)

Figure A.9: Four different drawings of
the same graph. (a) Nodes randomly
placed. (b) With fixed length spring
constraints between nodes connected
by edges. (c) With fixed length spring
constraints between nodes connected
by outside edges, plus a horizontal
alignment constraint on nodes 0 and 1
and a vertical alignment constraint on
nodes 0 and 3. (d) An overconstrained
layout with the constraints from (c) but
with all of the edge constraints from (b),
including the fixed length constraint
between 0 and 2.

ject to various kinds of F O RC E S. The forces encourage the satisfying

of graphical constraints, such as nodes being a particular distance

from each other, or far away from each other, or horizontally or verti-

cally aligned. For instance, if we imagine a spring with a certain R E S T

L E N G T H connecting two masses, those masses will have forces push-

ing them towards each other if they are farther apart than the rest

length or away from each other if they are closer together than the rest

length. (See Figure A.10 for a visual depiction.) According to Hooke’s

law, the force applied is directly proportional to the difference between

the current distance and the rest length.

We can use this kind of mass-spring physical system to help with

graph layout. We imagine that there is a mass for each node initially

placed at the locations shown in Figure A.9(a), and for each edge in the

graph there is a Hooke’s law spring of a given rest length, 80 pixels, say,

connecting the masses representing the nodes at the end of the edge.

We refer to a force-generating element like the Hooke’s law spring as

a C O N T RO L. If we physically simulate how the forces on the masses

generated by the controls would work, eventually the masses will come

to rest at locations different from where they started, and indeed, if

we place the graph nodes at those locations, we get exactly the layout

in Figure A.9(b). Notice how all of the edge-connected nodes are the

same length apart from each other – as it turns out, 80 pixels apart.

This methodology for graph layout is called F O RC E - D I R E C T E D

G R A P H L AYO U T based on its use of simulated forces to move the nodes

and edges around. The method can be generalized to much more ex-

pressive graphical constraints than just establishing fixed distances

between nodes with Hooke’s-law springs. For instance, we can have

force-generating controls that push masses to be in horizontal align-

ment, or vertical alignment. Using these controls, we can generate

layouts like the one in Figure A.9(c). Care must be taken however. If we

add too many controls in ways that overconstrain the physical system,

the result of finding the resting positions may not fully satisfy any of

the constraints, leading to unattractive layouts as in Figure A.9(d).
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(a) (b) (c)

Figure A.10: A Hooke’s law spring
connecting two masses (labeled 0
and 1) and its generated forces. The
pale red bar indicates the spring’s rest
length. (a) The spring at rest. No forces
on the masses. (b) When the spring is
stretched (the masses are farther apart
than the spring’s rest length), forces
(red arrows) are applied to the two
masses pushing them towards each
other. (c) Conversely, when the spring
is compressed (the masses are closer
together than the spring’s rest length),
forces are applied to the two masses
pushing them away from each other.

A.9 Simulating an infectious process

Imagine an infection among a population of people where the agent

is transmitted from infected people to susceptible people nearby.

The time course of such a process depends on many factors: How

infectious is the agent? How much mixing is there of the population?

How nearby must people get to be subject to infection? How long does

recovery take? Is immunity conferred?

To get a sense of how such factors affect the overall course of the

infection, we can simulate the process, with configurable parameters

to control these and other aspects of the simulation.

A.9.1 The simulation

In this simulation, a population of people can be in one of several

states:

• Susceptible – The person has not been infected or has been infected

but is no longer immune.

• Infected – The person is infected and is therefore infectious and can

pass the infection on to susceptibles nearby.

• Recovered – The person was infected but recovered and has immu-

nity from further infection for a period of time.

• Deceased – The person was infected but did not recover.

(In the field of epidemiology, this kind of simulation is known as an

SIRD model for obvious reasons.)

The simulation proceeds through a series of time steps. At each

time step members of the population move on a two-dimensional grid

to nearby squares. (How far they move – how many squares in each

direction – is a configurable parameter.) Each person’s status updates

after they’ve moved. A susceptible person in the vicinity of infecteds

may become infected. (This depends on how large a vicinity is con-

sidered to be “nearby” and how infectious each of the people in that

vicinity are.) An infected person after a certain number of time steps

may recover or die. (The relative proportion depends on a mortality

parameter.) A recovered person after a certain number of time steps

may lose immunity, becoming susceptible again.

https://url.cs51.io/mkz
https://url.cs51.io/mkz
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Mathematical background and notations

In this book, we make free use of a wide variety of mathematical con-

cepts and associated notations, some of which may be unfamiliar to

readers. Facility with learning and using notation is an important skill

to develop. In this chapter, we describe some of the notations we use,

both for reference and to help build this facility.

B.1 Functions

Mathematics is full of functions, and of notations for defining them. In

this section we present a menagerie of function-related notations.

B.1.1 Defining functions with equations

A standard technique is to define functions using a set of equations.

Each of the equations provides a part of the definition based on a

particular subset of the possible argument values of the function. For

instance, consider the factorial function, which we’ll denote with the

symbol “fact”. It is defined by these two equations:

fact(0) = 1

fact(n) = n · fact(n −1) for n > 0

Sometimes the cases are depicted overtly using a large brace:

fact(n) =
{

1 for n = 0

n · fact(n −1) for n > 0

A ‘for’ or ‘where’ clause after an equation provides further con-

straint on the applicability of that equation. In the case at hand, the

second equation applies only when the argument n is greater than 0.

In equational definitions, each equation must apply disjointly. If there

were two equations that applied to a particular input, it would be un-

clear which of the two to use. These further constraints can guarantee

disjointness and remove ambiguity.



390 P RO G R A M M I N G W E L L

B.1.2 Notating function application

In the factorial example, we used the familiar mathematical notation

for applying a function to an argument – naming the function followed

by its argument in parentheses: fact(n).

Functions
Objective To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class's profit, p will depend on 11, the number of tickets sold.

profit = $5 . (number of tickets) - $500 or p = 511 - 500
The equation p = 511 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.

domain D {O, I, 2, ... }.

The range is the set of profits that are possible, including "negative profits,"
or losses, if too few tickets are sold.

range R = {-500, -495, -490, ...}.
If we call this profit function p. we can use arrow notation and write

the rule P: 11 -7 511 - 500,

which is read "the function P that assigns 511 - 500 to II" or "the function P
that pairs 11 with 511 - 500." We could also use functional notation:

P(I1) = 511 500
which is read "P of 11 equals 511 - 500" or "the value of P at 11 is 511 - 500."

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function.

Example 1 List the range of
g: x -7 4 + 3x - x2

if the domain D = {-I, 0, I, 2}.

Solution In 4 + 3x - x2 replace x with each
member of D to find the members
of the range R.
:. R = {O, 4, 6} Answer

x 4 + 3x -./

-I 4 + 3(-1) (-1)2 = 0

0 4 + 3(0) - 02 = 4

I 4 + 3(1) - 12 = 6

2 4 + 3(2) - 22 = 6

Note that the function g in Example I assigns the number 6 to both I
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example I, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

g(2) = 6,
which is read "g of 2 equals 6" or "the value of g at 2 is 6." Note that g(2)
is 110t the product of g and 2. It names the number that g assigns to 2.
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Figure B.1: A snippet from a typical
middle school algebra textbook (Brown
et al., 2000, page 379), introducing
standard mathematical function
application notation.

Some time in your primary education, perhaps in middle school,

you were taught this standard mathematical notation for applying a

function to one or more arguments. In Figure B.1, a snapshot from

a middle school algebra textbook shows where this notation is first

taught: “We could also use functional notation: P (n) = 5n − 500,

which is read ‘P of n equals 5n −500.’” In this notation, functions can

take one or more arguments, notated by placing the arguments in

parentheses and separated by commas following the function name.

This notation is so familiar that it’s hard to imagine that someone had

to invent it. But someone did. In fact, it was the 18th century Swiss

mathematician Leonhard Euler (Figure B.2) who in 1734 first used

this notation (Figure B.3). Since then, it has become universal. At this

point, the notation is so familiar that it is impossible to see f (1,2,3)

without immediately interpreting it as the application of the function f

to arguments 1, 2, and 3.

Figure B.2: Leonhard Euler (1707–1783)
invented the familiar parenthesized
notation for function application.

It is thus perhaps surprising that OCaml doesn’t use this notation

for function application. Instead, it follows the notational convention

proposed by the Princeton mathematician and logician Alonzo Church

in his so-called lambda calculus (Section B.1.4), a logic of functions. In

the lambda calculus, functions and their application are so central (in-

deed, there’s basically nothing else in the logic) that the addition of the

parentheses in the function application notation is too onerous. In-

stead, Church proposed merely prefixing the function to its argument.

Instead of f (1), Church’s notation would have f 1. Instead of f (g (1)),

f (g 1).

B.1.3 Alternative mathematical notations for functions and

their application

Despite the ubiquity of Euler’s notation, mathematicians use a variety

of different notations for functions and their application.

http://bit.ly/1MBOT85
http://bit.ly/1MBOT85


M AT H E M AT I C A L B AC KG RO U N D A N D N OTAT I O N S 391

Figure B.3: The first known instance of
the now standard function application
notation, in a 1734 paper by Leonhard
Euler. Note the f

( x
a + c

)
. The function is

even named f !

Certainly, mathematics uses different conventions for denoting

operations than any given programming language. In the second fact

equation, for instance, a center dot · is used for multiplication instead

of the * more common in programming languages. In other cases,

simple juxtaposition is used for multiplication, as in 3x2 where the jux-

taposition of the 3 and the x2 indicates that they are to be multiplied.

The details of these notations are often left unspecified in mathemat-

ical writing, reflecting the reality that mathematics is written to be

read by people, people with sufficient common knowledge with the

author to know the background assumptions or to figure them out

from context. We don’t have such a privilege with computers, so nota-

tions are typically more carefully explicated in programming language

documentation.

The kind of thing that the argument must be (what computer sci-

entists would call its “type”) is often left implicit in mathematical

notation. In the factorial example, we didn’t state explicitly that the

argument of factorial must be a nonnegative integer, yet the definition

is only appropriate for that case. Negative integers are not provided

a well-founded definition for instance, nor are noninteger numbers.

Again, the omission of these requirements is based on an assumption

of shared context with the reader. So as not to have to make that as-

sumption, computer programs that implement function definitions

make use of type constraints (whether explicit or inferred) or invariant

assertions or (as a last resort) documentation to capture these assump-

tions.

The entire set of equations defines a single function, so that in

converting definitions of this sort to code, they will typically end up in

a single function definition. The individual equations correspond to

different cases, which will likely be manifest by conditionals or case

statements (such as OCaml match expressions).

Of course, the more standard notation for the factorial function is a
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( f (x)+ g (x))′ = f ′(x)+ g ′(x)

( f (x)− g (x))′ = f ′(x)− g ′(x)

( f (x) · g (x))′ = f ′(x) · g (x)+ f (x) · g ′(x)(
f (x)

g (x)

)′
= ( f ′(x) · g (x)− f (x) · g ′(x))

g (x)2

(sin f (x))′ = f ′(x) ·cos f (x)

(cos f (x))′ = f ′(x) ·~sin f (x)

(ln f (x))′ = f ′(x)

f (x)

( f (x)h)′ = h · f ′(x) · f (x)h−1

where h contains no variables

( f (x)g (x))′ = f (x)g (x) ·
(

g ′(x) · ln f (x)+ f ′(x) · g (x)

f (x)

)
(n)′ = 0 where n is any constant

(x)′ = 1

Figure B.4: Rules for taking deriva-
tives for a variety of expression types.
(Reproduced from Figure ??.)

postfix exclamation mark (!):

0! = 1

n! = n · (n −1)! for n > 0

The point is that the Euler notation is not the only one that can be or is

used for function application. Here are some more examples:

• Frequently, superscripts are used to denote function application,

for instance, as in Figure ?? (reproduced here as Figure B.4), where a

superscript prime symbol specifies the derivative function.

• Newton’s notation for derivatives, for example, d
d x x3, provides yet

another example of a nonstandard notation for a function appli-

cation. Here, the function being applied is again the derivative

function, this time as depicted by the compound notation d
d x , its

argument the expression x3.1 1 For the notation cognoscenti, what’s
really going on in this notation is that
the d

d x is both a binding construct,
binding the x as the argument to an
anonymous function that is (in Church’s
lambda calculus notation) λx.x3 and a
function application of the derivative
function.

• In Chapter 13, a specific notation is used to express the substitution

function, a function over a variable (x) and two expressions (P

and Q) that returns the expression P with all free occurrences of x

replaced by Q. That function is not notated by the Euler notation
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(say, subst(x,P ,Q)) but rather with a special notation employing

brackets and arrows P [x 7→ Q]. Nonetheless, it’s still just a function

applied to some arguments.

The notational profligacy of mathematics – especially having many

different notations for functions – hides a lot of commonality shared

among mathematical processes. Don’t be confused; despite all the

notations, they’re all just functions.

B.1.4 The lambda notation for functions

Part of the notation for defining functions equationally involves giving

them a name. For instance, the A B S O LU T E VA LU E function can be

defined equationally as

abs(n) =
√

n2

One of the contributions of Church’s lambda calculus is a notation

for defining functions directly, without bestowing a name. In fact, the

expression on the right hand side of the equation,
p

n2, almost serves

this purpose already, by specifying the function from n to
p

n2. There

are two problems in using bare expressions like
p

n2 to specify func-

tions. First, how is the reader to know that the expression is intended

to specify a function rather than a number ? That is, how are we to real-

ize that the use of n is meant generically, and not as standing for some

particular number? Second, if the expression makes use of multiple

variables, how is the reader supposed to determine which variable

represents the input to the function? In the case of
p

n2, there is only

one option, since the expression makes use of only one variable. But

for other expressions, like m ·n2, it is unclear if the input is intended to

be m or n.

Church introduced his lambda notation to solve these problems.

He prefixes the expression with a Greek lambda (λ), followed by the

variable that is serving as the input to the function, followed by a

period. Table B.1 provides some examples.

The lambda notation for specifying anonymous functions will be

familiar to OCaml programmers; it appears in OCaml as well, though

under a different concrete syntax. The keyword fun plays the role of λ

and the operator -> plays the role of the period. In fact, the ability to

define anonymous functions, so central to functional programming

languages, is inherited directly from the lambda notation that gives its

name to Church’s calculus.

As shown in Table B.1, each of the examples above could be

rephrased in OCaml. You may recognize the last of these as an example

of a curried function (Section 6.2).
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λn.
p

n2 The function from n to
p

n2, that is, the absolute

value function, or, in OCaml:

fun n -> sqrt(n *. n)

λn.(m ·n2) the function from n to m · n2, so that m is implicitly

being viewed as a constant:

fun n -> m *. (n *. n)

λm.(m ·n2) the function from m to m · n2, so that n is implicitly

being viewed as a constant:

fun m -> m *. (n *. n)

λm.λn.(m ·n2) the function from m to a function from n to m ·n2:

fun m -> fun n -> m *. (n *. n)

Table B.1: A few functions in lambda
notation, with their English glosses and
their approximate OCaml equivalents.

When there’s a need for specifying mathematical functions directly,

unnamed, we will take advantage of Church’s lambda notation, espe-

cially in Chapter 14.

B.2 Summation

In Section 14.5.2, we make use of the following identity for calculating

the sum of all integers from 1 to n

n∑
i=1

i = n · (n +1)

2

which was graphically demonstrated to hold in Figure 14.6. Here we

provide a more traditional algebraic proof.

Define the sum in question to be S:

S =
n∑

i=1
i

We can think of this sum as adding all the values from 1 to n, or con-

versely, all the numbers from n to 1, that is all the values of (n − i +1):

S =
n∑

i=1
(n − i +1)

Adding these two together,

2S =
n∑

i=1
i +

n∑
i=1

(n − i +1)

but the two sums can be brought together as a single sum and simpli-

fied:

2S =
n∑

i=1
(i + (n − i +1))

=
n∑

i=1
(n +1)
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Now we’re just summing up n instances of n +1, that is, multiplying n

and n +1:

2S = n · (n +1)

so that

S = n · (n +1)

2

For Gauss’s problem, where n is 100, he presumably calculated
100·101

2 = 5050.

B.3 Logic

The logic of propositions, boolean logic, underlies the bool type. In-

formally, propositions are conceptual objects that can be either true or

false. Propositions can be combined or transformed with various oper-

ations. The C O N J U N C T I O N of two propositions p and q is true just in

case both p and q are true, and false otherwise. The D I S J U N C T I O N is

true just in case either p or q (or both) are true. The N E G AT I O N of p is

true just in case p is not true (that is, p is false). Conjunction, disjunc-

tion, and negation thus correspond roughly to the English words “and”,

“or”, and “not”, respectively, and for that reason, we sometimes speak

of the “and” of two boolean values, or their “or”. (See Figure B.5.)

p q p and q p or q not p

true true true true false

true false false true false

false true false true true

false false false false true

Figure B.5: The three boolean operators
defined.

There are other operations on boolean values considered in logic –

for instance, the conditional, glossed by “if . . . then . . . ”; or the exclusive

“or” – but these three are sufficient for our purposes. For more back-

ground on propositional logic, see Chapter 9 of the text by Lewis and

Zax (2019).

B.4 Geometry

The S L O P E of a line between two points x1, y1 and x2, y2 is the ratio

of their vertical difference and their horizontal difference, y2−y1
x2−x1

. (See

Figure B.7.)

right angle

B

AC

a

b

c

hypotenuse

Figure B.6: A right triangle. Angle C is a
right angle. The opposite side, of length
c, is the hypotenuse. By Pythagorus’s
theorem, a2 +b2 = c2.

A R I G H T T R I A N G L E is a triangle one of whose edges is a right (90◦)

angle. (See Figure B.7.) The side opposite the right angle is called the

H Y P OT E N U S E. P Y T H AG O RU S ’ S T H E O R E M holds that the sum of the

squares of the adjacent sides’ lengths is the square of the length of the

hypotenuse.

(x1, y1)

(x2, y2)

x2 � x1

y2 � y1

�
(x2 � x1)2 + (y2 � y1)2

Figure B.7: Two points, given by a pair
of their x (horizontal) and y (vertical)
coordinates. The slope of the line
between them is

y2−y1
x2−x1

. The distance
between them, as per the Pythagorean

theorem, is
√

(x2 −x1)2 + (y2 − y1)2.

Pythagorus’s theorem can be used to determine the D I S TA N C E

between two points specified with Cartesian (x-y) coordinates. As

depicted in Figure B.7, by Pythagorus’s theorem, we can square the

differences in each dimension, sum the squares, and take the square

root.
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The ratio of the circumference of a circle and its diameter is (non-

trivially, and perhaps surprisingly) a constant, conventionally called π

(read, “pi”), and approximately 3.1416. This constant is also the ratio

of the area of a circle to the area of a square whose side is the circle’s

radius. Thus, using the nomenclature of Figure B.8, c = πd = 2πr and

A =πr 2.

r

dA

c

o

Figure B.8: Geometry of the circle at
origin o of radius r , diameter d = 2r ,
circumference c, and area A.

The area of a rectangle is the product of its width w and height h,

that is, A = wh. The area of a triangle (Figure B.9) is half the area of its

circumscribing rectangle, that is, 1
2 wh. Alternatively, if we know the

lengths of its three sides (a, b, and c), but not its width and height, we

can use H E RO N ’ S F O R M U L A, which makes use of the S E M I P E R I M E T E R

s of the triangle, a length that is half of its perimeter: s = 1
2 (a +b + c).

The area is then

A =
√

s · (s −a) · (s −b) · (s − c)

Figure B.9: A triangle and a circum-
scribing rectangle, with labeled edge
lengths.

B.5 Sets

A set is a collection of distinct (physical or mathematical) objects.

An E X T E N S I O N A L set definition (given by an explicit list of its mem-

bers) is notated by listing the elements in braces separated by commas,

as, for instance, {1,2,3,4}. Obviously, this notation only works for finite

sets, although infinite sets can be informally indicated with ellipses (as

{1,2,3, . . .}) in cases where the rule for filling in the remaining elements

is sufficiently obvious to the reader.

An I N T E N S I O N A L set definition (given by describing all members

of the set rather than listing them) is notated by placing in braces a

schematic element of the set, followed by a vertical bar, followed by a

description of the range of any variables in the schema. For instance,

the set of all even numbers might be { x | x mod 2 = 0}, read “the set of

all x such that x is evenly divisible by 2.” Similarly, the set of all squares

of prime numbers would be { x2 | x is prime}. (Note the combination

of mathematical notation and natural language, a typical instance of

“code switching” in mathematical writing.)

The E M P T Y S E T, notated ∅ or {}, is the set containing no members.

Certain standard operations on sets are notated with infix operators:

Union: s ∪ t is the U N I O N of sets s and t , that is, the set containing all

the elements that are in either of the two sets;

Intersection: s ∩ t is the I N T E R S E C T I O N, containing just the elements

that are in both of the sets;

Difference: s − t is the set D I F F E R E N C E, all elements in s except for

those in t ; and

https://en.wikipedia.org/wiki/Code-switching
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Membership: x ∈ s specifies M E M B E R S H I P, stating that x is a member

of the set s.

By way of example, the following are all true statements, expressed in

this notation:

{1,2,3}∪ {3,4} = {1,2,3,4}

{1,2,3}∩ {3,4} = {3}

{1,2,3}− {3,4} = {1,2}

3 ∈ {1,2,3}

3 ̸∈ {2,4,6}

Note the use of a slash through a symbol to indicate its N E G AT I O N:

̸∈ for ‘is not a member of’.

B.6 Equality and identity

There are different notions of I D E N T I T Y used in mathematical no-

tation. The = symbol typically connotes two values being the same

“semantically”. The ≡ symbol connotes a stronger notion of syntactic

identity, so that x ≡ y means that x and y are (that is, represent) the

same syntactic entity (variable say) rather than that they have the same

value (in whatever context that might be appropriate). For instance,

consider these equations found in the definition of substitution:

x[x 7→ P ] = P

y[x 7→ P ] = y where x ̸≡ y

Recall that P [x 7→ Q] specifies the expression P with all free occur-

rences of x replaced by the expression Q (with care taken not to

capture any free occurrences of x in Q). Here x and y are variables

(metavariables) ranging over expressions that may themselves be

(object-level) variables. The notation x ̸≡ y indicates that the variable

y that constitutes the expression being substituted into is a different

variable from the variable x that is being substituted for.





C

A style guide

This guide provides some simple rules of good programming style,

both general and OCaml-specific, developed for the Harvard course

CS51. The rules presented here tend to follow from a small set of un-

derlying principles.1 1 This style guide is reworked from a
long line of style guides for courses at
Princeton, University of Pennsylvania,
and Cornell, including Cornell CS
312, U Penn CIS 500 and CIS 120, and
Princeton COS 326. All this shows the
great power of recursion. (Also, the
joke about recursion was stolen from
COS 326. (Also, the joke about the joke
about recursion was stolen from Greg
Morrisett. I think. See the Preface.))

Consistency Similar decisions should be made within similar contexts.

Brevity “Everything should be made as simple as possible, but no

simpler.” (attr. Albert Einstein)

Clarity Code should be chosen so as to communicate clearly to the

human reader.

Transparency Appearance should summarize and reflect structure.

Like all rules, those below are not to be followed slavishly. Rather, they

should be seen as instances of these underlying principles. These

principles may sometimes be in conflict, in which case judgement is

required in finding the best way to write the code. This is one of the

many ways in which programming is an art, not (just) a science.

This guide is not complete. For more recommendations, from the

OCaml developers themselves, see the official OCaml guidelines.

Figure C.1: Yes, coding style is impor-
tant.

https://url.cs51.io/zhl
https://url.cs51.io/zhl
https://url.cs51.io/8yx
https://url.cs51.io/h19
https://url.cs51.io/8o4
https://url.cs51.io/iwa
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C.1 Formatting

Formatting concerns the layout of the text of a program on the screen

or page, such issues as vertical alignments and indentation, line

breaks, and whitespace. To allow for repeatable formatting, code is

typically presented with a fixed-width font in which all characters

including spaces take up the same horizontal pitch.

C.1.1 No tab characters

You may feel inclined to use tab characters (A S C I I 0x09) to align text.

Do not do so; use spaces instead. The width of a tab is not uniform

across all renderings, and what looks good on your machine may look

terrible on another’s, especially if you have mixed spaces and tabs.

Some text editors map the tab key to a sequence of spaces rather than

a tab character; in this case, it’s fine to use the tab key.

C.1.2 80 column limit

No line of code should extend beyond 80 characters long. Using more

than 80 columns typically causes your code to wrap around to the next

line, which is devastating to readability.

C.1.3 No needless blank lines

The obvious way to stay within the 80 character limit imposed by the

rule above is to press the enter key every once in a while. However,

blank lines should only be used at major logical breaks in a program,

for instance, between value declarations, especially between function

declarations. Often it is not necessary to have blank lines between

other declarations unless you are separating the different types of

declarations (such as modules, types, exceptions, and values). Unless

function declarations within a let block are long, there should be no

blank lines within a let block. There should absolutely never be a

blank line within an expression.

C.1.4 Use parentheses sparely

Parentheses have many purposes in OCaml, including constructing

tuples, specifying the unit value, grouping sequences of side-effect

expressions, forcing higher precedence on an expression for parsing,

and grouping structures for functor arguments. Clearly, parentheses

must be used with care, as they force the reader to disambiguate the

intended purpose of the parentheses, making code more difficult to

https://url.cs51.io/0mr
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understand. You should therefore only use parentheses when neces-

sary or when doing so improves readability.

✗ let x = function1 (arg1) (arg2) (function2 (arg3)) (arg4)

✓ let x = function1 arg1 arg2 (function2 arg3) arg4

On the other hand, it is often useful to add parentheses to help

indentation algorithms, as in this example:

✗ let x = "Long line ..."

^ "Another long line..."

✓ let x = ("Long line ..."

^ "Another long line...")

Similarly, wrapping match expressions in parentheses helps avoid a

common (and confusing) error that you get when you have a nested

match expression. (See Section 10.3.2 for an example.)

Parentheses should never appear on a line by themselves, nor

should they be the first visible character; parentheses do not serve

the same purpose as brackets do in C or Java.

C.1.5 Delimiting code used for side effects

Imperative programs will often have sequences of expressions to be

evaluated primarily for side effect rather than value. When delimiting

the scope of such sequences, use begin 〈〉 end rather than parentheses,

for instance,

✗ if condition then

(do this;

do that;

do the other)

else

(do something else entirely;

do this too);

do in any case

✓ if condition then begin

do this;

do that;

do the other

end else begin

do something else entirely;

do this too

end;

do in any case
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C.1.6 Spacing for operators and delimiters

Infix operators (arithmetic operators like + and *, the typing operator

:, type forming operators like * and ->, etc.) should be surrounded by

spaces. Delimiters (like the list item delimiter ; and the tuple element

delimiter ,) are followed but not preceded by a space.

✓ let f (x : int) : int * int = 3 * x - 1, 3 * x + 1 ;;

✗ let f (x: int): int*int = 3* x-1, 3* x+1 ;;

Judgement can be applied to vary from these rules for clarity’s sake,

for instance, when emphasizing precedence.

✓ let f (x : int) : int * int = 3*x - 1, 3*x + 1 ;;

When expressions with operators get overly long, it may be desir-

able to add line breaks. Such line breaks should tend to be placed just

before, rather than just after, operators, so as to highlight the operator

at the beginning of the next line.

✓ let price = base * (100 + tax_pct) / 100 ;;

✗ let price = base *
(100 + tax_pct) /

100 ;;

✓ let price = base

* (100 + tax_pct)

/ 100 ;;

It’s better to place breaks at operators higher in the abstract syntax tree,

to emphasize the structure.

✗ let price = base * (100

+ tax_pct) / 100 ;;

In the case of delimiters, however, line breaks should occur after the

delimiter.

✗ let r = { product = "Dynamite"

; company = "Acme"

; price = base * (100 + tax_pct) / 100} ;;

✓ let r = {product = "Dynamite";

company = "Acme";

price = base * (100 + tax_pct) / 100} ;;

Of course, keep in mind that understanding of the code might be

enhanced by restructuring the code and naming partial results:

✓ let tax = base * tax_pct / 100 ;;

let price = base + tax ;;
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C.1.7 Indentation

Indentation should be used to encode the block structure of the code

as described in the following sections. It is typical to indent by two xor

four spaces. Choose one system for indentation, and be consistent

throughout your code.

Indenting if expressions Indent if expressions using one of the

following methods, depending on the sizes of the expressions. For very

short then and else branches, a single line may be sufficient.

✓
if exp1 then veryshortexp2 else veryshortexp3

When the branches are too long for a single line, move the else onto its

own line.

✓
if exp1 then exp2

else exp3

This style lends itself nicely to nested conditionals.

✓
if exp1 then shortexp2

else if exp3 then shortexp4

else if exp5 then shortexp6

else exp8

For very long then or else branches, the branch expression can be

indented and use multiple lines.

✓
if exp1 then

longexp2

else shortexp3

✓
if exp1 then

longexp2

else

longexp3

Some use an alternative conditional layout, with the then and else

keywords starting their own lines.

✗
if exp1

then exp2

else exp3

This approach is less attractive for nested conditionals and long

branches, though for unnested cases it can be acceptable.

https://url.cs51.io/w7v
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Indenting let expressions Indent the body of a let expression the

same as the let keyword itself.

✓ let x = definition in

code_that_uses_x

This is an exception to the rule of further indenting subexpression

blocks to manifest the nesting structure.

✗ let x = definition in

code_that_uses_x

The intention is that let definitions be thought of like mathematical

assumptions that are listed before their use, leading to the following

attractive indentation for multiple definitions:

let x = x_definition in

let y = y_definition in

let z = z_definition in

block_that_uses_all_the_defined_notions

Indenting match expressions Indent match expressions so that the

patterns are aligned with the match keyword, always including the

initial (optional) |, as follows:

match expr with

| first_pattern -> ...

| second_pattern -> ...

Some disfavor aligning the arrows in a match, arguing that it makes

the code harder to maintain. However, where there is strong paral-

lelism among the patterns, this alignment (and others) can make the

parallelism easier to see, and hence the code easier to understand. Use

your judgement.

C.2 Documentation

C.2.1 Comments before code

Comments go above the code they reference. Consider the following:

✗ let sum = List.fold_left (+) 0

(* Sums a list of integers. *)

✓ (* Sums a list of integers. *)

let sum = List.fold_left (+) 0

The latter is the better style, although you may find some source code

that uses the first. Comments should be indented to the level of the

line of code that follows the comment.

https://url.cs51.io/iwa
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C.2.2 Comment length should match abstraction level

Long comments, usually focused on overall structure and function

for a program, tend to appear at the top of a file. In that type of com-

ment, you should explain the overall design of the code and reference

any sources that have more information about the algorithms or data

structures. Comments can document the design and structure of a

class at some length. For individual functions or methods, comments

should state the invariants, the non-obvious, or any references that

have more information about the code. Avoid comments that merely

restate the code they reference or state the obvious. All other com-

ments in the file should be as short as possible; after all, brevity is the

soul of wit. Rarely should you need to comment within a function;

expressive variable naming should be enough.

C.2.3 Multi-line commenting

There are several styles for demarcating multi-line comments in

OCaml. Some use this style:

(* This is one of those rare but long comments

* that need to span multiple lines because

* the code is unusually complex and requires

* extra explanation. *)

let complicated_function () = ...

arguing that the aligned asterisks demarcate the comment well when

it is viewed without syntax highlighting. Others find this style heavy-

handed and hard to maintain without good code editor support (for

instance, emacs Tuareg mode doesn’t support it well), leading to this

alternative:

(* This is one of those rare but long comments

that need to span multiple lines because

the code is unusually complex and requires

extra explanation.

*)

let complicated_function () = ...

Whichever you use, be consistent.

C.3 Naming and declarations

C.3.1 Naming conventions

Table C.1 provides the naming convention rules that are followed by

OCaml libraries. You should follow them too. Some of these naming

conventions are enforced by the compiler; these are shown in boldface

below. For example, it is not possible to have the name of a variable

start with an uppercase letter.

https://url.cs51.io/xe1
https://url.cs51.io/xe1
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Token Convention Example

Variables and functions Symbolic or initial lower case. Use

underscores for multiword names.

get_item

Constructors Initial upper case. Use embedded caps

for multiword names. Historical

exceptions are true and false.

Node, EmptyQueue

Types All lower case. Use underscores for

multiword names.

priority_queue

Module Types Initial upper case. Use embedded caps

for multiword names, or (as we do

here) use all uppercase with

underscores.

PriorityQueue or PRIORITY_QUEUE

Modules Initial upper case. Use embedded caps

for multiword names.

PriorityQueue

Functors Initial upper case. Use embedded caps

for multiword names.

PriorityQueue

Table C.1: Naming conventions

C.3.2 Use meaningful names

Variable names should describe what the variables are for, in the form

of a word or sequence of words. Proper naming of a variable can be the

best form of documentation, obviating the need for any further doc-

umentation. By convention (Table C.1) the words in a variable name

are separated by underscores (multi_word_name), not (ironically)

distinguished by camel case (multiWordName).

✓ let local_date = Unix.localtime (Unix.time ()) ;;

let total_cost = quantity * price_each ;;

✗ let d = Unix.localtime (Unix.time ()) ;;

let c = n * at ;;

The length of a variable name is roughly correlated with how long a

reader of the code will have to remember its use. In short let blocks,

one letter variable names can sometimes be appropriate. The defini-

tion

fun the_optional_number -> the_optional_number <> None

is not better than

fun x -> x <> None

(Of course, this function can be specified even more compactly as (<>)

None.)

Often it is the case that a function used in a fold, filter, or map is

named f. Here is an example with appropriate variable names:
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let local_date = Unix.localtime (Unix.time ()) in

let minutes = date.Unix.tm_min in

let seconds = date.Unix.tm_min in

let f n = (n mod 3) = 0 in

List.filter f [minutes; seconds]

Take advantage of the fact that OCaml allows the prime character ’

in variable names. Use it to make clear related functions:

let reverse (lst : 'a list) =

let rec reverse' remaining accum =

match remaining with

| [] -> accum

| hd :: tl -> reverse' tl (hd :: accum) in

reverse' lst [] ;;

C.3.3 Constants and magic numbers

M AG I C N U M B E R S are explicit values sprinkled in code that are used

without explanation, as 1.0625 in the following code:

✗ let total_cost = (quantity *. price_each) *. 1.0625 ;;

Magic numbers are inscrutable, a nightmare for readers of the code.

Instead, give those constants an expressive name. If these defined con-

stants are global, we use the naming convention of using a variable in

all uppercase letters except for an initial lowercase ‘c’ (for “constant”).

✓ let cTAX_RATE = .0625 ;;

(* ... some time later ... *)

let total_cost = (quantity *. price_each) *. (1. +. cTAX_RATE)

;;

Not only is this more explanatory – we understand that the final mul-

tiplication is to account for taxes – it allows for a single point of code

change if the tax rate changes.

C.3.4 Function declarations and type annotations

Top-level functions and values should be declared with explicit type

annotations to allow the compiler to verify the programmer’s inten-

tions. Use spaces around :, as with all operators.

✗ let succ x = x + 1

✓ let succ (x : int) : int = x + 1

When a function being declared has multiple arguments with compli-

cated types, so that the declaration doesn’t fit nicely on one line,

✗ let rec zip3 (x : 'a list) (y : 'b list) (z : 'c list) : ('a * 'b *
'c) list option =

...
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one of the following indentation conventions can be used:

✓ let rec zip3 (x : 'a list)

(y : 'b list)

(z : 'c list)

: ('a * 'b * 'c) list option =

...

✓ let rec zip3

(x : 'a list)

(y : 'b list)

(z : 'c list)

: ('a * 'b * 'c) list option =

...

C.3.5 Avoid global mutable variables

Mutable values, on the rare occasion that they are necessary at all,

should be local to functions and almost never declared as a structure’s

value. Making a mutable value global causes many problems. First,

an algorithm that mutates the value cannot be ensured that the value

is consistent with the algorithm, as it might be modified outside the

function or by a previous execution of the algorithm. Second, having

global mutable values makes it more likely that your code is nonreen-

trant. Without proper knowledge of the ramifications, declaring global

mutable values can easily lead not only to bad design but also to incor-

rect code.

C.3.6 When to rename variables

You should rarely need to rename values: in fact, this is a sure way to

obfuscate code. Renaming a value should be backed up with a very

good reason. One instance where renaming a variable is both common

and reasonable is aliasing modules. In these cases, other modules used

by functions within the current module are aliased to one or two letter

variables at the top of the struct block. This serves two purposes: it

shortens the name of the module and it documents the modules you

use. Here is an example:

module H = Hashtbl

module L = List

module A = Array

...

C.3.7 Order of declarations in a module

When declaring elements in a file (or nested module) you first alias

the modules you intend to use, then declare the types, then define

exceptions, and finally list all the value declarations for the module.
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Separating each of these sections with a blank line is good practice

unless the whole is quite short. Here is an example:

module L = List

type foo = int

exception InternalError

let first list = L.nth list 0

Every declaration within the module should be indented the same

amount.

C.4 Pattern matching

C.4.1 No incomplete pattern matches

Incomplete pattern matches are flagged with compiler warnings,

and you should avoid them. In fact, it’s best if your code generates no

warnings at all. Even if you “know” that a certain match case can never

occur, it’s better to record that knowledge by adding the match case

with an action that raises an appropriate error.

C.4.2 Pattern match in the function arguments when possible

Tuples, records, and algebraic datatypes can be deconstructed using

pattern matching. If you simply deconstruct a function argument

before you do anything else substantive, it is better to pattern match in

the function argument itself. Consider these examples:

✗ let f arg1 arg2 =

let x = fst arg1 in

let y = snd arg1 in

let z = fst arg2 in

...

✓ let f (x, y) (z, _) =

...

✗ let f arg1 =

let x = arg1.foo in

let y = arg1.bar in

let baz = arg1.baz in

...

✓ let f {foo = x; bar = y; baz} =

...

See also the discussion of extraneous match expressions in let

definitions in Section C.4.4.
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C.4.3 Pattern match with as few match expressions as necessary

Rather than nesting match expressions, you can sometimes combine

them by pattern matching against a tuple. Of course, this doesn’t

work if one of the nested match expressions matches against a value

obtained from a branch in another match expression. Nevertheless, if

all the values are independent of each other you should combine the

values in a tuple and match against that. Here is an example:

✗ let d = Date.fromTimeLocal (Unix.time ()) in

match Date.month d with

| Date.Jan -> (match Date.day d with

| 1 -> print "Happy New Year"

| _ -> ())

| Date.Mar -> (match Date.day d with

| 14 -> print "Happy Pi Day"

| _ -> ())

| Date.Oct -> (match Date.day d with

| 10 -> print "Happy Metric Day"

| _ -> ())

✓ let d = Date.fromTimeLocal (Unix.time ()) in

match Date.month d, Date.day d with

| Date.Jan, 1 -> print "Happy New Year"

| Date.Mar, 14 -> print "Happy Pi Day"

| Date.Oct, 10 -> print "Happy Metric Day"

| _ -> ()

(This example also provides a case where aligning arrows improves

clarity by emulating a table.)

C.4.4 Misusing match expressions

The match expression is misused in two common situations. First,

match should never be used with single atomic values in place of an if

expression. (That’s why if exists.) For instance,

✗ match e with

| true -> x

| false -> y

✓ if e then x else y

and

✗ match e with

| c -> x (* c is a constant value *)

| _ -> y

✓ if e = c then x else y
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(Using a match to match against several atomic values may, however,

be preferable to nested conditionals.)

Second, a separate match expression should not be used when

an enclosing expression (like a let, fun, function) allows pattern-

matching itself:

✗ let x = match expr with

| y, z -> y in

...

✓ let x, _ = expr in

...

C.4.5 Avoid using too many projection functions

Frequently projecting a value from a record or tuple causes your code

to become unreadable. This is especially a problem with tuple projec-

tion because the value is not documented by a mnemonic name. To

prevent projections, you should use pattern matching with a function

argument or a value declaration. Of course, using projections is okay as

long as use is infrequent and the meaning is clearly understood from

the context.

✗ let v = some_function () in

let x = fst v in

let y = snd v in

x + y

✓ let x, y = some_function () in

x + y

Don’t use List.hd or List.tl at all The functions hd and tl are used

to deconstruct list types; however, they raise exceptions on certain

arguments. You should never use these functions. In the case that you

find it absolutely necessary to use these (something that probably

won’t ever happen), you should explicitly handle any exceptions that

can be raised by these functions.

C.5 Verbosity

C.5.1 Reuse code where possible

The OCaml standard library has a great number of functions and

data structures. Unless told otherwise, use them! Become familiar

with the contents of the Stdlib module. Often students will recode

List.filter, List.map, and similar functions. A more subtle situa-

tion for recoding is all the fold functions. Functions that recursively

walk down lists should make vigorous use of List.fold_left or

https://url.cs51.io/jya
https://url.cs51.io/3wq
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List.fold_right. Other data structures often have a fold function;

use them whenever they are available. (In some exercises, we will ask

you to implement some constructs yourself rather than relying on a

library function. In such cases, we’ll specify that using library functions

is not allowed.)

C.5.2 Do not abuse if expressions

Remember that the type of the condition in an if expression is bool.

There is no reason to compare boolean values against boolean literals.

✗ if e = true then x else y

✓ if e then x else y

In general, the type of an if expression can be any ’a, but in the

case that the type is bool, you should probably not be using if at all.

Consider the following:

✗ ✓

if e then true else false e

if e then false else true not e

if e then e else false e

if x then true else y x || y

if x then y else false x && y

if x then false else y not x && y

Also problematic is overly complex conditions such as extraneous

negation.

✗ if not e then x else y

✓ if e then y else x

The exception here is if the expression y is very long and complex, in

which case it may be more readable to have it placed at the end of the

if expression.

C.5.3 Don’t rewrap functions

Don’t fall for the misconception that functions passed as arguments

have to start with fun or function, which leads to the extraneous

rewrapping of functions like this:

✗ List.map (fun x -> sqrt x) [1.0; 4.0; 9.0; 16.0]

Instead, just pass the function directly.
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✓ List.map sqrt [1.0; 4.0; 9.0; 16.0]

You can even do this when the function is an infix binary operator,

though you’ll need to place the operator in parentheses.

✗ List.fold_left (fun x y -> x + y) 0

✓ List.fold_left (+) 0

C.5.4 Avoid computing values twice

When computing values more than once, you may be wasting CPU

time (a design consideration) and making your program less clear (a

style consideration) and harder to maintain (a consideration of both

design and style). The best way to avoid computing things twice is to

create a let expression and bind the computed value to a variable

name. This has the added benefit of letting you document the purpose

of the value with a well-chosen variable name, which means less com-

menting. On the other hand, not every computed sub-value needs to

be let-bound.

✗ f (calc_score (if cond then val1 else val2))

(calc_score (if cond then val1 else val2))

✓ let score = calc_score (if cond then val1 else val2) in

f score score

C.6 Other common infelicities

Here is a compilation of some other common infelicities to watch out

for:

✗ ✓

x :: [] [x]

length + 0 length

length * 1 length

big_expression * big_expression let x = big_expression in x * x

if x then f a b c1 else f a b c2 f a b (if x then c1 else c2)

String.compare x y = 0 x = y

String.compare x y < 0 x < y

String.compare y x < 0 x > y
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Solutions to selected exercises

Solution to Exercise 3 〈nounphrase〉

〈noun〉

party

〈nounphrase〉

〈nounphrase〉

〈noun〉

tea

〈adjective〉

mad

Solution to Exercise 4 There are three structures given the rules pro-

vided, corresponding to eaters of flying purple people, flying eaters of

purple people, and flying purple eaters of people.

Solution to Exercise 6

1. +

6~-

4

2. ~-

+

64
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3. +

6/

~-

4

20

4. *

+

43

5

5. *

5+

34

6. *

5+

0+

43

Solution to Exercise 7 Among the concrete expressions of the abstract

syntax trees are these, though others are possible.

1. ~- (1 + 42)

2. 84 / (0 + 42)

3. 84 + 0 / 42 or 84 + (0 / 42)

Solution to Exercise 8 The value of the golden ratio is about 1.618.

Here’s the calculation using OCaml’s R E P L.

# (1. +. sqrt 5.) /. 2. ;;

- : float = 1.6180339887498949

Note the consistent use of floating point literals and operators, without

which you’d get errors like this:

# (1. + sqrt 5.) /. 2. ;;

Line 1, characters 1-3:
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1 | (1. + sqrt 5.) /. 2. ;;

^^

Error: This expression has type float but an expression was

expected of type

int

Solution to Exercise 9 The fourth and seventh might have struck you

as unusual.

Why does 3.1416 = 314.16 /. 100. turn out to be false? Float-

ing point arithmetic isn’t exact, so that the division 314.16 /. 100.

yields a value that is extremely close to, but not exactly, 3.1416, as

demonstrated here:

# 314.16 /. 100. ;;

- : float = 3.14160000000000039

Why is false less than true? It turns out that all values of a type are

ordered in this way. The decision to order false as less than true was

arbitrary. Universalizing orderings of values within a type allows for the

ordering operators to be polymorphic, which is quite useful, although

it does lead to these arbitrary decisions.

Solution to Exercise 10 Only the third of these typings holds, as shown

by the R E P L.

1. # (3 + 5 : float) ;;

Line 1, characters 1-6:

1 | (3 + 5 : float) ;;

^^^^^

Error: This expression has type int but an expression was expected

of type

float

2. # (3. + 5. : float) ;;

Line 1, characters 1-3:

1 | (3. + 5. : float) ;;

^^

Error: This expression has type float but an expression was

expected of type

int

3. # (3. +. 5. : float) ;;

- : float = 8.

4. # (3 : bool) ;;

Line 1, characters 1-2:

1 | (3 : bool) ;;

^

Error: This expression has type int but an expression was expected

of type

bool
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5. # (3 || 5 : bool) ;;

Line 1, characters 1-2:

1 | (3 || 5 : bool) ;;

^

Error: This expression has type int but an expression was expected

of type

bool

6. # (3 || 5 : int) ;;

Line 1, characters 1-2:

1 | (3 || 5 : int) ;;

^

Error: This expression has type int but an expression was expected

of type

bool

Solution to Exercise 11 Since the unit type has only one value, there

is only one such typing:

() : unit

Solution to Exercise 12 The types of succ, string_of_int, and not

are respectively int -> int, int -> string, and bool -> bool. You

can verify the typings at the R E P L.

# succ ;;

- : int -> int = <fun>

# string_of_int ;;

- : int -> string = <fun>

# not ;;

- : bool -> bool = <fun>

Solution to Exercise 13 No good comes of applying a function of type

float -> float to an argument of type bool.

# sqrt true ;;

Line 1, characters 5-9:

1 | sqrt true ;;

^^^^

Error: This expression has type bool but an expression was expected

of type

float

Solution to Exercise 14 As it turns out, the let construct itself has

low precedence so that the body of the let extends as far as it can.

Evaluating the expression without the parentheses demonstrates this,

as otherwise it would have generated an unbound variable error for the

second radius.

# 3.1416 *. let radius = 2.

# in radius *. radius ;;

- : float = 12.5664
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Nonetheless, the parentheses arguably improve readability, and they

can help autoindenters that implement a less nuanced view of OCaml

syntax.

Solution to Exercise 15 The most direct approach uses two let bind-

ing for the two sides:

# let side1 = 1.88496 in

# let side2 = 2.51328 in

# sqrt (side1 *. side1 +. side2 *. side2) ;;

- : float = 3.1416

However, by taking advantages of pattern-matching over pairs, which

will be introduced later in Section 7.2, a single let that binds both

variables using pattern matching is arguably more elegant:

# let side1, side2 = 1.88496, 2.51328 in

# sqrt (side1 *. side1 +. side2 *. side2) ;;

- : float = 3.1416

Solution to Exercise 16 Simply dropping the parentheses solves the

problem, since let has relatively low precedence, as described in

Exercise 14.

# let s = "hi ho " in

# s ^ s ^ s ;;

- : string = "hi ho hi ho hi ho "

Solution to Exercise 17 As shown in the solution to Exercise 16, the

R E P L infers the type string for s.

Solution to Exercise 18

1. let x = 3 in

let y = 4 in

y * y ;;

2. let x = 3 in

let y = x + 2 in

y * y ;;

3. let x = 3 in

let y = 4 + (let z = 5 in z) + x in

y * y ;;

Solution to Exercise 19 The value for price at the end is 5. Surprise!

# let tax_rate = 0.05 ;;

val tax_rate : float = 0.05

# let price = 5. ;;

val price : float = 5.

# let price = price * (1. +. tax_rate) ;;

Line 1, characters 12-17:
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1 | let price = price * (1. +. tax_rate) ;;

^^^^^

Error: This expression has type float but an expression was

expected of type

int

# price ;;

- : float = 5.

What was probably intended was

# let tax_rate = 0.05 ;;

val tax_rate : float = 0.05

# let price = 5. ;;

val price : float = 5.

# let price = price *. (1. +. tax_rate) ;;

val price : float = 5.25

# price ;;

- : float = 5.25

with a final value of price of 5.25. Thank goodness for strong static

typing, so that the R E P L was able to warn us of the error, rather than,

for instance, silently rounding the result or some such problematic

“correction” of the code.

Solution to Exercise 20 You can get the effect of this definition of

a global variable area by making use of local variables for pi and

radius by making sure to define the local variables within the global

definition:

# let area =

# let radius = 4. in

# let pi = 3.1416 in

# pi *. radius ** 2. ;;

val area : float = 50.2656

This way, the global let is at the top level.

Solution to Exercise 21

1. 2 : int

2. 2 : int

3. This sequence of tokens doesn’t parse, as - is a binary infix opera-

tor.

4. "OCaml" : string

5. "OCaml" : string

6. The expression evaluates to a function (unnamed) of type string

-> string.
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7. Again, the expression evaluates to a function of type float ->

float -> float (the exponentiation function).

Solution to Exercise 22 A function that squares its floating point

argument is

# fun x -> x *. x ;;

- : float -> float = <fun>

and one to repeat a string is

# fun s -> s ^ s ;;

- : string -> string = <fun>

Solution to Exercise 23

1. let foo (b : bool) (n : int) : bool = ...

2. let foo (f : float -> int) (x : float) : bool = ...

3. let foo (b : bool) (f : int -> bool) : int = ...

Solution to Exercise 24 Typing them into the R E P L reveals their types,

string and float -> float, respectively.

1. # let greet y = "Hello" ^ y in greet "World!" ;;

- : string = "HelloWorld!"

2. # fun x -> let exp = 3. in x ** exp ;;

- : float -> float = <fun>

Solution to Exercise 25

# let square (x : float) : float =

# x *. x ;;

val square : float -> float = <fun>

Solution to Exercise 26

# let abs (n : int) : int =

# if n > 0 then n else ~- n ;;

val abs : int -> int = <fun>

Solution to Exercise 27 The type for string_of_bool is bool ->

string. It can be defined as

# let string_of_bool (condition : bool) : string =

# if condition then "true" else "false" ;;

val string_of_bool : bool -> string = <fun>

A common stylistic mistake (discussed in Section C.5.2) is to write the

test as if condition = true then..., but there’s no need for the

comparison. What goes in the test part of a conditional is a boolean,

and condition is already one.
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Solution to Exercise 28 Using the compact notation:

# let even (n : int) : bool =

# n mod 2 = 0 ;;

val even : int -> bool = <fun>

(Did you try

# let even (n : int) : bool =

# if n mod 2 = 0 then true else false ;;

val even : int -> bool = <fun>

instead? That works, but the conditional is actually redundant. Re-

member, boolean expressions aren’t limited to use in the test part of

conditionals. Such extraneous conditionals are considered poor style.)

Using the explicit, desugared notation:

# let even : int -> bool =

# fun n -> n mod 2 = 0 ;;

val even : int -> bool = <fun>

Dropping the typing information, the R E P L still infers the correct

type.

# let even =

# fun n -> n mod 2 = 0 ;;

val even : int -> bool = <fun>

Nonetheless, the edict of intention argues for retaining the explicit

typing information.

Solution to Exercise 32 There are many possibilities. Here are some I

find especially nice.

1. let rec odd_terminate (n : int) : int =

if n < 0 then odd_terminate (~- n)

else if n = 1 then 0

else odd_terminate (n - 2) ;;

2. let rec small_terminate (n : int) : int =

if n = 5 then 0

else small_terminate (n + 1) ;;

3. let rec zero_terminate (n : int) : int =

if n = 0 then 0

else zero_terminate (n * 2) ;;

4. let rec true_terminate (b : bool) : bool =

b || (true_terminate b) ;;

Solution to Exercise 33 The most straightforward recursive solution is

simply
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# let rec fib (i : int) : int =

# if i = 1 then 0

# else if i = 2 then 1

# else fib (i - 1) + fib (i - 2) ;;

val fib : int -> int = <fun>

Foreshadowing the discussion of error handling in Chapter 10, the

following definition verifies an assumption on the argument, before

calculating the number recursively.

# let rec fib (i : int) : int =

# assert (i >= 1);

# if i = 1 then 0

# else if i = 2 then 1

# else fib (i - 1) + fib (i - 2) ;;

val fib : int -> int = <fun>

As an alternative for the three way condition, a match statement might

be clearer:

# let rec fib (i : int) : int =

# match i with

# | 1 -> 0

# | 2 -> 1

# | _ -> assert (i >= 1);

# fib (i - 1) + fib (i - 2) ;;

val fib : int -> int = <fun>

Solution to Exercise 34

# let fewer_divisors (n : int) (bound : int) : bool =

# let rec divisors_from (start : int) : int =

# if start > n / 2 then 1

# else divisors_from (start + 1)

# + (if n mod start = 0 then 1 else 0) in

# bound > divisors_from 1 ;;

val fewer_divisors : int -> int -> bool = <fun>

Solution to Exercise 35

1. bool * int

2. bool * bool

3. int * int

4. float * int

5. float * int

6. int * int

7. (int -> int) * (int -> int)

Solution to Exercise 36
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# true, true ;;

- : bool * bool = (true, true)

# true, 42, 3.14 ;;

- : bool * int * float = (true, 42, 3.14)

# (true, 42), 3.14 ;;

- : (bool * int) * float = ((true, 42), 3.14)

# (1, 2), 3, 4 ;;

- : (int * int) * int * int = ((1, 2), 3, 4)

# succ, 0, 42 ;;

- : (int -> int) * int * int = (<fun>, 0, 42)

# fun (f, n) -> 1 + f (1 + n) ;;

- : (int -> int) * int -> int = <fun>

Solution to Exercise 37

# let div_mod (x : int) (y : int) : int * int =

# x / y, x mod y ;;

val div_mod : int -> int -> int * int = <fun>

Solution to Exercise 39

# let snd (pair : int * int) : int =

# match pair with

# | _x, y -> y ;;

val snd : int * int -> int = <fun>

Solution to Exercise 40

# let addpair (x, y : int * int) : int =

# x + y ;;

val addpair : int * int -> int = <fun>

# let fst (x, _y : int * int) : int = x ;;

val fst : int * int -> int = <fun>

Solution to Exercise 42 Only expressions 1, 3, 6, and 7 are well-

formed, as revealed by the R E P L.

1. # 3 :: [] ;;

- : int list = [3]

2. # true :: false ;;

Line 1, characters 8-13:

1 | true :: false ;;

^^^^^

Error: This variant expression is expected to have type bool list

There is no constructor false within type list

3. # true :: [false] ;;

- : bool list = [true; false]

4. # [true] :: [false] ;;

Line 1, characters 11-16:

1 | [true] :: [false] ;;

^^^^^

Error: This variant expression is expected to have type bool list

There is no constructor false within type list
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5. # [1; 2; 3.1416] ;;

Line 1, characters 7-13:

1 | [1; 2; 3.1416] ;;

^^^^^^

Error: This expression has type float but an expression was

expected of type

int

6. # [4; 2; -1; 1_000_000] ;;

- : int list = [4; 2; -1; 1000000]

7. # ([true], false) ;;

- : bool list * bool = ([true], false)

Solution to Exercise 43 The length function is of type int list ->

int; it expects an int list argument. However, we’ve applied it to

an argument of type int list list, that is, a list of integer lists. The

types are inconsistent, and OCaml reports the type mismatch.

Solution to Exercise 44

# let rec sum (lst : int list) : int =

# match lst with

# | [] -> 0

# | hd :: tl -> hd + sum tl ;;

val sum : int list -> int = <fun>

It’s natural to return the additive identity 0 for the empty list to simplify

the recursion.

This function can also be implemented using the techniques of

Chapter 8 as a single fold.

Solution to Exercise 45

# let rec prod (lst : int list) : int =

# match lst with

# | [] -> 1

# | hd :: tl -> hd * prod tl ;;

val prod : int list -> int = <fun>

It’s natural to return the multiplicative identity 1 for the empty list to

simplify the recursion.

This function can also be implemented using the techniques of

Chapter 8 as a single fold.

Solution to Exercise 46

# let rec sums (lst : (int * int) list) : int list =

# match lst with

# | [] -> []

# | (x, y) :: tl -> (x + y) :: sums tl ;;

val sums : (int * int) list -> int list = <fun>
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Solution to Exercise 47

# let rec inc_all lst =

# match lst with

# | [] -> []

# | hd :: tl -> (succ hd) :: inc_all tl ;;

val inc_all : int list -> int list = <fun>

Solution to Exercise 48

# let rec square_all lst =

# match lst with

# | [] -> []

# | hd :: tl -> (hd * hd) :: square_all tl ;;

val square_all : int list -> int list = <fun>

Solution to Exercise 49

# let rec append (x : int list) (y : int list)

# : int list =

# match x with

# | [] -> y

# | hd :: tl -> hd :: (append tl y) ;;

val append : int list -> int list -> int list = <fun>

Solution to Exercise 50

# let rec concat (sep : string) (lst : string list)

# : string =

# match lst with

# | [] -> ""

# | [hd] -> hd

# | hd :: tl -> hd ^ sep ^ (concat sep tl) ;;

val concat : string -> string list -> string = <fun>

Solution to Exercise 51

# let tesseract = power 4 ;;

val tesseract : int -> int = <fun>

If your definition was longer, you’ll want to review the partial applica-

tion discussion.

Solution to Exercise 52

# let double_all = map (( * ) 2) ;;

val double_all : int list -> int list = <fun>

Solution to Exercise 53

# let rec fold_left (f : int -> int -> int)

# (init : int)

# (xs : int list)

# : int =

# match xs with

# | [] -> init

# | hd :: tl -> fold_left f (f init hd) tl ;;

val fold_left : (int -> int -> int) -> int -> int list -> int =

<fun>
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Solution to Exercise 54 The definition analogous to the one using

fold_right is

# let length lst = fold_left (fun tlval _hd -> 1 + tlval) 0 lst

# ;;

val length : int list -> int = <fun>

but again this can be further simplified by partial application:

# let length = fold_left (fun tlval _hd -> 1 + tlval) 0 ;;

val length : int list -> int = <fun>

Solution to Exercise 55 A simple solution is to use fold_left itself to

implement reduce:

# let reduce (f : int -> int -> int) (list : int list) : int =

# match list with

# | hd :: tl -> List.fold_left f hd tl ;;

Lines 2-3, characters 0-36:

2 | match list with

3 | | hd :: tl -> List.fold_left f hd tl...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

[]

val reduce : (int -> int -> int) -> int list -> int = <fun>

This approach has the disadvantage that applying reduce to the empty

list yields an unintuitive “Match failure” error message. Looking ahead

to Section 10.3 on handling such errors explicitly, we can raise a more

appropriate exception, the Invalid_argument exception.

# let reduce (f : int -> int -> int) (list : int list) : int =

# match list with

# | hd :: tl -> List.fold_left f hd tl

# | [] -> raise (Invalid_argument "reduce: empty list") ;;

val reduce : (int -> int -> int) -> int list -> int = <fun>

Solution to Exercise 56 The filter function can be implemented

directly as a recursive function by extracting the common elements of

the four example functions (evens, odds, positives, and negatives)

and abstracting over their differences:

# let rec filter (test : int -> bool)

# (lst : int list)

# : int list =

# match lst with

# | [] -> []

# | hd :: tl -> if test hd then hd :: filter test tl

# else filter test tl ;;

val filter : (int -> bool) -> int list -> int list = <fun>

Looking ahead to the next chapter, it can also be implemented using

polymorphic fold_right (from the List module):
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# let filter (test : int -> bool)

# : int list -> int list =

# List.fold_right (fun elt accum ->

# if test elt then elt :: accum

# else accum)

# [] ;;

val filter : (int -> bool) -> int list -> int list = <fun>

(You may want to revisit this latter solution after reading Chapter 9.)

Solution to Exercise 57 A first stab, maximizing partial application:

# let evens = filter (fun n -> n mod 2 = 0) ;;

val evens : int list -> int list = <fun>

# let odds = filter (fun n -> n mod 2 <> 0) ;;

val odds : int list -> int list = <fun>

# let positives = filter ((<) 0) ;;

val positives : int list -> int list = <fun>

# let negatives = filter ((>) 0) ;;

val negatives : int list -> int list = <fun>

The last two may be a bit confusing: Why ((<) 0) for the positives?

Don’t we want to accept only those that are greater than 0? The < func-

tion is curried with its left-side argument before its right-side argu-

ment, so that the function ((<) 0) is equivalent to fun x -> 0 < x,

that is, the function that returns true for positive integers. Nonethe-

less, the expression ((<) 0) doesn’t “read” that way, which is a good

argument for not being so cute and using instead the slightly more

verbose but transparent

# let positives = filter (fun n -> n > 0) ;;

val positives : int list -> int list = <fun>

# let negatives = filter (fun n -> n < 0) ;;

val negatives : int list -> int list = <fun>

Clarity trumps brevity.

Solution to Exercise 58 A list can be reversed by repeatedly append-

ing elements at the end of the accumulating reversal. A fold_right

implements this solution.

# let reverse (lst : int list) : int list =

# List.fold_right (fun elt accum -> accum @ [elt])

# lst [] ;;

val reverse : int list -> int list = <fun>

Alternatively, we can start at the left.

# let reverse (lst : int list) : int list =

# List.fold_left (fun accum elt -> elt :: accum)

# [] lst ;;

val reverse : int list -> int list = <fun>

Taking advantage of partial application, we have
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# let reverse : int list -> int list =

# List.fold_left (fun accum elt -> elt :: accum)

# [] ;;

val reverse : int list -> int list = <fun>

# reverse [1; 2; 3] ;;

- : int list = [3; 2; 1]

Solution to Exercise 59 We want to repeatedly “cons” the elements of

the first list onto the second. A fold_right will work for this purpose.

But there’s a subtlety here. The :: to combine an element and a list is

a value constructor, not a function. As such, it can’t be passed as an

argument. We can construct a function that does the same thing, for

instance, fun elt lst -> elt :: lst, but conveniently, the List

module already provides such a function, naturally named cons, which

we use here.

# let append (xs : int list) (ys : int list) : int list =

# List.fold_right List.cons xs ys ;;

val append : int list -> int list -> int list = <fun>

Solution to Exercise 60

# let rec odds_evens (lst : 'a list) : 'a list * 'a list =

# match lst with

# | [] -> [], []

# | [a] -> [a], []

# | odds_head :: evens_head :: tail ->

# let odds_tail, evens_tail = odds_evens tail in

# (odds_head :: odds_tail), (evens_head :: evens_tail) ;;

val odds_evens : 'a list -> 'a list * 'a list = <fun>

Solution to Exercise 61 The odds_evens function is typed as odds_-

evens : ’a list -> (’a list * ’a list). Note the polymorphic

type.

Solution to Exercise 62 Taking advantage of partial application:

# let sum =

# List.fold_left (+) 0 ;;

val sum : int list -> int = <fun>

Solution to Exercise 63

# let luhn (nums : int list) : int =

# let odds, evens = odds_evens nums in

# let s = sum ((List.map doublemod9 odds) @ evens) in

# 10 - (s mod 10) ;;

val luhn : int list -> int = <fun>

Solution to Exercise 64 Here are some possible solutions, with com-

mentary on how to think through the problems.
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1. You were asked to construct an expression that bears a particular

type as inferred by OCaml. The constraint that there be “no explicit

typing annotations” was intended to prevent trivial solutions such

as this:

# let (f : bool * bool -> bool) =

# fun _ -> true in

# f ;;

- : bool * bool -> bool = <fun>

or even

# ((fun _ -> failwith "") : bool * bool -> bool) ;;

- : bool * bool -> bool = <fun>

where the explicit type annotation does the work. The structure of

the code does little (respectively, nothing) to manifest the requested

type.

A simple solution relies on the insight that the required type is just

the uncurried version of the type for the (&&) operator.

# let f (x, y) =

# x && y in

# f ;;

- : bool * bool -> bool = <fun>

A typical approach to this problem is to use a top-level let defini-

tion of a function, such as this:

# let f (x, y) = x && y ;;

val f : bool * bool -> bool = <fun>

Strictly speaking, this is not an expression of OCaml that returns a

value, but rather a top-level command that names a value, though

the value is of the appropriate type. The value itself can be con-

structed as a self-contained expression either by using a local

let...in (as above) or an anonymous function:

# fun (x, y) -> x && y ;;

- : bool * bool -> bool = <fun>

2. In these problems that ask for a function of a given type, it makes

sense to start by building the first line of a let definition of the func-

tion with its arguments: let f x = ... and then figure out how

to force x and the result to be of the right types. Here, x should be

an ’a list, so we better not operate nontrivially on any of its el-

ements. Let’s match against the list as would typically happen in a

recursive function. This provides the skeleton of the code:
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let f xs =

match xs with

| [] -> ...

| h :: t -> ... in

f ;;

Now, we need to make sure the result type is bool list, taking care

not to further instantiate ’a. We can insert any values of the right

type as return values, but to continue the verisimilitude, we use the

empty list for the first case and a recursive call for the second. (Note

the added rec to allow the recursive call.)

# let rec f xs =

# match xs with

# | [] -> []

# | _h :: t -> true :: (f t) in

# f ;;

- : 'a list -> bool list = <fun>

Of course, no recursion is really necessary. For instance, even some-

thing as simple as the following does the job (ignoring the inexhaus-

tive match warning).

# fun [] -> [true] ;;

Line 1, characters 0-16:

1 | fun [] -> [true] ;;

^^^^^^^^^^^^^^^^

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:
_::_

- : 'a list -> bool list = <fun>

3. A natural approach is to apply the first argument (a function) to a

pair composed of the second and third arguments, thereby enforc-

ing that the first argument is of type ’a * ’b -> ..., viz.,

# let f g a b =

# g (a, b) in

# f ;;

- : ('a * 'b -> 'c) -> 'a -> 'b -> 'c = <fun>

but this by itself does not guarantee that the result type of the func-

tion is ’a. Rather, f types as (’a * ’b -> ’c) -> ’a -> ’b ->

’c. (It’s the curry function from lab!) We can fix that by, say, com-

paring the result with a known value of the right type, namely a.

# let f g a b =

# if g (a, b) = a then a else a in

# f ;;

- : ('a * 'b -> 'a) -> 'a -> 'b -> 'a = <fun>



432 P RO G R A M M I N G W E L L

4. Again, we start with a let definition that just lays out the types of

the arguments in a pattern, and then make sure that each compo-

nent has the right type. One of many possibilities is

# let f (i, a, b) alst =

# if i = 0 && (List.hd alst) = a then [b] else []

# in f ;;

- : int * 'a * 'b -> 'a list -> 'b list = <fun>

5. We force the argument to be a bool by placing it in the test part of a

conditional, and return the only value that we can.

# fun b -> if b then () else () ;;

- : bool -> unit = <fun>

6. We want to construct a polymorphic, higher-order function that

takes arguments of type ’a and ’a -> ’b; let’s call this function

f. Notice that the argument of type ’a -> ’b is also a function;

let’s call this argument function g. Conveniently, the input to the

argument function g is of the same type as the first input to the

higher-order function f, that is, of type ’a. Analogously, the output

of the argument function g is of the same type as the output of the

higher-order function f, that is, of type ’b. We can thus simply

apply g to the first argument of f and return the result:

# let f x g = g x ;;

val f : 'a -> ('a -> 'b) -> 'b = <fun>

The function f is the reverse application function!

# ( |> ) ;;

- : 'a -> ('a -> 'b) -> 'b = <fun>

7. This question is deceptively simple. The trick here is that the func-

tion is polymorphic in both its inputs and outputs, yet the argu-

ments and return type may be different. In fact, we circumvent this

issue by simply not returning a value at all. There are two ways to

approach this:

(a) Raise an exception (to be introduced in Section 10.3) instead of

returning:

# let f x y =

# if x = y then failwith "true" else failwith "false" ;;

val f : 'a -> 'a -> 'b = <fun>

(b) Recur indefinitely to prevent a return:

# let rec f x y =

# if x = y then f x y else f x y ;;

val f : 'a -> 'a -> 'b = <fun>

or even more elegantly:
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# let rec f x y = f y x ;;

val f : 'a -> 'a -> 'b = <fun>

Solution to Exercise 65 All that needs to be changed from the

monomorphic version in the preceding chapter is the typing infor-

mation in the header. The definition itself naturally works polymorphi-

cally.

# let rec fold (f : 'a -> 'b -> 'b)

# (xs : 'a list)

# (init : 'b)

# : 'b =

# match xs with

# | [] -> init

# | hd :: tl -> f hd (fold f tl init) ;;

val fold : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

# let rec filter (test : 'a -> bool)

# (lst : 'a list)

# : 'a list =

# match lst with

# | [] -> []

# | hd :: tl -> if test hd then hd :: filter test tl

# else filter test tl ;;

val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

Solution to Exercise 66

1. Since x is an argument of a float operator, it is of type float. The

result is also of type float. Thus f is of function type float ->

float, as can be easily verified in the R E P L:

# let f x =

# x +. 42. ;;

val f : float -> float = <fun>

2. The function f is clearly of a function type taking two (curried)

arguments, that is, of type ... -> ... -> .... The argument g is

also a function, apparently from integers to some result type ’a, so f

is of type (int -> ’a) -> int -> ’a.

# let f g x =

# g (x + 1) ;;

val f : (int -> 'a) -> int -> 'a = <fun>

3. The argument type for f, that is, the type of x, must be a list, say, ’a

list. The result type can be gleaned from the two possible return

values x and h. Since h is an element of x, it must be of type ’a.

Thus the return type is both ’a and ’a list. But there is no type

that matches both. Thus, the expression does not type.
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# let f x =

# match x with

# | [] -> x

# | h :: t -> h ;;

Line 4, characters 12-13:

4 | | h :: t -> h ;;

^

Error: This expression has type 'a but an expression was expected

of type

'a list

The type variable 'a occurs inside 'a list

4. The result type for f must be the same as the type of a since it re-

turns a in one of the match branches. Since x is matched as a list, it

must be of list type. So far, then, we have f of type ... list -> ’a

-> ’a. The elements of x (such as h) are apparently functions, as

shown in the second match branch where h is applied to something

of type ’a and returning also an ’a; so h is of type’a -> ’a. The

final typing is f : (’a -> ’a) list -> ’a -> ’a.

# let rec f x a =

# match x with

# | [] -> a

# | h :: t -> h (f t a) ;;

val f : ('a -> 'a) list -> 'a -> 'a = <fun>

5. The match tells us that the first argument x is a pair, whose element

w is used as a bool; we’ll take the type of the element z to be ’a. The

second argument y is applied to z (of type ’a) and returns a bool

(since the then and else branches of the conditional tell us that y z

and w are of the same type). Thus the type of f is given by the typing

f : bool * ’a -> (’a -> bool) -> bool.

let f x y =

match x with

| (w, z) -> if w then y z else w ;;

6. We can see that we apply y to x twice. There’s nothing else in this

function that would indicate a specific typing, so we know our

function is polymorphic. Let’s say the type of y is ’a. We know that

since we can apply x to two arguments of type ’a, and there are no

constraints on the output type of x, x must be of type ’a -> ’a ->

’b. Since f returns x y y, we know the output type of f must be the

same as the output type of x. The final typing is thus f : (’a ->

’a -> ’b) -> ’a -> ’b.

# let f x y =

# x y y ;;

val f : ('a -> 'a -> 'b) -> 'a -> 'b = <fun>
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7. This definition does not type. The argument y is here applied as a

function, so its type must be of the form ’a -> ’b. Yet the function

y can take y as an argument. This implies that ’a, the type of the in-

put to y, must be identical to ’a -> ’b, the type of y itself. There is

no finite type satisfying that constraint. A type cannot be a subpart

of itself.

# let f x y =

# x (y y) ;;

Line 2, characters 5-6:

2 | x (y y) ;;

^

Error: This expression has type 'a -> 'b

but an expression was expected of type 'a

The type variable 'a occurs inside 'a -> 'b

8. The code matches x with option types formed with Some or None, so

we know that x must be of type ’a option for some ’a. We also see

that when deconstructing x into Some y, we perform subtraction

on y in the recursive function call: f (Some (y - 1)). We can thus

conclude y is of type int, and can further specify x to be of type

int option. Finally, note that the case None | Some 0 -> None

is the sole terminal case in this recursive function. Because this

case returns None, we know that if f terminates, f returns None. Our

function f therefore outputs a value of type ’a option. We cannot

infer a more specific type for ’a because we always return None and

thus have no constraints on ’a. The final typing is thus as follows: f

: int option -> ’a option.

# let rec f x =

# match x with

# | None

# | Some 0 -> None

# | Some y -> f (Some (y - 1)) ;;

val f : int option -> 'a option = <fun>

9. Since x is in the condition of an if statement (if x then ...), we

know that x must be of type bool. We also can see that both return

paths of the code return a list; these lists contain x, so we know f

returns a bool list. Since y appears in the list [not x; y], we

therefore know y must be of type bool as well. This gives us the

overall typing of f : bool -> bool -> bool list.

# let f x y =

# if x then [x]

# else [not x; y] ;;

val f : bool -> bool -> bool list = <fun>

Solution to Exercise 67 To implement map f lst with a fold, we can

start with the empty list and at each step cons on f applied to each
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element of the lst. Here are two solutions, implemented using fold_-

left and fold_right, respectively.

let map (f : 'a -> 'b) (lst : 'a list) : 'b list =

List.fold_right (fun elt accum -> f elt :: accum)

lst [] ;;

let map (f : 'a -> 'b) (lst : 'a list) : 'b list =

List.fold_left (fun accum elt -> accum @ [f elt])

[] lst ;;

The latter can be simplified through use of partial application to

let map (f : 'a -> 'b) : 'a list -> 'b list =

List.fold_left (fun accum elt -> accum @ [f elt]) [] ;;

Solution to Exercise 68 An implementation of fold_right solely in

terms of a single call to map over the same list is not possible. The type

of fold_right makes clear that the output may be of any type. But map

always returns a list. So a single call to map cannot generate the range

of answers that fold_right can.

One can use map in an implementation of fold_right in a trivial

way, for instance, by vacuously mapping the identity function over

the list argument of fold_right before doing the real work, but that

misses the point of the question, which asks that the implementation

use only a call to List.map.

Solution to Exercise 69 We approach this problem similarly to how we

implemented filter. The distinction here is that the base case returns

two empty lists rather than one, so we have to deconstruct the tuple

created by the recursive function call. This results in two output lists –

the yeses and the nos – so we simply pass the current element into the

test function and append to the appropriate output list according to

the result.

# let rec partition (test : 'a -> bool)

# (lst : 'a list)

# : 'a list * 'a list =

# match lst with

# | [] -> [], []

# | hd :: tl ->

# let yeses, nos = partition test tl in

# if test hd then hd :: yeses, nos

# else yeses, hd :: nos ;;

val partition : ('a -> bool) -> 'a list -> 'a list * 'a list =

<fun>

Solution to Exercise 70

# let rec interleave (n : 'a) (lst : 'a list)

# : 'a list list =



S O LU T I O N S TO S E L E C T E D E X E RC I S E S 437

# match lst with

# | [] -> [[n]]

# | x :: xs -> (n :: x :: xs)

# :: List.map (fun l -> x :: l)

# (interleave n xs) ;;

val interleave : 'a -> 'a list -> 'a list list = <fun>

# let rec permutations (lst : 'a list) : 'a list list =

# match lst with

# | [] -> [[]]

# | x :: xs -> List.concat (List.map (interleave x)

# (permutations xs)) ;;

val permutations : 'a list -> 'a list list = <fun>

Solution to Exercise 71 We start by providing implementations for sum

and prods making use of the higher-order polymorphic list processing

functions of the List module.

# let sum = List.fold_left (+) 0 ;;

val sum : int list -> int = <fun>

# let prods = List.map (fun (x, y) -> x * y) ;;

val prods : (int * int) list -> int list = <fun>

The composition function @+ is simply

# let (@+) f g x = f (g x) ;;

val ( @+ ) : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

We can use it to implement the weighted_sum function and test it out:

# let weighted_sum = sum @+ prods ;;

val weighted_sum : (int * int) list -> int = <fun>

# weighted_sum [(1, 3); (2, 4); (3, 5)] ;;

- : int = 26

Solution to Exercise 72 The R E P L response in the solution to Exer-

cise 71 reveals the polymorphic type of compose as (’a -> ’b) ->

(’c -> ’a) -> ’c ->’b, or equivalently but more intuitively, (’b ->

’c) -> (’a -> ’b) -> (’a -> ’c).

Solution to Exercise 73 The typings are hd : ’a list -> ’a and tl

: ’a list -> ’a list, as attested by the R E P L:

# List.hd ;;

- : 'a list -> 'a = <fun>

# List.tl ;;

- : 'a list -> 'a list = <fun>

Solution to Exercise 74 That design decision undoubtedly was based

on thinking ahead about partial application.

By placing the list argument first, partial application can be used to

generate a function that returns the n-th element of a particular list,

for example
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# let pi_digit = List.nth [3;1;4;1;5;9] ;;

val pi_digit : int -> int = <fun>

# pi_digit 0 ;;

- : int = 3

# pi_digit 2 ;;

- : int = 4

Solution to Exercise 75 We can first check for the additional anoma-

lous condition.

# let rec nth_opt (lst : 'a list) (n : int) : 'a option =

# if n < 0 then None

# else

# match lst with

# | [] -> None

# | hd :: tl ->

# if n = 0 then Some hd

# else nth_opt tl (n - 1) ;;

val nth_opt : 'a list -> int -> 'a option = <fun>

Alternatively, the check could have been done inside the second match

statement. Why might this be the dispreferred choice?

Solution to Exercise 76

# let rec last_opt (lst : 'a list) : 'a option =

# match lst with

# | [] -> None

# | [elt] -> Some elt

# | _ :: tl -> last_opt tl ;;

val last_opt : 'a list -> 'a option = <fun>

Solution to Exercise 77 Here’s a solution that peforms all list calcula-

tions directly, making no use of the List library. Can you simplify this

using the List library?

# let variance (lst : float list) : float option =

# let rec sum_length (lst : float list) : float * int =

# match lst with

# | [] -> 0., 0

# | hd :: tl -> let sum, len = sum_length tl in

# hd +. sum, 1 + len in

# let sum, length = sum_length lst in

# if length < 2

# then None

# else let flength = float length in

# let mean = sum /. flength in

# let rec residuals (lst : float list) : float =

# match lst with

# | [] -> 0.

# | hd :: tl -> (hd -. mean) ** 2.

# +. residuals tl in

# Some (residuals lst /. (flength -. 1.)) ;;

val variance : float list -> float option = <fun>
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Solution to Exercise 79 If the first two patterns are [], [] and _, _,

the third branch of the match can never be reached. The R E P L gives an

appropriate warning to that effect:

# let rec zip_opt' (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list option =

# match xs, ys with

# | [], [] -> Some []

# | _, _ -> None

# | xhd :: xtl, yhd :: ytl ->

# match zip_opt' xtl ytl with

# | None -> None

# | Some ztl -> Some ((xhd, yhd) :: ztl) ;;

Line 7, characters 2-24:

7 | | xhd :: xtl, yhd :: ytl ->

^^^^^^^^^^^^^^^^^^^^^^

Warning 11 [redundant-case]: this match case is unused.

val zip_opt' : 'a list -> 'b list -> ('a * 'b) list option = <fun>

Solution to Exercise 80 The function can be implemented as:

# let zip_safe (x : 'a list)

# (y : 'b list)

# : ('a * 'b) list =

# try

# zip x y

# with

# Invalid_argument _msg -> [] ;;

val zip_safe : 'a list -> 'b list -> ('a * 'b) list = <fun>

However, this approach to handling anomalous conditions in zip uses

in-band error signaling, which we’d always want to avoid; the error

value also happens to be the value returned by the non-error call zip

[] [].

Solution to Exercise 81

# let rec fact (n : int) : int =

# if n < 0 then

# raise (Invalid_argument "fact: arg less than zero")

# else if n = 0 then 1

# else n * fact (n - 1) ;;

val fact : int -> int = <fun>

Solution to Exercise 83

1. # let f x y =

# Some (x + y) ;;

val f : int -> int -> int option = <fun>

2. # let f g =

# Some (1 + g 3) ;;

val f : (int -> int) -> int option = <fun>
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3. # let f x g = g x ;;

val f : 'a -> ('a -> 'b) -> 'b = <fun>

or

# let f = ( |> ) ;;

val f : 'a -> ('a -> 'b) -> 'b = <fun>

4. # let rec f xl yl =

# match xl, yl with

# | (Some xhd :: xtl), (Some yhd :: ytl)

# -> (xhd, yhd) :: f xtl ytl

# | (None :: _), _

# | _, (None :: _)

# | [], _

# | _, [] -> [] ;;

val f : 'a option List.t -> 'b option List.t -> ('a * 'b) List.t =

<fun>

Solution to Exercise 84

1. No type exists for f. Assume that the type of f is some instantiation

of the function type ’a -> ’b. Since the first match clause returns

f, the result type ’b of f must be the entire type ’a -> ’b of f itself.

But a type can’t contain itself as a subpart. So no type for f exists.

2. The type of f is bool -> bool * bool. In fact, f always returns the

same value, the pair true, true.

Solution to Exercise 85 Taking advantage of the fact that f always

returns the same value:

let f (b : bool) = true, true ;;

Note that the explicit typing of b is required to force the function type

to be bool -> bool * bool instead of ’a -> bool * bool.

Solution to Exercise 87 The R E P L provides the answer:

# ( |> ) ;;

- : 'a -> ('a -> 'b) -> 'b = <fun>

Solution to Exercise 88

# let ( |> ) arg func = func arg ;;

val ( |> ) : 'a -> ('a -> 'b) -> 'b = <fun>

Making the types explicit:

# let ( |> ) (arg : 'a) (func : 'a -> 'b) : 'b =

# func arg ;;

val ( |> ) : 'a -> ('a -> 'b) -> 'b = <fun>

Solution to Exercise 89 There are only six card types, so one might be

inclined to just have an enumerated type with six constructors:
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type card =

| KSpades

| QSpades

| JSpades

| KDiamonds

| QDiamonds

| JDiamonds ;;

The inelegance of this approach should be clear.

The crucial point here is that the information be kept in a structured

form (as specified in the problem), clearly keeping separate informa-

tion about the suit and the value of a card. This calls for enumerated

types for suits and values.

The type for cards can integrate a suit and a value, either by pairing

them or putting them into a record. Here, we take the latter approach.

type suit = Spades | Diamonds ;;

type cardval = King | Queen | Jack ;;

type card = {suit : suit; cardval : cardval} ;;

Note that the field names and type names can be identical, since they

are in different namespaces.

Using ints for the suits and card values, for instance,

type card = {suit : int; cardval : int} ;;

is inferior as the convention for mapping between int and card suit

or value is obscure. At best it could be made clear in documentation,

but the enumerated type makes it clear in the constructors themselves.

Further, the int approach allows ints that don’t participate in the

mapping, and thus doesn’t let the language help with catching errors.

We have carefully ordered the constructors from better to worse

and ordered the record components from higher to lower order so that

comparisons on the data values will accord with the “better” relation,

as seen in the solution to Problem 91.

Solution to Exercise 90 The better function is supposed to take two

cards and return a truth value, so if the arguments are taken curried,

then

better : card -> card -> bool

Alternatively, but less idiomatically, the function could be uncurried:

better : card * card -> bool

Solution to Exercise 91 The following oh-so-clever approach works

if you carefully order the constructors and fields from best to worst

and higher order (suit) before lower order (cardval), as is done in the

solution to Problem 89.
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let better (card1 : card) (card2 : card) : bool =

card1 < card2 ;;

This relies on the fact that the < operator has a kind of ad hoc poly-

morphism, which works on enumerated and variant types, pairs, and

records inductively to define an ordering on values of those types.

Relying on this property of variant types behooves you to explicitly

document the fact at the type definition so it gets preserved.

To not rely on the ad hoc polymorphism of <, we need a more ex-

plicit definition like this:

let better ({suit = suit1; cardval = cardval1} : card)

({suit = suit2; cardval = cardval2} : card)

: bool =

let to_int v = match v with

| King -> 3

| Queen -> 2

| Jack -> 1 in

if suit1 = suit2 then

(to_int cardval1) > (to_int cardval2)

else suit1 = Spades ;;

though this is hacky since it doesn’t generalize well to adding more

suits. Of course, a separate map of suits to an int value would solve

that problem. Many other approaches are possible.

Solution to Exercise 94

# let str_bintree =

# Node ("red",

# Node ("orange",

# Node ("green",

# Node ("blue", Empty, Empty),

# Node ("indigo", Empty, Empty)),

# Empty),

# Node ("yellow",

# Node ("violet", Empty, Empty),

# Empty)) ;;

val str_bintree : string bintree =

Node ("red",

Node ("orange",

Node ("green", Node ("blue", Empty, Empty),

Node ("indigo", Empty, Empty)),

Empty),

Node ("yellow", Node ("violet", Empty, Empty), Empty))

Solution to Exercise 95

# let rec preorder (t : 'a bintree) : 'a list =

# match t with

# | Empty -> []

# | Node (n, left, right) ->

# n :: preorder left @ preorder right ;;

val preorder : 'a bintree -> 'a list = <fun>
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Solution to Exercise 96 Let’s start with the tree input and the output

of the tree traversal. The third argument to foldbt is a binary tree of

type ’a bintree, say. The result of the traversal is a value of type, say,

’b. Then the first argument, which serves as the return value for empty

trees must also be of type ’b and the function calculating the values for

internal nodes is given the value stored at the node (’a) and the two

recursively returned values and returns a ’b; it must be of type ’a ->

’b -> ’b -> ’b. Overall, the appropriate type for foldbt is

'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b

Solution to Exercise 97 A directly recursive implementation looks like

# let rec foldbt (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# match t with

# | Empty -> emptyval

# | Node (value, left, right) ->

# nodefn value (foldbt emptyval nodefn left)

# (foldbt emptyval nodefn right) ;;

val foldbt : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b =

<fun>

Notice that each time foldbt is recursively called, it passes along

the same first two arguments.The following version of foldbt uses a

local function to avoid this redundancy.

# let foldbt (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# let rec foldbt' t =

# match t with

# | Empty -> emptyval

# | Node (value, left, right) ->

# nodefn value (foldbt' left) (foldbt' right) in

# foldbt' t ;;

val foldbt : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b =

<fun>

Here’s a third slightly less attractive alternative, which introduces a

level of function application indirection and doesn’t take advantage of

the lexical scoping.

# let rec foldbt (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# let foldbt' = foldbt emptyval nodefn in

# match t with

# | Empty -> emptyval
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# | Node (value, left, right) ->

# nodefn value (foldbt' left)

# (foldbt' right) ;;

val foldbt : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b =

<fun>

At least it uses the partial application of foldbt in the definition of

foldbt’.

Solution to Exercise 98 By abstracting out the generic tree walking,

this and other functions can be succinctly implemented. The value of

the sum for an empty tree is 0, and the function to be applied to the

value at a node and the values of the subtrees should just sum up those

three values.

# let sum_bintree =

# foldbt 0 (fun v l r -> v + l + r) ;;

val sum_bintree : int bintree -> int = <fun>

# preorder int_bintree ;;

- : int list = [16; 93; 3; 42]

Solution to Exercise 99

# let preorder tree =

# foldbt [] (fun v l r -> v :: l @ r) tree ;;

val preorder : 'a bintree -> 'a list = <fun>

# preorder int_bintree ;;

- : int list = [16; 93; 3; 42]

Why not partially apply foldbt, as in the sum_bintree example?

Because of the problem with weak type variables noted in Section 9.6.

Solution to Exercise 100

# let find (tree : 'a bintree) (value : 'a) : bool =

# foldbt false

# (fun v l r -> (value = v) || l || r)

# tree ;;

val find : 'a bintree -> 'a -> bool = <fun>

You’ll want to avoid redundant locutions like (l = true) in the sec-

ond to last line. See Section C.5.2 in the style guide.

Solution to Exercise 101 An implementation with the top element

at the end of the list requires walking the whole list to dequeue an

element. We add a function split to perform the walk. To keep track

of the remaining queue elements, split uses an accumulator to add

the elements we walk past. This implementation is considerably more

complicated and requires repeatedly adding elements to the end of the

accumulator, making it far less efficient as well.
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# (* IntQueue -- An implementation of integer queues as

# int lists, where the elements are kept with older

# elements closer to the end of the list. *)

# module IntQueueAlternate =

# struct

# type int_queue = int list

# let empty_queue : int_queue = []

# let enqueue (elt : int) (q : int_queue)

# : int_queue =

# elt :: q

#

# let rec split (q : int_queue) (rest : int_queue) : int *
# int_queue =

# match q with

# | [] -> raise (Invalid_argument

# "dequeue: empty queue")

# | [top] -> top, rest

# | hd :: tl ->

# split tl (rest @ [hd])

#

# let dequeue (q : int_queue) : int * int_queue =

# split q []

# end ;;

module IntQueueAlternate :

sig

type int_queue = int list

val empty_queue : int_queue

val enqueue : int -> int_queue -> int_queue

val split : int_queue -> int_queue -> int * int_queue

val dequeue : int_queue -> int * int_queue

end

Solution to Exercise 102 We specify the signature of the dictionary to

provide only an abstract type and the types of the functions, along with

an exception to raise in case of duplicate keys.

# module type DICTIONARY = sig

# exception KeyAlreadyExists of string

# type ('key, 'value) dictionary

# val empty : ('key, 'value) dictionary

# val add : ('key, 'value) dictionary -> 'key -> 'value

# -> ('key, 'value) dictionary

# val lookup : ('key, 'value) dictionary -> 'key -> 'value option

# end ;;

module type DICTIONARY =

sig

exception KeyAlreadyExists of string

type ('key, 'value) dictionary

val empty : ('key, 'value) dictionary

val add :

('key, 'value) dictionary ->

'key -> 'value -> ('key, 'value) dictionary

val lookup : ('key, 'value) dictionary -> 'key -> 'value option

end
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In this implementation of the signature, dictionaries are represented

as lists of pairs of keys and values. Unlike the implementation in Sec-

tion 11.3, here we take advantage of some List module functions to

simplify the implementation.

# module Dictionary : DICTIONARY = struct

# exception KeyAlreadyExists of string

# type ('key, 'value) dictionary = ('key * 'value) list

# let empty = []

# let add dict key value =

# if List.exists (fun (k, _) -> k = key) dict then

# raise (KeyAlreadyExists "add: duplicate key")

# else

# (key, value) :: dict

# let lookup dict key =

# try Some (snd (List.find (fun (k, _) -> k = key) dict))

# with Not_found -> None

# end ;;

module Dictionary : DICTIONARY

Clearly, dictionaries with duplicate keys canot be constructed using the

Dictionary module.

Solution to Exercise 103 What we were looking for here is the proper

definition of a functor named MakeImaging taking an argument, where

the functor and argument are appropriately signature-constrained.

module MakeImaging (P : PIXEL)

: (IMAGING with type pixel = P.t) =

struct

(* ... the implementation would go here ... *)

end ;;

Typical problems are to leave out the : PIXEL, the : IMAGING, or the

sharing constraint.

Solution to Exercise 104 Applying the functor to the IntPixel mod-

ule is simply

module IntImaging = MakeImaging(IntPixel) ;;

Optionally, signature specifications can be added, so long as appropri-

ate sharing constraints are provided.

Solution to Exercise 105 Here, a local open simplifies things.

let open IntImaging in

depict (const (to_pixel 5000) (100, 100)) ;;

Solution to Exercise 106

module MakeInterval (Point : COMPARABLE)

: (INTERVAL with type point = Point.t) =

struct

(* ... the implementation would go here ... *)

end ;;
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Solution to Exercise 107

module DiscreteTime : (COMPARABLE with type t = int) =

struct

type t = int

type order = Less | Equal | Greater

let compare x y = if x < y then Less

else if x = y then Equal

else Greater

end ;;

Solution to Exercise 108

module DiscreteTimeInterval =

MakeInterval (DiscreteTime) ;;

Solution to Exercise 109

let intersection i j =

if relation i j = Disjoint then None

else let (x, y), (x', y') = endpoints i, endpoints j in

Some (interval (max x x') (min y y')) ;;

Solution to Exercise 110 There are myriad solutions here. The idea is

just to establish a few intervals and then test that you can recover some

endpoints or relations. Here are a few possibilities:

open Absbook ;;

let test () =

let open DiscreteTimeInterval in

let i1 = interval 1 3 in

let i2 = interval 2 6 in

let i3 = interval 0 7 in

let i4 = interval 4 5 in

unit_test (relation i1 i4 = Disjoint) "disjoint\n";

unit_test (relation i1 i2 = Overlaps) "overlaps\n";

unit_test (relation i1 i3 = Contains) "contains\n";

unit_test

(relation (union i1 i2) i4 = Contains) "unioncontains\n";

let i23 = intersection i1 i2 in

un

it_test (let

Some e23 = i23 in endpoints e23 = (2, 3)) "intersection";;

print_endline "tests completed" ;;

Solution to Exercise 111 Since we only need the float functionality for

weight, a simple definition is best.

# type weight = float ;;

type weight = float

Solution to Exercise 112 Since we want all shapes to be one of three

distinct types – either a circle OR an oval OR a fin – we want to use a

disjunctive type here. Variant types get the job done.
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# type shape =

# | Circle

# | Oval

# | Fin ;;

type shape = Circle | Oval | Fin

Solution to Exercise 113 Since we want each object to have two at-

tributes – a weight AND a shape – we want to use conjunction here. We

can construct a record type obj to represent objects. This allows us to

ensure each object has a weight and shape that are of the appropriate

type.

# type obj = { weight : weight; shape : shape } ;;

type obj = { weight : weight; shape : shape; }

Solution to Exercise 114 In the header of the functor, we want to

explicate the name of the functor and the type of the input module, as

well as any sharing constraint. We want to transform any module of

type BINTREEARG into a module of type BINTREE. We also need to add

sharing constraints so that the types for leaft and nodet in the output

module of type BINTREE are of the same type as the leaft and nodet

in the Element module.

module MakeBintree (Element : BINTREE_ARG)

: (BINTREE with

type leaft = Element.leaft and

type nodet = Element.nodet) =

struct

..... (* the implementation would go here *)

end ;;

Solution to Exercise 115 To define a Mobile with objs as leaves

and weights as nodes, we just need to pass in a module of type

BINTREEARG. This argument module will also have leaves of type obj

and nodes of type weight:

module Mobile = MakeBinTree (struct

type leaft = obj

type nodet = weight

end) ;;

An alternative is to explicitly define the argument values:

module MobileArg =

struct

type leaft = obj

type nodet = weight

end ;;

module Mobile = MakeBintree (MobileArg) ;;

If a module type is given to the argument module, however, there need

to be sharing constraints. So the following won’t work:



S O LU T I O N S TO S E L E C T E D E X E RC I S E S 449

module MobileArg : BINTREE_ARG =

struct

type leaft = obj

type nodet = weight

end ;;

module Mobile = MakeBintree (MobileArg) ;;

It should be

module MobileArg : (BINTREE_ARG with type leaft = obj

and type nodet = weight) =

struct

type leaft = obj

type nodet = weight

end ;;

module Mobile = MakeBintree (MobileArg) ;;

Solution to Exercise 116 The only aspects pertinent to the use of a

module are manifest in the signature. A user need not know how a

module of type BINTREE, say, makes a leaf; a user only needs to know

the signature of the make_leaf function in order to use it. A user in fact

cannot access the implementation details because we’ve constrained

the module to the BINTREE interface Similarly, a user need not know

how the functor MakeBintree works, as implementation details would

not be accessible to the user anyway. So long as a user knows the

functor’s signature, they know if they pass in any module following

the BINTREE_ARG signature, the functor will return a module follwing

the BINTREE signature.

Solution to Exercise 117 We construct the mobile using the make_-

leaf and make_node functions in the Mobile module.

let mobile1 =

let open Mobile in

make_node

1.0

(make_leaf {shape = Oval; weight = 9.0})

(make_node

1.0

(make_leaf {shape = Fin; weight = 3.5})

(make_leaf {shape = Fin; weight = 4.5})) ;;

Solution to Exercise 118 The size function takes in a binary tree

representing a mobile and returns the number of leaves in that tree.

The type is thus Mobile.tree -> int.

Solution to Exercise 119 Notice that we pass in mobile as an ar-

gument to size, only to just pass it in again as the last argument to

Mobile.walk; partial application allows us to simplify as follows:
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let size =

Mobile.walk (fun _leaf -> 1)

(fun _node left_size right_size ->

left_size + right_size) ;;

Solution to Exercise 120 Let’s first think about the signature of

shape_count. We want shape_count to take in a value of type shape

and output an int, so its type is shape -> int, leading to a first line of

let shape_count (s : shape) : int = ...

We’re told we want to use the walk function here. Since the walk func-

tion does the hard work of traversing the Mobile.tree for us, we just

need to pass in the proper arguments to walk in order to construct

the function shape_count. The walk function is of type (leaft ->

’a) -> (nodet -> ’a -> ’a -> ’a) -> tree -> ’a and takes in

two functions, one specifying behavior for leaves and one for nodes.

If we can define these two functions, we can easily define shape. Let’s

start with the function that specifies how we want to count leaves; we

need a function of type leaf -> ’a. The shape_count of a single leaf

should be 1 if the leaf matches the desired shape s and 0 otherwise. We

can construct an anonymous function that achieves this functionality

as follows:

fun leaf -> if leaf.shape = s then 1 else 0

We now want to address the case of nodes. Nodes don’t have shapes

themselves, but rather connect to other subtrees that might. To find

the shape count of a node, we just need to add the shape counts of its

subtrees.

fun _node l r -> l + r ;;

Putting it all together, we get

let shape_count (s : shape) =

Mobile.walk

(fun leaf -> if leaf.shape = s then 1 else 0)

(fun _node left_count right_count ->

left_count + right_count) ;;

Solution to Exercise 121 No, this mobile is not balanced. To deter-

mine whether the mobile is balanced, we can just sum the total weight

on each node. The right subtree connects two submobiles of different

weights (3.5 and 4.5).

Solution to Exercise 122 Again, we can use the walk function here

to avoid traversing the tree directly. We will again need to come up

with two functions to pass into walk, one for the leaves and one for the

nodes. Let’s look at the base case, leaves. A leaf is always balanced, so

we just ned to return Some w, where w is the weight of the leaf.



S O LU T I O N S TO S E L E C T E D E X E RC I S E S 451

fun leaf -> Some leaf.weight

Now, let’s look at the nodes. We want a function of the form nodet ->

’a -> ’a -> ’a, where the first argument is the node itself and the

remaining two are the results of walk on the left subtree and walk on

the right subtree, respectively. We want to ensure our node is balanced:

this requires that the left and right subtrees are each balanced and are

of equal weight. If these conditions are met we want to return If the

subtrees aren’t balanced or are of unequal weight, we want to return

Some w, where w is the sum of the weights of the connector and its

subtrees. We return None otherwise.

fun node left right ->

match left, right with

| Some wt1, Some wt2 ->

if wt1 = wt2 then Some (node +. wt1 +. wt2)

else None

| _, _ -> None) ;;

Putting it all together and passing in our mobile as an argument, we

get:

let balanced (mobile : Mobile.tree) =

Mobile.walk (fun leaf -> Some leaf.weight)

(fun node left right ->

match left, right with

| Some wt1, Some wt2 ->

if wt1 = wt2 then

Some (node +. wt1 +. wt2)

else None

| _, _ -> None)

mobile ;;

Note the redundancy of passing in mobile. We can use partial applica-

tion and arrive at the following final solution:

let balanced =

Mobile.walk (fun leaf -> Some leaf.weight)

(fun node l r ->

match l, r with

| Some wt1, Some wt2 ->

if wt1 = wt2 then

Some (node +. wt1 +. wt2)

else None

| _, _ -> None) ;;

Solution to Exercise 124 Since the + operator is left-associative, the

concrete syntax 3 + 5 + 7 corresponds to the same abstract syntax as

(3 + 5) + 7. The derivation is structured accordingly. The alternate

derivation provided in the exercise corresponds to the evaluation of

the concrete expression 3 + (5 + 7).
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Solution to Exercise 137 Rfun: “A function expression of the form fun

x -> B evaluates to itself.”

Rapp: “To evaluate an application of the form P Q, first evaluate

P to a function value of the form fun x -> B and Q to a value vQ .

Then evaluate the expression resulting from substituting vQ for free

occurrences of x in B to a value vB . The value of the full expression is

then vB .”

Solution to Exercise 139 The derivation starts as usual, until we get to

the highlighted derivation of ((fun y -> f 3) 1)[f 7→ fun x -> y].

Our better understanding of how substitution should work, as codified

in the new substitution rules, tells us that this substitution uses the

third rule, not the second, that is, we get (fun z -> (fun x-> y) 3)

1, using the fresh variable z. The derivation then continues:

let f = fun x -> y in (fun y -> f 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fun x -> y ⇓ fun x -> y

(fun z -> (fun x -> y) 3) 1

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(fun z -> (fun x -> y) 3) ⇓ (fun z -> (fun x -> y) 3)

1 ⇓ 1
(fun x -> 1) 3 ⇓∣∣∣∣∣ fun x -> y ⇓ fun x -> y

y ⇓???
⇓???

⇓???

⇓???

At this point, the derivation breaks down, as the variable y is unbound.

Solution to Exercise 140

(let x = Q in R)[x 7→ P ] = let x = Q[x 7→ P ] in R

(let y = Q in R)[x 7→ P ] = let y = Q[x 7→ P ] in R[x 7→ P ]

where x ̸≡ y and y ̸∈ FV (P )

(let y = Q in R)[x 7→ P ] = let z = Q[x 7→ P ] in R[y 7→ z][x 7→ P ]

where x ̸≡ y and y ∈ FV (P ) and z is a fresh variable

Solution to Exercise 145

# module MergeSort : SORT =

# struct

# let rec split lst =

# match lst with
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# | []

# | [_] -> lst, []

# | first :: second :: rest ->

# let first', second' = split rest in

# first :: first', second :: second'

#

# let rec merge lt xs ys =

# match xs, ys with

# | [], _ -> ys

# | _, [] -> xs

# | x :: xst, y :: yst ->

# if lt x y then x :: (merge lt xst ys)

# else y :: (merge lt xs yst)

#

# let rec sort (lt : 'a -> 'a -> bool)

# (xs : 'a list)

# : 'a list =

# match xs with

# | []

# | [_] -> xs

# | _ -> let first, second = split xs in

# merge lt (sort lt first) (sort lt second)

# end ;;

module MergeSort : SORT

Solution to Exercise 146 The claims in 1, 2, 4, and 5 hold.

Solution to Exercise 147

1. Big-O notation only gives you information about the worst-case

performance as the input size becomes very large. Because of this,

it ignores lower-order terms and constants that may have a large

effect for small inputs. So A may be slower than B for some inputs,

and the statement is false.

2. Since big-O notation provides worst-case performance, and A is

polynomial in big-O, they can be guaranteed that for any input (ex-

cept for a finite set), A will run in polynomial time, so the statement

is true.

3. As a worst-case bound, big-O doesn’t say anything about average-

case performance, so the statement is false.

Solution to Exercise 148 Since length is linear in the length of its

argument, compare_lengths is linear in the sum of the lengths of its

two arguments. But that sum is less than or equal to twice the length

of the longer argument. Thus, compare_lengths is in O(2n), where n

is the length of the longer argument, hence, dropping multiplicative

constants, O(n).

An alternative implementation, which stops the recursion once the

shorter list is exhausted, is linear in the length of the shorter list.
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# let rec compare_lengths xs ys =

# match xs, ys with

# | [], [] -> 0

# | _, [] -> 1

# | [], _ -> -1

# | _xhd :: xtl, _yhd :: ytl -> compare_lengths xtl ytl ;;

val compare_lengths : 'a list -> 'b list -> int = <fun>

# compare_lengths [1] [2;3;4] ;;

- : int = -1

# compare_lengths [1;2;3] [4] ;;

- : int = 1

# compare_lengths [1;2] [3;4] ;;

- : int = 0

Solution to Exercise 150

Todd s (n) = c +Todd s (n −2)

More detail in the equation in terms of constants for different bits is

unnecessary, but benign. Note the n −2, though n −1 yields the same

complexity.

Solution to Exercise 151 Linear – O(n).

Solution to Exercise 152 The O classes are independent of multiplica-

tion or division by constants, so each “triplet” of answers after the first

are equivalent. Since f is O(n), it is also O(n2) etc. for all higher classes.

Thus, all answers from the fifth on are correct.

Solution to Exercise 153 O(n) – linear. The odds and evens function

are both linear and return a list of length linear in n. The append is

linear in the length of the odds list, so also linear in n. The sum is

linear in the length of its argument, which is identical in length to

(and thus linear in) n. The let body is constant time. Summing these

complexities up, we’re left with linear and constant terms, which is

dominated by the linear term. Hence the function is linear.

Solution to Exercise 154 Let’s start with two mutable values of type

int list ref that are structurally equal but physically distinct:

# let lstref1 = ref [1; 2; 3] ;;

val lstref1 : int list ref = {contents = [1; 2; 3]}

# let lstref2 = ref [1; 2; 3] ;;

val lstref2 : int list ref = {contents = [1; 2; 3]}

# lstref1 = lstref2 ;;

- : bool = true

# lstref1 == lstref2 ;;

- : bool = false

Modifying one of them makes them both structurally and physically

unequal:
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# lstref1 := [4; 5] ;;

- : unit = ()

# lstref1 = lstref2 ;;

- : bool = false

# lstref1 == lstref2 ;;

- : bool = false

Now for two values that are physically equal (that is, aliases), and

therefore structurally equal as well:

# let lstref3 = ref [1; 2; 3] ;;

val lstref3 : int list ref = {contents = [1; 2; 3]}

# let lstref4 = lstref3 ;;

val lstref4 : int list ref = {contents = [1; 2; 3]}

# lstref3 = lstref4 ;;

- : bool = true

# lstref3 == lstref4 ;;

- : bool = true

Modifying one of them retains their physical, and hence structural

equality:

# lstref3 := [4; 5] ;;

- : unit = ()

# lstref3 = lstref4 ;;

- : bool = true

# lstref3 == lstref4 ;;

- : bool = true

Solution to Exercise 155 We evaluate the expressions in the R E P L to

show their types and values, ignoring the warnings.

1. # let a = ref 3 in

# let b = ref 5 in

# let a = ref b in

# !(!a) ;;

Line 1, characters 4-5:

1 | let a = ref 3 in

^

Warning 26 [unused-var]: unused variable a.

- : int = 5

2. In this example, a is a reference to b,which is itself a reference to a.

If we take the type of a to be ’a then, b must be of type ’a ref and

a (of type ’a remember) must also be of type ’a ref ref, leading

to an infinite regress of types. The expression is thus not well-typed.

The R E P L reports accordingly.

# let rec a, b = ref b, ref a in

# !a ;;

Line 1, characters 22-27:

1 | let rec a, b = ref b, ref a in

^^^^^

Error: This expression has type 'a ref ref
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but an expression was expected of type 'a

The type variable 'a occurs inside 'a ref ref

3. Note the warning that the inner definition of a is not used; the a

used in the definition of b is the outer one, as required by lexical

scoping. (The R E P L even reports that the inner a is unused.)

# let a = ref 1 in

# let b = ref a in

# let a = ref 2 in

# !(!b) ;;

Line 3, characters 4-5:

3 | let a = ref 2 in

^

Warning 26 [unused-var]: unused variable a.

- : int = 1

4. # let a = 2 in

# let f = (fun b -> a * b) in

# let a = 3 in

# f (f a) ;;

- : int = 12

Solution to Exercise 157

1. Since we’ve just declared p as a reference to the integer 11, p is of

type int ref

# let p = ref 11 ;;

val p : int ref = {contents = 11}

2. Our variable r is a reference to our variable p. We defined p as a

reference to an integer, so r is a reference to this reference, or an int

ref ref.

# let r = ref p ;;

val r : int ref ref = {contents = {contents = 11}}

3. (a) False. We know p is of type int ref. Since we declare s as s =

ref !r, we know that s is a reference to the same value that r

references. Since !r = p, we therefore know s is also a reference

to p, and thus also of type int ref ref. The types of p and r are

therefore not the same.

# let s = ref !r ;;

val s : int ref ref = {contents = {contents = 11}}

# p ;;

- : int ref = {contents = 11}

(b) True. The explanation here is the same as for (1): Since s is a

reference to !r, it’s of type int ref ref, the type of r.

# r ;;

- : int ref ref = {contents = {contents = 11}}
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# s ;;

- : int ref ref = {contents = {contents = 11}}

(c) False. As explained in the solution to (1), p is a reference to 11,

whereas s contains a reference to that reference.

# p ;;

- : int ref = {contents = 11}

# s ;;

- : int ref ref = {contents = {contents = 11}}

(d) True. We see r and s are a reference to the same value – that

is, they both are references to p – they therefore are structurally

equivalent.

# r ;;

- : int ref ref = {contents = {contents = 11}}

# s ;;

- : int ref ref = {contents = {contents = 11}}

4. We know the starting values of p, r, and s: p is a reference to the

integer 11, and s and r are two different references to p.

To find the value of t, let’s track the value of each variable at each

step in 4–6. We first set the dereference of s to equal 14 with the

line !s = 14. We know that since s is a reference to p, as found in

question (2), !s points to the same address as p. When we reassign

!s to 14, we’re thus changing the value at the block of memory to

which p points to store the value 14.

We now set t equivalent to the expression !p + !(!r) + !(!s); in

order to compute this we must first evaluate each of the addends:

• !p: As described above, since s is a reference to p, !s points to

the same address as p; by replacing the value at that block with

14, p is now a reference to the value 14. Dereferencing p with !p

thus gives us the integer 14.

• !(!r): As described in the explanation to (3), we know r is a

reference to p, so !r points to the same address as p. We know

!(!r), therefore, is equal to !p, which we found above to be 14.

• !(!s): Again, s is still a reference to p, so !s would point to

the address as p. By dereferencing s again, with !(!s), we’re

therefore returning the value to which p points, that is, 14.

Putting it all together, we can see that this evaluates to 14 + 14 +

14, so t = 42.

# let t =

# !s := 14;

# !p + !(!r) + !(!s) ;;
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val t : int = 42

# t ;;

- : int = 42

5. Note how similar the code in 7–9 looks to the code in 4–6. Yet there

is in fact one key difference: we’re changing s itself rather than

!s. This means that instead of modifying our reference to p, we’re

replacing it. With the line s := ref 17, we’re declaring an entirely

new reference that points to an instance of the value 17, and setting

s to point to that reference. This effectively severs the tie between s

and p: s points to a to a completely separate reference to a block of

memory containing the value 17, while p continues to point to the

value 14.

As for r, note that while s and r started out structurally equivalent,

they were never physically equivalent. Think back to when we

defined s:

let s = ref !r ;;

When we dereference r with !r, we lose all association with the spe-

cific block of memory to which r refers and are only passed along

the value contained in that block. Thus while s is also a reference

to the value r references – that is, both s and r are references to p –

s and r are in fact distinct references pointing to distinct blocks in

memory. Because s and r are not structurally equivalent, s is still a

reference to p.

Putting it all together, we again evaluate each of the addends in the

expression !p + !(!r) + !(!s); !p and thus !(!r) each evaluate

to 14, while !(!s)) now evaluates to 17. We’re thus left with 14 +

14 + 17, and t = 45.

# let t =

# s := ref 17;

# !p + !(!r) + !(!s) ;;

val t : int = 45

# t ;;

- : int = 45

Solution to Exercise 158 In this solution, we explicitly raise a Failure

exception (a la List.hd and List.tl) when applied to the empty

mutable list:

# let mhead mlst =

# match !mlst with

# | Nil -> raise (Failure "mhead: empty list")

# | Cons (hd, _tl) -> hd ;;

val mhead : 'a mlist_internal ref -> 'a = <fun>
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# let mtail mlst =

# match !mlst with

# | Nil -> raise (Failure "mtail: empty list")

# | Cons (_hd, tl) -> tl ;;

val mtail : 'a mlist_internal ref -> 'a mlist = <fun>

Solution to Exercise 159 We evaluate the expressions in the R E P L to

show their types and values.

1. # let a = ref (Cons (2, ref (Cons (3, ref Nil)))) ;;

val a : int mlist_internal ref =

{contents = Cons (2, {contents = Cons (3, {contents = Nil})})}

2. # let Cons (_hd, tl) = !a in

# let b = ref (Cons (1, a)) in

# tl := !b ;

# mhead (mtail (mtail b)) ;;

Lines 1-4, characters 0-23:

1 | let Cons (_hd, tl) = !a in

2 | let b = ref (Cons (1, a)) in

3 | tl := !b ;

4 | mhead (mtail (mtail b))...

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Nil

- : int = 1

Note that the type int mlist_internal ref is equivalent to int

mlist.

Solution to Exercise 160

# let mlength (lst : 'a mlist) : int =

# let rec mlength' lst visited =

# if List.memq lst visited then 0

# else

# match !lst with

# | Nil -> 0

# | Cons (_hd, tl) ->

# 1 + mlength' tl (lst :: visited)

# in mlength' lst [] ;;

val mlength : 'a mlist -> int = <fun>

Solution to Exercise 161

# let rec mfirst (n: int) (mlst: 'a mlist) : 'a list =

# if n = 0 then []

# else match !mlst with

# | Nil -> []

# | Cons (hd, tl) -> hd :: mfirst (n - 1) tl ;;

val mfirst : int -> 'a mlist -> 'a list = <fun>

Solution to Exercise 162
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# let rec alternating =

# ref (Cons (1, ref (Cons (2, alternating)))) ;;

val alternating : int mlist =

{contents = Cons (1, {contents = Cons (2, <cycle>)})}

Solution to Exercise 164 Let’s start with insertion. It will be useful

to have an auxiliary function that attempts to insert at a particular

location, carrying out the probing if that location is already used for a

different key.

let rec insert' dct target newvalue loc =

(* fallen off the end of the array; error *)

if loc >= D.size then raise Exit

else

match dct.(loc) with

| Empty ->

(* found an empty slot; fill it *)

dct.(loc) <- Element {key = target;

value = newvalue}

| Element {key; _} ->

if key = target then

(* found an existing pair for key; replace it *)

dct.(loc) <- Element {key = target;

value = newvalue}

else

(* hash collision; reprobe *)

insert' (succ loc) ;;

Now with this auxiliary function, we can implement insertion just by

attempting to insert at the location given by the hash function.

let insert dct target newvalue =

insert' dct target newvalue (D.hash_fn target) ;;

Of course, insert’ is only needed in the context of insert. Why not

make it a local function? Doing so also puts the definition of insert’

in the scope of the arguments of insert. Since these never change

in calls of insert’, we can drop them from the arguments list of

insert’.

let insert dct target newvalue =

let rec insert' loc =

(* fallen off the end of the array; error *)

if loc >= D.size then raise Exit

else

match dct.(loc) with

| Empty ->

(* found an empty slot; fill it *)

dct.(loc) <- Element {key = target;

value = newvalue}

| Element {key; _} ->

if key = target then

(* found an existing pair for key; replace it *)
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dct.(loc) <- Element {key = target;

value = newvalue}

else

(* hash collision; reprobe *)

insert' (succ loc) in

insert' (D.hash_fn target) ;;

Next, we can look at the member function. Using the same approach,

we get

let member dct target =

let rec member' loc =

(* fallen off the end of the array; not found *)

if loc >= D.size then false

else

match dct.(loc) with

| Empty ->

(* found an empty slot; target not found *)

false

| Element {key; _} ->

if key = target then

(* found an existing pair for this key; target found *)

true

else

(* hash collision; reprobe *)

member' (succ loc) in

member' (D.hash_fn target) ;;

Perhaps you see the problem. The code is nearly identical, once the

putative location for the target key is found. The same will be true for

lookup and remove. Rather than reimplement this search process in

each of the functions, we can abstract it into its own function, which

we’ll call findloc. This function returns the (optional) location (index)

where a particular target key is already or should go, or None if no such

location is found.

let findloc (dct : dict) (target : key) : int option =

let rec findloc' loc =

if loc >= D.size then None

else

match dct.(loc) with

| Empty -> Some loc

| Element {key; _} ->

(if key = target then Some loc

else findloc' (succ loc)) in

findloc' (D.hash_fn target) ;;

Using findloc, implementation of the other functions becomes much

simpler.

let member dct target =

match findloc dct target with
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| None -> false

| Some loc ->

match dct.(loc) with

| Empty -> false

| Element {key; _} ->

assert (key = target);

true ;;

let lookup dct target =

match findloc dct target with

| None -> None

| Some loc ->

match dct.(loc) with

| Empty -> None

| Element {key; value} ->

assert (key = target);

Some value ;;

let insert dct target newvalue =

match findloc dct target with

| None -> raise Exit

| Some loc ->

dct.(loc) <- Element {key = target;

value = newvalue} ;;

let remove dct target =

match findloc dct target with

| None -> ()

| Some loc -> dct.(loc) <- Empty ;;

Furthermore, the code is more maintainable because all of the details

of collision handling are localized in the one findloc function. If we

want to change to, say, quadratic probing, only that one function need

be changed.

One might still think that there is more commonality among the

hashtable functions than is even getting captured by findloc. It seems

that in all cases, the result of the call to findloc is being tested for

three cases: (i) no location is available, (ii) an empty location is found,

or (iii) a non-empty location is found with the target key. Rather than

perform this triage in all of the various functions, why not do so in

findloc itself, which can be provided with appropriate functions,

called C A L L B AC K S, for each of the cases. The following version does

just this:

(* findloc dct key cb_unavailable cb_empty cb_samekey --

Finds the proper location for the key in the dct, and

calls the appropriate callback function:

cb_unavailable -- no element available for this key

cb_empty loc -- element available is empty at provided

loc

cb_samekey loc key value -- element available is non-empty

at provided loc and has the given key and value
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*)

let findloc (dct : dict) (target : key)

(cb_unavailable : unit -> 'a)

(cb_empty : int -> 'a)

(cb_samekey : int -> key -> value -> 'a)

: 'a =

let rec findloc' loc =

if loc >= D.size then cb_unavailable ()

else

match dct.(loc) with

| Empty -> cb_empty loc

| Element {key; value} ->

(if key = target then cb_samekey loc key value

else findloc' (succ loc)) in

findloc' (D.hash_fn target) ;;

let member dct target =

findloc dct target

(fun () -> false)

(fun _ -> false)

(fun _ _ _ -> true) ;;

let lookup dct target =

findloc dct target

(fun () -> None)

(fun _ -> None)

(fun _ _ value -> Some value) ;;

let insert dct target newvalue =

let newelt = Element {key = target;

value = newvalue} in

findloc dct target

(fun () -> raise Exit)

(fun loc -> dct.(loc) <- newelt)

(fun loc _ _ -> dct.(loc) <- newelt) ;;

let remove dct target =

findloc dct target

(fun () -> ())

(fun loc -> ())

(fun loc _ _ -> dct.(loc) <- Empty) ;;

Solution to Exercise 167 Here’s a simple implementation keeping an

internal counter of allocations since the last reset.

# module Metered : METERED = struct

# (* internal counter of allocations since last reset *)

# let constructor_count = ref 0

#

# let reset () =

# constructor_count := 0

#

# let count () =

# !constructor_count
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#

# let cons hd tl =

# incr constructor_count;

# hd :: tl

#

# let pair first second =

# incr constructor_count;

# first, second

# end ;;

module Metered : METERED

Solution to Exercise 168

# let rec zip (xs : 'a list)

# (ys : 'b list)

# : ('a * 'b) list =

# match xs, ys with

# | [], [] -> []

# | [], _

# | _, [] -> raise (Invalid_argument

# "zip: unequal length lists")

# | xhd :: xtl, yhd :: ytl ->

# Metered.cons (Metered.pair xhd yhd) (zip xtl ytl) ;;

val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

Notice that the constructors in the patterns, which are merely used

to deconstruct values, are unchanged. Only the instances used to

construct new values are replaced with their metered counterparts.

Solution to Exercise 169 A metered version of quicksort replaces all

consing and pairing with the metered version. We’ve added a metered

version of append as well.

# module MeteredQuickSort : SORT =

# struct

# (* simplify access to the metering *)

# open Metered

#

# (* append xs ys -- A metered version of the (@) append

# function *)

# let rec append (xs : 'a list) (ys : 'a list) : 'a list =

# match xs with

# | [] -> ys

# | hd :: tl -> cons hd (append tl ys)

#

# (* partition lt pivot xs -- Returns two lists

# constituting all elements in `xs` less than (according

# to `lt`) than the `pivot` value and greater than the

# pivot `value`, respectively *)

# let rec partition lt pivot xs =

# match xs with

# | [] -> pair [] []

# | hd :: tl ->

# let first, second = partition lt pivot tl in
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# if lt hd pivot then pair (cons hd first) second

# else pair first (cons hd second)

#

# (* sort lt xs -- Returns the sorted `xs` according to the

# comparison function `lt` using the Quicksort algorithm *)

# let rec sort (lt : 'a -> 'a -> bool)

# (xs : 'a list)

# : 'a list =

# match xs with

# | [] -> []

# | pivot :: rest ->

# let first, second = partition lt pivot rest in

# append (sort lt first)

# (append (cons pivot [])

# (sort lt second))

# end ;;

module MeteredQuickSort : SORT

With the metered version in hand, we can see the allocations more

clearly.

# Metered.reset () ;;

- : unit = ()

# MeteredQuickSort.sort (<)

# [1; 3; 5; 7; 9; 2; 4; 6; 8; 10] ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8; ...]

# Metered.count () ;;

- : int = 92

Solution to Exercise 171 New versions of the functions use

Lazy.force instead of application to unit and the lazy keyword

instead of wrapping a function. Notice that first is unchanged, as

it delays and forces only through its use of the other functions.

let tail (s : 'a stream) : 'a stream =

match Lazy.force s with

| Cons (_hd, tl) -> tl ;;

let rec smap (f : 'a -> 'b) (s : 'a stream)

: ('b stream) =

lazy (Cons (f (head s), smap f (tail s))) ;;

let rec smap2 f s1 s2 =

lazy (Cons (f (head s1) (head s2),

smap2 f (tail s1) (tail s2))) ;;

let rec first (n : int) (s : 'a stream) : 'a list =

if n = 0 then []

else head s :: first (n - 1) (tail s) ;;

Solution to Exercise 172 We start with a function to form ratios of

successive stream elements.

# let rec ratio_stream (s : float stream) : float stream =

# lazy (Cons ((head (tail s)) /. (head s),
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# ratio_stream (tail s))) ;;

val ratio_stream : float stream -> float stream = <fun>

Now we can generate the stream of ratios for the Fibonacci sequence

and find the required approximation:

# let golden_ratio_approx = ratio_stream (to_float fibs) ;;

val golden_ratio_approx : float stream = <lazy>

# within 0.000001 golden_ratio_approx ;;

- : float = 1.61803444782168193

Solution to Exercise 173

# let rec falses =

# lazy (Cons (false, falses)) ;;

val falses : bool stream = <lazy>

Solution to Exercise 174 As demonstrated by the OCaml R E P L type

inference in the previous exercise, the type of falses is bool stream.

Solution to Exercise 175 Here is a recursive implementation of

trueat:

# let rec trueat n =

# if n = 0 then lazy (Cons (true, falses))

# else lazy (Cons (false, trueat (n - 1))) ;;

val trueat : int -> bool stream = <fun>

Solution to Exercise 176 Here is a recursive implementation of

trueat:

# let circnot : bool stream -> bool stream =

# smap not ;;

val circnot : bool stream -> bool stream = <fun>

Note the use of the smap function and the use of partial application.

Solution to Exercise 177

# let circand : bool stream -> bool stream -> bool stream =

# smap2 (&&) ;;

val circand : bool stream -> bool stream -> bool stream = <fun>

Solution to Exercise 178

# let circnand (s: bool stream) (t: bool stream) : bool stream =

# circnot (circand s t) ;;

val circnand : bool stream -> bool stream -> bool stream = <fun>

Solution to Exercise 179

# class text (p : point) (s : string) : display_elt =

# object (this)

# inherit shape p

# method draw = let (w, h) = G.text_size s in
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# G.set_color this#get_color ;

# G.moveto (this#get_pos.x - w/2)

# (this#get_pos.y - h/2);

# G.draw_string s

# end ;;

class text : point -> string -> display_elt

Solution to Exercise 180 There are many ways of implementing such

functions. Here’s one.

# let mono x = [x + 1] ;;

val mono : int -> int list = <fun>

# let poly x = [x] ;;

val poly : 'a -> 'a list = <fun>

# let need f =

# match f 3 with

# | [] -> []

# | hd :: tl -> hd + 1 :: tl ;;

val need : (int -> int list) -> int list = <fun>

# need mono ;;

- : int list = [5]

# need poly ;;

- : int list = [4]

Solution to Exercise 181 The solution here makes good use of inheri-

tance rather than reimplementation.

# class loud_counter : counter_interface =

# object (this)

# inherit counter as super

# method! bump n =

# super#bump n;

# Printf.printf "State is now %d\n" this#get_state

# end ;;

class loud_counter : counter_interface

The bump method is introduced with a ! to make clear our intention to

override the inherited method, and to avoid a warning.

Solution to Exercise 182

# class type reset_counter_interface =

# object

# inherit counter_interface

# method reset : unit

# end ;;

class type reset_counter_interface =

object

method bump : int -> unit

method get_state : int

method reset : unit

end

Solution to Exercise 183



468 P RO G R A M M I N G W E L L

# class loud_reset_counter : reset_counter_interface =

# object (this)

# inherit loud_counter

# method reset =

# this#bump (-this#get_state)

# end ;;

class loud_reset_counter : reset_counter_interface

Solution to Exercise 184

{} ⊢ let x = 3 in let y = 5 in x + y

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 3 ⇓ 3
{x 7→ 3} ⊢ let y = 5 in x + y

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 3} ⊢ 5 ⇓ 5
{x 7→ 3;y 7→ 5} ⊢ x + y

⇓∣∣∣∣∣ {x 7→ 3;y 7→ 5} ⊢ x ⇓ 3
{x 7→ 3;y 7→ 5} ⊢ y ⇓ 5

⇓ 8
⇓ 8

⇓ 8
Solution to Exercise 185

{} ⊢ let x = 3 in let x = 5 in x + y

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 3 ⇓ 3
{x 7→ 3} ⊢ let x = 5 in x + x

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 3} ⊢ 5 ⇓ 5
{x 7→ 5} ⊢ x + x

⇓∣∣∣∣∣ {x 7→ 5} ⊢ x ⇓ 5
{x 7→ 5} ⊢ x ⇓ 5

⇓ 10
⇓ 10

⇓ 10
Solution to Exercise 186

• Rfun: “A function expression of the form fun x -> B in an environ-

ment E evaluates to itself.”

• Rapp: “To evaluate an application of the form P Q in an environ-

ment E , first evaluate P in E to a function value of the form fun x
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-> B and Q in E to a value vQ . Then evaluate the expression B in an

environment that augments E with a binding of x to vQ , resulting in

a value vB . The value of the full expression is then vB .”

Solution to Exercise 188 The derivation under a lexical environment

semantics is as follows:

{} ⊢ let x = 1 in let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{} ⊢ 1 ⇓ 1
{x 7→ 1} ⊢ let f = fun y -> x + y in let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1} ⊢ fun y -> x + y ⇓ [{x 7→ 1} ⊢ fun y -> x + y]

{x 7→ 1;f 7→ [{x 7→ 1} ⊢ fun y -> x + y]} ⊢ let x = 2 in f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{x 7→ 1;f 7→ [{x 7→ 1} ⊢ fun y -> x + y]} ⊢ 2 ⇓ 2
{f 7→ [{x 7→ 1} ⊢ fun y -> x + y];x 7→ 2} ⊢ f 3

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{f 7→ [{x 7→ 1} ⊢ fun y -> x + y];x 7→ 2} ⊢ f ⇓ [ {x 7→ 1} ⊢ fun y -> x + y]

{f 7→ [{x 7→ 1} ⊢ fun y -> x + y];x 7→ 2} ⊢ 3 ⇓ 3
{x 7→ 1;y 7→ 3} ⊢ x + y

⇓∣∣∣∣∣ {x 7→ 1;y 7→ 3} ⊢ x ⇓ 1
{x 7→ 1;y 7→ 3} ⊢ y ⇓ 3

⇓ 4
⇓ 4

⇓ 4
⇓ 4

⇓ 4

Notice that the body of the function is evaluated in an environment

constructed by taking the lexical environment of the function (the

first highlight in the derivation above) and augmenting it with the

argument binding to form the environment in which to evaluate the

body (the second highlight). In the lexical environment x has the value

1, so the entire expression evaluates to 4 rather than 5 (as under the

substitution semantics as well).

Solution to Exercise 190 Only (4) evaluates to a different value under

dynamic scoping. Under OCaml’s lexical scoping, the a in the body

of the f function is the lexically containing a that has value 2. The

expression thus has value 12 under lexical scoping:

# let a = 2 in

# let f = (fun b -> a * b) in
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# let a = 3 in

# f (f a) ;;

- : int = 12

Under dynamic scoping, the a in the body of the f function is the

dynamically more recent a with value 3. The value of the expression is

thus 27 under dynamic scoping.

Solution to Exercise 191 Environment semantics rules for true and

false, appropriate for both lexical and dynamic variants, are

E ⊢ true ⇓ true (Rtrue)

E ⊢ false ⇓ false (Rfalse)

Solution to Exercise 192 Environment semantics rules for true and

false, appropriate for both lexical and dynamic variants, are

E ⊢ if C then T else F ⇓∣∣∣∣∣ E ⊢C ⇓ true
E ⊢ T ⇓ vT

⇓ vT

(Rifthen)

E ⊢ if C then T else F ⇓∣∣∣∣∣ E ⊢C ⇓ false
E ⊢ F ⇓ vF

⇓ vF

(Rifelse)

Solution to Exercise 193

E ,S ⊢ ! P ⇓∣∣∣ E ,S ⊢ P ⇓ l ,S′

⇓ S′(l ),S′
(Rderef )

The rule can be glossed “to evaluate an expression of the form ! P in

environment E and store S, evaluate P in E and S to a location l and

new store S′. The result is the value that l maps to in S′ and new store

S′.”

Solution to Exercise 194 The following rule evaluates P to a unit, pass-

ing the side-effected store S′ on for the evaluation of Q. The result of

the sequencing is then the value and store resulting from the evalua-

tion of Q.

E ,S ⊢ P ; Q ⇓∣∣∣∣∣ E ,S ⊢ P ⇓ (),S′

E ,S′ ⊢Q ⇓ vQ ,S′′

⇓ vQ ,S′′

(Rseq)
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Solution to Exercise 195 We start by taking

let rec x = D in B

to be equivalent to

let x = ref unassigned in (x := D ′); B ′

where for brevity we abbreviate D ′ ≡ D[x 7→ !x], B ′ ≡ B [x 7→ !x], and

U ≡ unassigned.

In order to develop the semantic rule for let rec x = D in B , we

carry out a schematic derivation of its desugared equivalent:

E ,S ⊢ let x = ref U in (x := D ′); B ′

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E ,S ⊢ ref U

⇓∣∣∣ E ,S ⊢U ⇓U ,S

⇓ l ,S{l 7→U }

E {x 7→ l },S{l 7→U } ⊢ (x := D ′); B ′

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E {x 7→ l },S{l 7→U } ⊢ x := D ′

⇓∣∣∣∣∣∣∣∣∣∣∣∣∣

E {x 7→ l },S{l 7→U } ⊢ x ⇓ l ,S{l 7→U }

E {x 7→ l },S{l 7→U } ⊢ D’

⇓∣∣∣ · · ·
⇓ vD ,S′


⇓ (),S′{l 7→ vD }

E {x 7→ l },S′{l 7→ vD } ⊢ B’

⇓∣∣∣ · · ·
⇓ vB ,S′′


⇓ vB ,S′′

⇓ vB ,S′′

This schematic derivation is complete, except for the two highlighted

subderivations for D ′ and B ′ respectively. Thus, we can define a se-

mantic rule for the original construct let rec x = D in B (now

with abbreviations expanded) that incorporates these two subderiva-

tions as premises:

E ,S ⊢ let rec x = D in B ⇓∣∣∣∣∣ E {x 7→ l },S{l 7→ unassigned} ⊢ D[x 7→ !x] ⇓ vD ,S′

E {x 7→ l },S′{l 7→ vD } ⊢ B [x 7→ !x] ⇓ vB ,S′′

⇓ vB ,S′′
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(Rletrec)

This is just the semantic rule presented in Section 19.6.1.

Solution to Exercise 196 The fold implementation from the solution

to Exercise 96 is the following:

let rec foldbt (emptyval : 'b)

(nodefn : 'a -> 'b -> 'b -> 'b)

(t : 'a bintree)

: 'b =

match t with

| Empty -> emptyval

| Node (value, left, right) ->

nodefn value (foldbt emptyval nodefn left)

(foldbt emptyval nodefn right) ;;

As a first step, let’s isolate the two recursive calls.

let rec foldbt (emptyval : 'b)

(nodefn : 'a -> 'b -> 'b -> 'b)

(t : 'a bintree)

: 'b =

match t with

| Empty -> emptyval

| Node (value, left, right) ->

let left' = foldbt emptyval nodefn left in

let right' = foldbt emptyval nodefn right in

nodefn value left' right' ;;

Now, we can compute the left subtree in a separate thread using

future, remembering to force the value when it’s needed.

# let rec foldbt_conc (emptyval : 'b)

# (nodefn : 'a -> 'b -> 'b -> 'b)

# (t : 'a bintree)

# : 'b =

# match t with

# | Empty -> emptyval

# | Node (value, left, right) ->

# let left' =

# Future.future (foldbt_conc emptyval nodefn) left in

# let right' = foldbt_conc emptyval nodefn right in

# nodefn value (Future.force left') right' ;;

val foldbt_conc : 'b -> ('a -> 'b -> 'b -> 'b) -> 'a bintree -> 'b

= <fun>

To demonstrate its operation, we can sum the values in a binary tree as

per Exercise 98.

# let sum_bintree =

# foldbt_conc 0 (fun v l r -> v + l + r) ;;

val sum_bintree : int bintree -> int = <fun>

# sum_bintree int_bintree ;;

- : int = 154
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Solution to Exercise 197 Here’s one such interleaving. We adjust the

previous interleaving moving thread A’s balance update to after thread

B’s update.

thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. let updated = balance - amt in
3. if balance >= amt then begin
4. let updated = balance - amt in
5. balance <- updated;
6. balance <- updated;
7. amt
8. · · · amt

· · ·

Solution to Exercise 198 Here’s one such interleaving. We adjust the

previous interleaving so that thread B verifies the balance adequacy

(line 2) before thread A’s update (line 3-4), but computes its updated

balance afterwards (line 6).

thread A ($75 withdrawal) thread B ($50 withdrawal)

1. if balance >= amt then begin
2. if balance >= amt then begin
3. let updated = balance - amt in
4. balance <- updated;
5. amt
6. let updated = balance - amt in
7. · · · balance <- updated;
8. amt

· · ·

Solution to Exercise 199 We wrap the computation of the critical

region f () in a try 〈〉 with to trap any exceptions and unlock on the

way out.

# (* with_lock l f -- Run thunk `f` in context of acquired lock `l`,
# unlocking on return or exceptions *)

# let with_lock (l : Mutex.t) (f : unit -> 'a) : 'a =

# Mutex.lock l;

# let res =

# try f ()

# with exn -> Mutex.unlock l;

# raise exn in

# Mutex.unlock l;

# res ;;

val with_lock : Mutex.t -> (unit -> 'a) -> 'a = <fun>
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